JPS59104428A - Preparation of hot rolled coil excellent in hydrogen induced cracking resistance - Google Patents

Preparation of hot rolled coil excellent in hydrogen induced cracking resistance

Info

Publication number
JPS59104428A
JPS59104428A JP21218782A JP21218782A JPS59104428A JP S59104428 A JPS59104428 A JP S59104428A JP 21218782 A JP21218782 A JP 21218782A JP 21218782 A JP21218782 A JP 21218782A JP S59104428 A JPS59104428 A JP S59104428A
Authority
JP
Japan
Prior art keywords
hot
rolling
temperature
heating
induced cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21218782A
Other languages
Japanese (ja)
Inventor
Shigeki Hamamatsu
浜松 茂喜
Seiichi Sugisawa
杉沢 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP21218782A priority Critical patent/JPS59104428A/en
Publication of JPS59104428A publication Critical patent/JPS59104428A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Abstract

PURPOSE:To prepare a hot rolled coil having excellent hydrogen induced cracking resistance in a mass production system, by a method wherein steel prepared by containing C, Si, Mn and Ca in Fe in specific ratios is continuously cast and rolling, heating, rolling and winding-up are successively performed under specific conditions. CONSTITUTION:Steel containing, on a wt. basis, 0.02-0.18% C, 0.01-1.00% Si, 0.4-2.0% Mn and Ca in an amount so as to bring a Ca/S value to 2-8 and, according to necessity, one or more component selected from 0.2-1.0% Cu, 0.1-1.0% Ni, 0.2-1.0% Cr, 0.05-0.1% Mo, 0.01-0.12% Nb, 0.01-0.12% V and 0.01-0.20% Ti and comprising the remainder Fe and inevitable impurities is continuously cast. The cast piece is directly rolled at a draft of 10-70% and a finish temp. of 700 deg.C or more without heating and, after the rolled steel plate is heated to 1,000 deg.C or more, hot rolling is again applied thereto to wind up the same at 400-640 deg.C. By this method, a hot rolled coil excellent in hydrogen induced cracking resistance is obtained economically in good efficiency.

Description

【発明の詳細な説明】 この発明は、サワーオイルやサワーガス用ラインパイプ
の製造に供するのに好適な、耐水素誘起割れ性に優れた
熱延コイルの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a hot-rolled coil having excellent hydrogen-induced cracking resistance and suitable for manufacturing line pipes for sour oil and sour gas.

近年、エネルギー事情の悪化に対処するだめ新たな油田
やガス田の開発が盛んに行われておシ、従来放置されて
いた硫化水素などの腐食性の強いガスを含む油(サワー
オイル)やガス(サワーガス)の存在する環境下におる
油田やガス田にまで開発の目が向けられるようになって
きた。しかしながら、これらのサワーオイルやサワーガ
ス中の硫化水素等は、水と共存してラインパイプを構成
する鋼材表面の腐食に関与する確率が極めて高いばか9
でなく、その際の腐食によって発生する水素が鋼材中に
侵入して水素誘起割れ(HI C)を起すということが
解明され、特に耐水素誘起割れ性に優れた鋼材の研究開
発が競われているのが現状である。
In recent years, new oil and gas fields have been actively developed in order to cope with the worsening energy situation. Development attention is now being turned to oil and gas fields located in environments where sour gas (sour gas) exists. However, hydrogen sulfide, etc. in these sour oils and sour gases coexist with water and have an extremely high probability of contributing to corrosion of the steel surfaces that make up line pipes.
However, it has been revealed that the hydrogen generated by the corrosion at that time penetrates into the steel material and causes hydrogen-induced cracking (HIC), and research and development of steel materials with particularly excellent resistance to hydrogen-induced cracking is underway. The current situation is that

ところで、現在、実用上水素誘起割れを生ずることのな
い鋼材であることの確認には、NA’CE条件(水+5
%NaCA −1−0,’5%CH3CO0HのH2S
ガス飽和溶液に側面コーティングなしの試験片を96時
間浸漬する条件)で割れを発生しないことが目安とされ
ているが、一般に熱延コイル材は厚板圧延材に比して耐
水素誘起割れ性に劣っておシ、通常の方法で製造された
ものは化学成分組成の如何にかかわらず上記試験におい
て満足な結果を得ることができなかった。
By the way, currently, in order to confirm that the steel material is practically free from hydrogen-induced cracking, the NA'CE condition (water + 5
%NaCA -1-0,'5%CH3CO0H H2S
The standard is that no cracking occurs when a test piece without side coating is immersed in a gas-saturated solution for 96 hours, but hot-rolled coil materials generally have better resistance to hydrogen-induced cracking than thick plate rolled materials. However, products manufactured by conventional methods could not give satisfactory results in the above tests, regardless of the chemical composition.

