JPS5877208A - Multi-layer magnetic thin film and manufacture thereof - Google Patents

Multi-layer magnetic thin film and manufacture thereof

Info

Publication number
JPS5877208A
JPS5877208A JP17564581A JP17564581A JPS5877208A JP S5877208 A JPS5877208 A JP S5877208A JP 17564581 A JP17564581 A JP 17564581A JP 17564581 A JP17564581 A JP 17564581A JP S5877208 A JPS5877208 A JP S5877208A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
layer
multilayer
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17564581A
Other languages
Japanese (ja)
Inventor
Hideo Fujiwara
英夫 藤原
Takayuki Kumasaka
登行 熊坂
Moichi Otomo
茂一 大友
Kazuo Shiiki
椎木 一夫
Yoshihiro Shiroishi
芳博 城石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17564581A priority Critical patent/JPS5877208A/en
Publication of JPS5877208A publication Critical patent/JPS5877208A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Magnetic Heads (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To prevent the generation of a closed circuit magnetic domain by a method wherein the easy magnetizing axis of each magnetic layer is alternately and obliquely crossed when magnetic layers having uniaxial magnetic anisotropy are stacked through a magnetic insulating layer. CONSTITUTION:A multi-layer magnetic thin film is formed by stacking magnetic layers 602, 604 having uniaxial magnetic anisotropy through a magnetic insulating layer 603. At that time, the direction of easy magnetizing axis of each magnetic layer is established to alternately and obliquely cross. For example, the easy magnetzing axis is directed to the (a) or (b) direction alternately forming an angle of psi each other. When a magnetic field is applied to the multi-layer magnetic thin film in the (h) direction, the magnetization of each magnetic layer directs to the directions of Ma, Mb respectively. Therefore, when a core side face is established on a bisector at the angle psi, the core width direction component of the magnetization can alternately be directed to the opposite direction respectively. This can prevent the generation of a closed circuit magnetic domain.

Description

【発明の詳細な説明】 本発明は多層磁性薄膜ならびにその製造方法に係り、特
に薄膜磁気ヘッド等の高周波磁気コア材に好適な多/I
ii磁性薄膜ならびにその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multilayer magnetic thin film and a method for manufacturing the same.
ii. A magnetic thin film and a method for manufacturing the same.

N i −p 6合金薄膜の保磁力が、きわめて薄い非
磁性層すなわち磁気的絶縁1−を介して積層することに
より′著しく低減することはたとえばNATtJRF。
For example, it is reported in NATtJRF that the coercive force of a N i -p 6 alloy thin film is significantly reduced by laminating the thin non-magnetic layer through an extremely thin non-magnetic layer, that is, a magnetic insulator 1-.

194.1035(1962)に記載されている通りで
あり、したがって、これが、薄膜磁気ヘッド等の高周波
磁気コア材として適していることは周知の事実となって
いる。
194.1035 (1962), and it is therefore a well-known fact that this material is suitable as a high-frequency magnetic core material for thin-film magnetic heads and the like.

かくのごとき多層磁性薄膜を用いた磁気ヘッドは、たと
えは、第1図にその断面図を模式的に示すごとく、基板
1の上に第1のパーマロイ(Nlpe合金)層2を形成
し、その上の作動キャンプ形成用電気的絶縁兼多層磁性
薄膜の磁気的絶縁用非磁性層3.第2のパーマロイ層4
.電気的絶縁層51通電用導電体6.電気的絶縁層7.
第3のパーマロイ層8.非磁性層91および・第4のパ
ーマロイ層10よシなる。ここで、第1および第2のパ
ーマロイ層が第1の多層磁性薄膜磁気コア。
A magnetic head using such a multilayer magnetic thin film is, for example, formed by forming a first permalloy (Nlpe alloy) layer 2 on a substrate 1, as shown in FIG. 3. Magnetic insulating non-magnetic layer of the electrically insulating and multilayer magnetic thin film for forming active camps above. Second permalloy layer 4
.. Electrical insulating layer 51 Current conductor 6. Electrical insulation layer7.
Third permalloy layer8. It consists of a nonmagnetic layer 91 and a fourth permalloy layer 10. Here, the first and second permalloy layers form a first multilayer magnetic thin film magnetic core.

第3および第4のパーマロイ層、7%第2の多層磁性薄
膜磁気コアとして働く。従来のかくのごとき磁気ヘッド
においては、各パーマロイ層の層面内における磁化容易
軸の方向を磁気記録媒体対向面11に平行(第1図にお
いて紙面に垂直)になるごとく設定し、磁気コアの高周
波特性を確保するよう工夫されている。
The third and fourth permalloy layers serve as the 7% second multilayer magnetic thin film magnetic core. In such a conventional magnetic head, the direction of the axis of easy magnetization in the layer plane of each permalloy layer is set parallel to the magnetic recording medium facing surface 11 (perpendicular to the plane of the paper in FIG. 1), and the high frequency of the magnetic core is It has been devised to ensure the characteristics.

ところで、かくのごとく、磁化容易軸を磁気記録媒体対
向面に平行に設定すると、上記磁性薄膜は、第2図に模
型的に示すごとく、磁性薄膜側面において磁化が閉磁路
を形成するごとく閉路磁区12が発生し、このために磁
気コア特性が阻害されるという、薄膜磁気ヘッドに特有
の欠点がある。
By the way, when the axis of easy magnetization is set parallel to the surface facing the magnetic recording medium, the above-mentioned magnetic thin film will form a closed magnetic domain such that the magnetization forms a closed magnetic path on the side surface of the magnetic thin film, as schematically shown in FIG. 12 occurs, which impairs the magnetic core characteristics, which is a particular drawback of thin-film magnetic heads.

この欠点は、コア幅が挾くなるとともに、″また。The disadvantage of this is that the core width becomes narrower.

コア厚を厚くするとともに顕著になる。とくに。This becomes more noticeable as the core thickness increases. especially.

コア厚が厚くなるにしたがって、・上記閉路磁区の発生
が目立つようになるのは1幅方向に磁化を向けたときの
反磁場の影響が、コア厚が厚くなるにしたがって強くな
るからである。
As the core thickness increases, the occurrence of the closed magnetic domain becomes more noticeable because the influence of the demagnetizing field when magnetization is directed in one width direction becomes stronger as the core thickness increases.

本発明の目的は、かかる欠点を除去した多層磁性薄膜を
提供することにある。
An object of the present invention is to provide a multilayer magnetic thin film that eliminates such drawbacks.

本発明の他の目的は、また、上記欠点を除去した多層磁
性薄膜の製造方法を提供することである。
Another object of the present invention is to provide a method for manufacturing a multilayer magnetic thin film that eliminates the above-mentioned drawbacks.

上記したごとき従来の磁性薄膜の欠点は、単層膜のとき
は勿論のこと、多層膜の場合にも、 FJさ方向で磁化
の向きが必ずしも異ならないことがあるために生ずるも
のであり、したがって、本発明による多層磁性薄膜にお
いては、コア形成時に、コア側面として適当な方向を選
ぶことにより、各磁性層内部の磁化のコア幅方向成分を
、交互に互いに略反対方向を向往ることが可能なごとく
、各磁性層内部の磁化容易軸の方向が設定しである。
The above-mentioned drawbacks of conventional magnetic thin films arise because the direction of magnetization is not necessarily different in the FJ direction, not only in the case of single-layer films but also in the case of multi-layer films. In the multilayer magnetic thin film according to the present invention, by selecting an appropriate direction for the core side surface when forming the core, it is possible to alternately direct the core width direction components of the magnetization inside each magnetic layer in substantially opposite directions. Similarly, the direction of the axis of easy magnetization inside each magnetic layer is determined.