そこで、従来、H工C(水素誘起割れ)試験でのNAC
B条件で割れを発生しない熱延コイルを製造するには、 連続鋳造鋳込み→冷却→1次加熱→1次圧延→冷却→熱
延加熱→熱延、 の工程が採用されており、1次圧延で連続鋳造スラブの
中心に発生しやすいキャビティを圧着し、熱延加熱時に
偏析を軽減させて耐水素誘起割れ性の向上を図っていた
Therefore, conventionally, NAC in H-C (hydrogen-induced cracking) test
To manufacture a hot-rolled coil that does not generate cracks under condition B, the following process is adopted: continuous casting casting → cooling → primary heating → primary rolling → cooling → hot rolling heating → hot rolling. The aim was to compress the cavities that tend to occur in the center of continuously cast slabs, reduce segregation during hot rolling heating, and improve hydrogen-induced cracking resistance.

ところが、このような従来の耐水素誘起割れ熱延コイル
の製造法は、1次加熱と熱延加熱という2回の加熱を行
うため、コイル製造に長時間を必要とするとともにエネ
ルギーコストがそれだけ高くなシ、作業能率上、そして
製品コスト上極めて不利なものであった。
However, the conventional manufacturing method for hydrogen-induced cracking-resistant hot-rolled coils requires two heating steps: primary heating and hot-rolling heating, which requires a long time to manufacture the coil and increases the energy cost accordingly. However, this was extremely disadvantageous in terms of work efficiency and product cost.

さらに、この従来法においてNb、V、Ti等の強化元
素添加鋼を対象とした場合には、連続鋳造スラブの冷却
時にこれらの元素が大型の炭窒化物として析出してしま
い、該大型炭窒化物を完全固溶させて最終製品の強度上
昇に有効な微細析出物を得るための熱延加熱の温度を、
例えば1250℃以上の高温にしなければならず、これ
らの加熱条件を外れるとクラスター状になった粗大析出
物が残留してこれが割れの起点となるため、厳しい使用
環境を想定したNACE条件でのHIq試験において好
結果を得られない場合のあることが、本発明者等の研究
によって判明した。
Furthermore, when this conventional method targets steel with strengthening elements such as Nb, V, and Ti, these elements precipitate as large carbonitrides when the continuous casting slab is cooled. The temperature of hot rolling heating to completely dissolve the substances and obtain fine precipitates that are effective in increasing the strength of the final product.
For example, it must be heated to a high temperature of 1250°C or higher, and if these heating conditions are exceeded, coarse precipitates in the form of clusters will remain and become the starting point for cracks, so the HIq under NACE conditions assuming a harsh usage environment The inventors' research has revealed that there are cases in which good results cannot be obtained in the test.

本発明者等は、上述のような観点から、熱エネルギー消
費量を最小限に抑えて、耐水素誘起割れ性に優れた熱延
コイルを経済的にかつ晦′率良く量産する方法を見出す
べく研究を重ねた結果、(a)技術の進歩によって・表
面疵の極めて少なくなった最近の連続鋳造スラブでは、
鋳造後、冷却することなく直ちに圧延しても製品品質に
影響するほどの表明欠陥は現われず、しかもこのような
直接圧延によってスラブ厚を薄くすれば、冷却速度が速
くなり、析出物が粗大なりラスター状になるのが防止さ
れること、 (b)  前記従来法においては、特に強度や靭性の問
題から、熱延加熱の際に125’O℃以上の高温加熱を
行わない場合もあるが、この場合には鋳込み後の冷却で
析出した粗大析出物の全部が固溶しないので、固溶−析
出効果を確実に実現するだめにより多量の強化元素を含
有させる必用から9、これがクラスターを助長すること
となっていたが、鋳造後のスラブを冷却しないでそのま
ま圧延すれば、これら強化元素の固溶量が増加するため
にこのような不都合を生じないこと、 (C)  そして、この種の水素誘起割れを引起しやす
い環境下で使用される鋼材に要求される機械的性質を実
現する組成成分のほかに5硫化物系介在物を球状化させ
るためにCaを必須成分として添加した鋼を用いて、こ
れを連続鋳造直後の冷却なしに所定の条件で1次圧延し
、通常の熱間圧延してから所定の温度にて巻取ることに
より、耐水素割れ性の極めて優れだ熱延コイルが得られ
ること、以上(a)〜(C)に示す如き知見を得るに至
ったのである。
From the above-mentioned viewpoint, the present inventors aimed to find a method to economically and efficiently mass-produce hot-rolled coils with excellent hydrogen-induced cracking resistance while minimizing thermal energy consumption. As a result of repeated research, we found that (a) recent continuous casting slabs, which have extremely fewer surface defects due to advances in technology,
Even if the slab is rolled immediately after casting without cooling, no visible defects will appear that would affect the product quality, and if the thickness of the slab is reduced by such direct rolling, the cooling rate will be faster and the precipitates will become coarser. (b) In the conventional method described above, high-temperature heating of 125'O<0>C or higher is sometimes not performed during hot rolling heating, especially due to problems with strength and toughness; In this case, all of the coarse precipitates that precipitate during cooling after casting do not dissolve into solid solution, so in order to reliably achieve the solid solution-precipitation effect, it is necessary to contain a larger amount of reinforcing elements9, which promotes cluster formation. However, if the slab after casting is rolled without being cooled, the amount of solid solution of these reinforcing elements will increase, and this problem will not occur. In addition to the compositional components that achieve the mechanical properties required for steel materials used in environments where induced cracking is likely to occur, we use steel that has Ca added as an essential component to make pentasulfide inclusions spheroidal. Then, by performing primary rolling under specified conditions without cooling immediately after continuous casting, followed by regular hot rolling and then coiling at a specified temperature, a hot-rolled coil with extremely excellent hydrogen cracking resistance is produced. We have come to the knowledge shown in (a) to (C) above.

この発明は、上記知見に基づいて′なされたものであっ
て、 C二O,02〜0.18%(以下、組成成分量は重量割
合として・示す)、 Si : 0.01〜1.00 
%、Mn:0.4〜2.0%、 Ca’、 Ca/Sの
値が2〜8となる量、を含有するとともに、Cu: 0
.2〜1.0 %、Ni:0.1〜1.0%、 、Cr
: 0.2〜1.0 %、 Mo: 0.05〜0.1
%、 Nb: 0.01〜0.12 %、  V : 
0.01〜0、12% 、 Ti : 0.01〜0.
20 ’%のうちの1種以上をも含有し、Fe及び不可
避不純物二残シ、から成る組成の鋼を連続鋳造した後、
その鋳片を加熱することなく直ちに、圧下率:10〜7
0%、仕上温度ニア00℃以上の条件で圧延し、引続い
てこれを1000℃以上の温度に加熱後、再度熱間圧延
を施して、400〜640℃の温度範囲で巻取ることに
よシ、能率良く、かつ経済的に耐水素誘起割れ性に優れ
た熱延コイルを得ることに特徴を有するものである。
This invention was made based on the above findings, and includes: C2O: 02 to 0.18% (hereinafter, the amounts of the components are expressed as weight percentages), Si: 0.01 to 1.00
%, Mn: 0.4 to 2.0%, Ca', an amount such that the Ca/S value is 2 to 8, and Cu: 0.
.. 2-1.0%, Ni: 0.1-1.0%, Cr
: 0.2~1.0%, Mo: 0.05~0.1
%, Nb: 0.01-0.12%, V:
0.01-0.12%, Ti: 0.01-0.
After continuously casting a steel having a composition consisting of Fe and two unavoidable impurities, containing one or more of 20'%,
Immediately without heating the slab, rolling reduction: 10-7
0%, by rolling at a finish temperature of near 00℃ or higher, then heating this to a temperature of 1000℃ or higher, hot rolling again, and winding at a temperature range of 400 to 640℃. The present invention is characterized in that a hot-rolled coil having excellent hydrogen-induced cracking resistance can be obtained efficiently and economically.

ついで、この発明の方法において、鋼の化学成分組成及
び圧延・巻取9の条件を前記のとおシに限定した理由を
説明する。
Next, in the method of the present invention, the reason why the chemical composition of the steel and the conditions for rolling and winding 9 are limited to the above-mentioned conditions will be explained.

A、化学成分組成 ■ C C成分には、鋼の強度を確保する作用があるが、その含
有量が0.02%未満では前記作用、に所望の効果が得
られず、一方0.18%を越えると溶接性や靭性の劣化
を来たすようになることから、その含有量を0.02〜
018%と定めた。
A. Chemical component composition ■ C C component has the effect of ensuring the strength of steel, but if its content is less than 0.02%, the desired effect cannot be obtained; on the other hand, 0.18% If the content exceeds 0.02, the weldability and toughness will deteriorate, so the content should be set at 0.02~
It was set at 0.018%.