すなわち1本発明による多層磁性薄膜は、−軸磁気異方
性を有す゛る磁性層が磁気的絶縁層を介して積層されて
おり、上記各磁性層内部の磁化容易軸の方向を交互に斜
交するごとく設定しである。たとえば、第3図に示すご
とく、各磁性層内部の磁化容易軸は、交互に、互いにψ
の角度をなすaまたはb方向を向いており、かくのごと
き多層磁性薄膜にh方向に十分な磁場(各磁性層の磁気
異方性の異方性磁場より大なる磁場)を印加するに当り
、hとaおよびbとのなす角θ、およびθ1のいずれも
が90’より小なるととくh方向を選んで、上記磁場を
印加した後、該印加磁場を除去すると、各磁性層内部の
磁化はそれぞれの略磁化容易軸の上記印加磁場方向成分
が該印加磁場と順平行になる向き、すなわち@ M s
 9M bの向きを向く。したがって、a方向およびb
方向のなす角ψの2等分線に垂直にコア側面を設定すれ
ば、上記したごとき磁場印加操作を行なうことにより、
各磁性層内部の磁化のコア幅方向成分を、交互に互いに
略反対方向を向かせることができ、したがって、コア幅
方向の反磁場も弱く、上記した閉路磁区の発生を除くこ
とができる。ところで、−軸磁気異方性を有する通常の
磁性薄膜においては1作製条性にも依存するが1局所的
磁化容易軸の方向は平均の磁化容易軸の方向のまわりに
ある幅の角度範囲に亘って分散している。この分散角は
、たとえば、第4図に示すごとく磁性薄膜に十分強い磁
場Hを平均の磁化容易軸とのなす角度αを俊えて印加除
去したときの残留全磁気モーメントを測定して、飽和値
の90%に低下したところから。
Namely, in the multilayer magnetic thin film according to the present invention, magnetic layers having -axis magnetic anisotropy are laminated with magnetic insulating layers interposed therebetween, and the directions of the easy axes of magnetization inside each of the magnetic layers are alternately obliquely crossed. It's set up just fine. For example, as shown in Figure 3, the easy axes of magnetization inside each magnetic layer are alternately ψ
When applying a sufficient magnetic field in the h direction to such a multilayer magnetic thin film (a magnetic field larger than the anisotropic magnetic field of the magnetic anisotropy of each magnetic layer), , h, and the angle θ between a and b, and θ1 are both smaller than 90', select the h direction, apply the above magnetic field, and then remove the applied magnetic field, the magnetization inside each magnetic layer will change. is the direction in which the applied magnetic field direction component of each approximate axis of easy magnetization is parallel to the applied magnetic field, that is, @ M s
Turn towards 9M b. Therefore, a direction and b
By setting the core side surface perpendicular to the bisector of the angle ψ formed by the direction, by applying the magnetic field as described above,
The core width direction components of the magnetization inside each magnetic layer can be directed in substantially opposite directions alternately, so that the demagnetizing field in the core width direction is also weak, and the generation of the closed magnetic domains described above can be eliminated. By the way, in a normal magnetic thin film having -axis magnetic anisotropy, the direction of the local easy axis of magnetization is within a certain range of angles around the direction of the average easy axis of magnetization, although it also depends on the fabrication properties. It is dispersed throughout. This dispersion angle can be determined, for example, by measuring the residual total magnetic moment when a sufficiently strong magnetic field H is applied to the magnetic thin film and removed by increasing the angle α formed with the average easy axis of magnetization, as shown in Figure 4. from where it dropped to 90%.

反対側の飽和値の90%に達する迄の間の角度変化Δα
の1/2として定義することができる(第5図参照)。
Angle change Δα until reaching 90% of the saturation value on the opposite side
It can be defined as 1/2 of (see Figure 5).

かくのごとく、磁化容易軸の分散角を定義するときは、
上記ψを上記分散角の2侶すなわちΔαより大なる値に
設定し、θ1=θbなる方向に十分強い磁場を印加すれ
ば、局所的磁化容易軸の分布に分散がある場合にも、上
記のごとく、各層の磁化をそれぞれM、およびMbの向
きに向けることができ、閉路磁区の発生を防止すること
ができる。ただし、h方向の透磁率ができるだけ高く、
また、線型性のよい磁場応答性を確保するためには、ψ
はできるだけ小さいことが望ましく、シたがって、ψを
略Δαに等しく設定すること罠より、h方向の透磁率が
高く、かつ、閉路磁区が笑質的に発生しない多層磁性薄
膜を得ることができる。
Thus, when defining the dispersion angle of the easy axis of magnetization,
If the above ψ is set to a value larger than the two dispersion angles, that is, Δα, and a sufficiently strong magnetic field is applied in the direction θ1 = θb, even if there is dispersion in the distribution of the local easy axis of magnetization, the above Thus, the magnetization of each layer can be directed in the directions of M and Mb, respectively, and the generation of closed magnetic domains can be prevented. However, if the magnetic permeability in the h direction is as high as possible,
In addition, in order to ensure magnetic field response with good linearity, ψ
It is desirable that ψ be as small as possible. Therefore, by setting ψ approximately equal to Δα, it is possible to obtain a multilayer magnetic thin film that has high magnetic permeability in the h direction and does not generate closed magnetic domains. .

上記のごとき本発明に係わる多層磁性薄膜は。The multilayer magnetic thin film according to the present invention as described above is as follows.

適当な基板(磁性、非磁性いずれにても可)上に通常薄
膜形成に用いられる真空蒸着、スノくツタ。
Vacuum deposition, commonly used to form thin films on a suitable substrate (either magnetic or non-magnetic).

メy 嶋CV D (chemical vapor 
deposition)等の手法により磁性材料および
磁気的絶縁材料を交互に堆積せしめるに際し、各磁性磁
形成時に磁場を印加するとともに、該印加磁場の方向を
交互に所定角度だけ変化させることによって製造するこ
とができる。上記印加磁場は必ずしも静磁場である必要
はなく、特定の軸のまわシに首振9運動2する磁場、磁
場ベクトルの先端が楕円状軌跡を描く磁場、その他、各
磁性層形成の過程における内部磁化が最も長く滞在する
方向を交互に変化させるごとく磁場を印加すればよい。
May Shima CV D (chemical vapor
When a magnetic material and a magnetically insulating material are alternately deposited by a method such as deposition, a magnetic field is applied during each magnetic field formation, and the direction of the applied magnetic field is alternately changed by a predetermined angle. can. The above-mentioned applied magnetic field does not necessarily have to be a static magnetic field, but may include a magnetic field that oscillates around a specific axis, a magnetic field in which the tip of the magnetic field vector traces an elliptical trajectory, and other internal fields in the process of forming each magnetic layer. A magnetic field may be applied such that the direction in which magnetization stays the longest is alternately changed.

本発明の効果は、また、略等しい飽和磁束密度を有する
略等しい厚さの磁性層からなるときは。
The effect of the present invention is also achieved when the magnetic layers have substantially equal thicknesses and have substantially equal saturation magnetic flux densities.

該磁性層数を偶数にすることによシ、とくに確実にする
ことができることは、上記のごとくコアを形成したとき
の側面に現われる自由磁極が互いに相殺されることから
明らかである。また、同様の理由により、3層の磁性層
からなるときは、中間層の厚さを、該中間層を挾む他の
2層の磁性層の厚さの和に略等しくすることにより、同
様の効果が期待されることも明らかである。
It is clear that this can be particularly ensured by making the number of magnetic layers even, since the free magnetic poles that appear on the side surfaces when the core is formed as described above cancel each other out. For the same reason, when the magnetic layer is composed of three layers, the thickness of the intermediate layer is made approximately equal to the sum of the thicknesses of the other two magnetic layers sandwiching the intermediate layer. It is also clear that this effect is expected.

本発明による多層磁性薄膜を磁気へラドコア材のごとく
、外部から印加される磁場の強さが場所とともに変化し
、内部磁化のスイッチが部分的に生ずるようシ条件に置
かれるときは、磁化がスイッチする部分とスイッチしな
い部分との境界に磁壁が発生する。このとき、l印加磁
場の方向はめまシ変化せず向きのみが変化するような条
件下では外部磁場が印加されていない状態において安定
な磁壁の型がネール磁壁であるときは上記境界に360
0磁壁が上記スイッチの1サイクルごとに蓄積されて行
き、この部分が外部磁場に対する磁化の応答性を劣化さ
せるという問題がある。この問題は、外部磁場が印加さ
れていない状態において安定な磁壁の型が、ネール磁壁
ではなく、クロスタイ磁壁であれば緩和され、ブロッホ
磁壁のときは、全くイしない。どの型の磁壁が安定であ
るかは、磁性薄膜の種類によって異なるが、膜厚が薄い
ときはネール磁壁が安定でsb、膜厚の増大とともに、
クロスタイ磁壁、ついでブロッホ磁壁が安定になること
はよく知られている通りである(たとえば、裳華房:応
用物理学選書「薄膜」p287−p288参照)。
When the multilayer magnetic thin film according to the present invention is placed under conditions such as a magnetic rad core material where the strength of an externally applied magnetic field changes with location and the internal magnetization is partially switched, the magnetization is switched. A domain wall occurs at the boundary between the switched and non-switched parts. At this time, under conditions in which the direction of the applied magnetic field does not change subtly but only the direction, if the type of domain wall that is stable in the state where no external magnetic field is applied is a Neel domain wall, the above boundary will have a 360°
There is a problem in that the zero domain wall is accumulated every cycle of the switch, and this portion deteriorates the responsiveness of magnetization to an external magnetic field. This problem can be alleviated if the type of domain wall that is stable in the absence of an external magnetic field is a cross-tied domain wall rather than a Neel domain wall, and it does not occur at all if it is a Bloch domain wall. Which type of domain wall is stable depends on the type of magnetic thin film, but when the film thickness is thin, the Neel domain wall is stable, sb, and as the film thickness increases,
It is well known that the cross-tied domain wall and then the Bloch domain wall become stable (for example, see Shokabo: Applied Physics Selection, "Thin Film", p.287-p.288).

本発明における磁気的絶縁層の厚さは、原理的には、2
〜3原子層程度あれけ十分であるが、実際にFi、孔の
ないこの程度の厚さの膜を形成することは困難であるた
め1通常は数nm以上、望ましくはlQnm以上、また
材料によっては1100n以上とするのがよい。上記磁
気的絶縁層を形成する材料としては、非磁性物質であれ
ば原理的にはいずれでもよいがs 8i0.、SiO,
Aノ、08等の電気的絶縁材料t CO,A−e、Au
等の金属。
In principle, the thickness of the magnetic insulating layer in the present invention is 2
~3 atomic layers is sufficient, but since it is difficult to actually form a film of this thickness without pores, it is usually several nm or more, preferably lQnm or more, and depending on the material. is preferably 1100n or more. In principle, any non-magnetic material may be used as the material for forming the magnetic insulating layer, but s8i0. , SiO,
Electrical insulating materials such as A-08, CO, A-e, Au
etc. metals.

Bi等の半導体場合によっては有機物環、目的に応じて
使い分は得る。
Semiconductors such as Bi, in some cases organic rings, can be used depending on the purpose.

本発明を以下実施例につき説明する。The invention will be explained below with reference to examples.

第6図に示すごとく、ガラス基板上601にNi約80
%、Fe約20%のパーマロイおよびSiOを通常の手
段により交互に磁場中真空魚屑して、磁性層2層の多層
磁性薄膜を作製した。このとき、第1のパーマロイ層6
02形成時の印加磁場の方向aと第2のパーマロイ層6
04形成時の印加磁場の方向すとのなす角ψを10’、
5olO’。
As shown in FIG. 6, approximately 80% Ni
%, about 20% Fe and SiO were alternately vacuum-treated in a magnetic field by conventional means to produce a multilayer magnetic thin film with two magnetic layers. At this time, the first permalloy layer 6
Direction a of the applied magnetic field during formation of 02 and second permalloy layer 6
The angle ψ made with the direction of the applied magnetic field when forming 04 is 10',
5olO'.

200、400.60”、および900と変えた種々の
多層磁性薄膜を作製した/。第1および第2のパーマロ
イ層の厚さは、いずれも約0.5μm5sio層603
の厚さは約0.1μmとした。かくして得られた多層磁
性薄膜を1通常の蝕刻手法を用いて蝕刻し、第7図に示
すごとき長方形状微小素子を作製し、y方向(角度ψの
2等分線に垂直な方向)に磁場を印加して磁化を飽和さ
せた後、その磁場を除去したときに素子に現われる磁区
を観測した。
Various multilayer magnetic thin films with different thicknesses of 200, 400.60", and 900" were fabricated. The thickness of the first and second permalloy layers was about 0.5 μm. 5sio layer 603
The thickness was approximately 0.1 μm. The thus obtained multilayer magnetic thin film was etched using a conventional etching method to produce a rectangular microelement as shown in FIG. 7, and a magnetic field was applied in the y direction (perpendicular to the bisector of the angle ψ). After applying the magnetic field to saturate the magnetization, we observed the magnetic domains that appeared in the device when the magnetic field was removed.

その結果、θを10’以上となした素子では、はとんど
磁区が発生しないことを確認した。参考のために同時に
作製した0、5μm厚の単層パーマロイ膜における磁化
容易軸の分散角度は約50でおり、θを100以上とな
した多層磁性薄膜において1本発明の効果が確りされた
ことは故あることである。
As a result, it was confirmed that magnetic domains were hardly generated in elements in which θ was 10' or more. For reference, the dispersion angle of the easy axis of magnetization in a single-layer permalloy film with a thickness of 0.5 μm, which was simultaneously prepared, was approximately 50, and the effect of the present invention was confirmed in a multilayer magnetic thin film with θ of 100 or more. That's why.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の適用例である薄膜磁気ヘッドの模型
的断面図、第2図は微細磁性薄膜素子に発生する磁区模
様図、第3図は本発明の多層磁性薄膜の磁化容易軸の設
定の様子を示す説明図、第4図および第5図は磁性薄膜
内部の磁化容易軸分布の分散角の測定方法を説明するた
めのベクトル図および線図、第6図は本発明の一実施例
における多層磁性薄膜の断面図でおり、第7図は上記実
施例の多層磁性薄膜を用いて微細素子を形成したときの
上面からみた部分図である。 1.601・・・基板、2,4,8,10,602゜6
04・・・磁性層(602および604はパーマロイ層
)、a、9,603・・・磁気的絶縁層(603第 1
 図     第 Z 図 ■ ム 第 2  図 <      ′FJ7 旧 第1頁の続き 0発 明 者 城石芳博 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内
FIG. 1 is a schematic cross-sectional view of a thin film magnetic head that is an application example of the present invention, FIG. 2 is a diagram of magnetic domain patterns generated in a fine magnetic thin film element, and FIG. 3 is an easy axis of magnetization of the multilayer magnetic thin film of the present invention. 4 and 5 are vector diagrams and line diagrams for explaining the method of measuring the dispersion angle of the easy axis distribution of magnetization inside the magnetic thin film. FIG. This is a sectional view of a multilayer magnetic thin film in an example, and FIG. 7 is a partial view seen from the top when a fine element is formed using the multilayer magnetic thin film of the above example. 1.601...Substrate, 2, 4, 8, 10, 602°6
04... Magnetic layer (602 and 604 are permalloy layers), a, 9, 603... Magnetic insulating layer (603 first
Figure Z Figure ■ Mu Figure 2 <'FJ7 Continuation of old page 1 0 Inventor Yoshihiro Shiroishi Hitachi, Ltd. Central Research Laboratory, 1-280 Higashikoigakubo, Kokubunji City

Claims (1)

【特許請求の範囲】 1、−軸磁気異方性を有する磁性層を磁気的絶縁層を介
して積層してなる多層磁性薄膜において、上記各磁性層
の磁化容易軸の方向を交互に斜交するごとくなしたこと
を特徴とする多ノー磁イリ、薄膜。 2、斜交する磁化容易軸のなす角を各磁性1一内部にお
ける磁化容易軸の分散角の2倍より大ならしめたことを
特徴とする特Flf請求の範囲第1項記載の多層磁性薄
膜。 3、斜交する磁化容易軸のなす角を各磁性層内部におけ
る磁化容易軸の分散角の略2倍となしたことを特徴とす
る特許請求の範囲第l項記載の多層磁性薄膜。 4、飽磁束密度および厚さが略等しい偶数個の磁性層よ
りなることを特徴とする特許請xの範囲第1項乃至第3
項のいずれかの項に6己献の多層磁性薄膜。 5、各磁性層の飽和磁束密度を略等しくした3層の磁性
層からなシ、且つ上記磁性層のうちの中間−の厚さを、
該磁性層を挾む他の2層の磁性層の厚さの和に略等しく
したことを特徴とする特許請求の範囲第1項乃至第3項
のいずれかの項に記載の多層磁性薄膜。 6、各磁性層の厚さを、外部磁場を印加しない状態でク
ロスタイ磁壁またはブロッホ磁壁が最も安定な磁壁の型
である厚さにしたことを特徴とする特許請求の範囲第、
1項乃至第5項のいずれかの項に記載の多層磁性薄膜。 7、磁性層としてNiおよびFeを主成分とする磁性金
属層を用いたことを特徴とする特許請求の範囲第1項乃
至第6項のいずれかの項に記載の多層磁性薄膜。 8、−軸磁気異方性を有する磁性層を磁気的絶縁層を介
して積層してなる多層磁性薄膜の製造方法において、基
板上に磁性材料および磁気的絶縁材料を交互に堆積せし
めて多層磁性薄膜を形成するに際し、各磁性層形成時に
磁場を印加するとともに、該印加磁場の方向を交互に所
定角層だけ変化させることを特徴とする多層磁性薄膜の
製造方法。
[Claims] 1. In a multilayer magnetic thin film formed by laminating magnetic layers having -axis magnetic anisotropy via magnetic insulating layers, the directions of the easy magnetization axes of the magnetic layers are alternately obliquely crossed. A multi-magnetic, thin film that is characterized by its unique properties. 2. The multilayer magnetic thin film according to claim 1, characterized in that the angle formed by the obliquely intersecting easy axes of magnetization is made larger than twice the dispersion angle of the easy axes of magnetization inside each magnetic element. . 3. The multilayer magnetic thin film according to claim 1, wherein the angle formed by the obliquely intersecting easy axes of magnetization is approximately twice the dispersion angle of the easy axes of magnetization within each magnetic layer. 4. Claims 1 to 3 of claim x, characterized in that the magnetic layer is composed of an even number of magnetic layers having substantially equal saturation flux density and thickness.
A multilayer magnetic thin film with 6 self-contributions to any of the terms. 5. Consisting of three magnetic layers in which the saturation magnetic flux density of each magnetic layer is approximately equal, and the thickness of the middle of the magnetic layers,
The multilayer magnetic thin film according to any one of claims 1 to 3, characterized in that the thickness is approximately equal to the sum of the thicknesses of two other magnetic layers sandwiching the magnetic layer. 6. The thickness of each magnetic layer is set to such a thickness that a cross-tie domain wall or a Bloch domain wall is the most stable type of domain wall when no external magnetic field is applied.
The multilayer magnetic thin film according to any one of items 1 to 5. 7. The multilayer magnetic thin film according to any one of claims 1 to 6, characterized in that a magnetic metal layer containing Ni and Fe as main components is used as the magnetic layer. 8. - A method for manufacturing a multilayer magnetic thin film in which magnetic layers having axial magnetic anisotropy are laminated via a magnetic insulating layer, in which a magnetic material and a magnetic insulating material are alternately deposited on a substrate to form a multilayer magnetic thin film. A method for producing a multilayer magnetic thin film, which comprises applying a magnetic field when forming each magnetic layer, and alternately changing the direction of the applied magnetic field by a predetermined angle layer.
JP17564581A 1981-11-04 1981-11-04 Multi-layer magnetic thin film and manufacture thereof Pending JPS5877208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17564581A JPS5877208A (en) 1981-11-04 1981-11-04 Multi-layer magnetic thin film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17564581A JPS5877208A (en) 1981-11-04 1981-11-04 Multi-layer magnetic thin film and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS5877208A true JPS5877208A (en) 1983-05-10

Family

ID=15999706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17564581A Pending JPS5877208A (en) 1981-11-04 1981-11-04 Multi-layer magnetic thin film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5877208A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171709A (en) * 1982-04-01 1983-10-08 Mitsubishi Electric Corp Thin film magnetic head
JPS61187118A (en) * 1985-02-15 1986-08-20 Hitachi Ltd Multilayered magnetic film
JPS63217511A (en) * 1987-03-05 1988-09-09 Matsushita Electric Ind Co Ltd Magnetic head
JPH02181402A (en) * 1988-08-03 1990-07-16 Digital Equip Corp <Dec> Thin-film magnetic device widening signal magnetic flux

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171709A (en) * 1982-04-01 1983-10-08 Mitsubishi Electric Corp Thin film magnetic head
JPS61187118A (en) * 1985-02-15 1986-08-20 Hitachi Ltd Multilayered magnetic film
JPS63217511A (en) * 1987-03-05 1988-09-09 Matsushita Electric Ind Co Ltd Magnetic head
JPH02181402A (en) * 1988-08-03 1990-07-16 Digital Equip Corp <Dec> Thin-film magnetic device widening signal magnetic flux

Similar Documents

Publication Publication Date Title
US5331728A (en) Method of fabricating magnetic thin film structures with edge closure layers
US6292389B1 (en) Magnetic element with improved field response and fabricating method thereof
KR100259106B1 (en) Thin film magnetic head
US6430085B1 (en) Magnetic random access memory having digit lines and bit lines with shape and induced anisotropy ferromagnetic cladding layer and method of manufacture
US6914761B2 (en) Magnetoresistive sensor with magnetic flux paths surrounding non-magnetic regions of ferromagnetic material layer
US6872467B2 (en) Magnetic field sensor with augmented magnetoresistive sensing layer
US5379172A (en) Laminated leg for thin film magnetic transducer
JPH08503336A (en) Magnetoresistive structure with alloy layer
JPH04103014A (en) Ferromagnetic tunnel effect film and magneto-resistance effect element formed by using this film
US4238277A (en) Method of manufacturing a magnetic device
JP3640230B2 (en) Thin film magnetic field sensor
JPS5877208A (en) Multi-layer magnetic thin film and manufacture thereof
US5695858A (en) Magnetoresistive element
US20050014295A1 (en) Method of manufacture of a magneto-resistive device
JP3130407B2 (en) Manufacturing method of magnetic film and thin film magnetic head
JPH09106913A (en) Magnetoelectric transducer
JP3028495B2 (en) Thin film magnetic head
KR0183559B1 (en) Spin-valve type magnetoresistance unit
Matsuyama et al. Spin dependent transport perpendicular to CoPt/S/Co (S= Si, Ge) trilayer
JPH07312449A (en) Magneto resistance effect element
JP2693451B2 (en) Magnetic head
JPS6157027A (en) Magnetoresistance effect head and its manufacture
Matsuyama et al. Perpendicular spin valve behavior in a microstructured Co/Cu‐Cu oxide/Co trilayer
JPH0354713A (en) Magneto-resistance effect head
JPH04223306A (en) Magnetic multilayer film