■ 5I Si成分には、鋼の脱酸作用の他に、C成分と同様に強
度を確保する作用があるが、その含有量が001%未満
では前記作用に所望の効果が得られず、一方1.00%
を越えて含有させると溶接性に悪影響を及ぼすようにな
ることから、その含有量を0.01〜1.00%と定め
た。
■ In addition to deoxidizing the steel, the 5I Si component also has the effect of ensuring strength, similar to the C component, but if its content is less than 0.01%, the desired effect cannot be obtained; 1.00%
If the content exceeds 0.2%, it will have an adverse effect on weldability, so the content was set at 0.01% to 1.00%.

■  Mn Mn成分には、鋼の強度や靭性を向上させる作用がある
が、その含有量が0.4%未満では前記作用に所望の効
果が得られず、一方2,0%を越えて含有すると耐食性
に悪影響を及ぼすようになること−から、その含有量を
0.4〜2.0%と定めた。
■ Mn The Mn component has the effect of improving the strength and toughness of steel, but if the content is less than 0.4%, the desired effect cannot be obtained; on the other hand, if the content exceeds 2.0%, Since this would have an adverse effect on corrosion resistance, its content was set at 0.4 to 2.0%.

■ Ca 鋼中に存在する硫化物系介在物の形状が鋼の耐水素誘起
割れ性に大きな影響を及ぼし、この硫化物系介在物を球
状化することが水素誘起割れを防止する上で欠くことの
できない事項である。そして、このためにはCa添加が
極めて有効な手段であるけれども、含有されている8分
に対するCaの重量比、す々わちCa/Sの値が2未満
では硫化物系介在物を球状化する作用に所望の効果が得
られず、−万〇a/Sが8を越えると球状介在物の個数
が多くなシ、かつクラスター状に集合して、かえって耐
水素誘起割れ性を劣化するようになることからその含有
量を、Ca/Sの値で2〜8と定めた。
■ Ca The shape of sulfide inclusions present in steel has a significant effect on the steel's resistance to hydrogen-induced cracking, and spheroidizing these sulfide inclusions is essential for preventing hydrogen-induced cracking. This is something that cannot be done. Although adding Ca is an extremely effective means for this purpose, if the weight ratio of Ca to the 8% content, that is, the value of Ca/S, is less than 2, the sulfide inclusions become spheroidized. If the desired effect is not obtained in the action of Therefore, the content was determined to be 2 to 8 in Ca/S value.

Ocu l N1 r Cr +及びMOこれらの成分
には、いずれも固溶強化や変態強化によって強度を上昇
せしめる作用があシ、また耐食性の観点からみればCu
成分には比較的緩い酸性条件下で水素吸収を防止する作
用が、そしてCr及びN1成分には耐食性をより向上し
、特にN1成分にはCuを添加した場合に生じる熱間脆
性を防止する作用がそれぞれあるので、これらの特性を
より向上したい場合に必要に応じて含有されるものであ
るが、 Cu又はCrの含有量がそれぞれ0.2%未満
Ocul N1 r Cr + and MO Both of these components have the effect of increasing strength through solid solution strengthening and transformation strengthening, and from the perspective of corrosion resistance, Cu
The component has the effect of preventing hydrogen absorption under relatively mild acidic conditions, and the Cr and N1 components have the effect of further improving corrosion resistance, and especially the N1 component has the effect of preventing hot embrittlement that occurs when Cu is added. Cu or Cr content is less than 0.2%.

Ni含有量が0.1%未満、あるいはMO含有量が0.
05襲未満では前記作用に所望の効果が得られず、一方
、これらの含有量が1.0%を越えてもよシ以上の向上
効果を得ることができないことから、cu:0、 2 
〜  ユ、OS  +   Hz  :  O,1〜 
ユ、O% 、  Cr  :  0.2〜1、0%、及
びMo : 0.05〜1.0%とそれぞれ定めた。
Ni content is less than 0.1% or MO content is 0.
If the content is less than 0.05%, the desired effect cannot be obtained in the above action, and on the other hand, even if the content exceeds 1.0%, no further improvement effect can be obtained.
~ Yu, OS + Hz: O, 1 ~
U, O%, Cr: 0.2-1.0%, and Mo: 0.05-1.0%, respectively.

■Nt)、V、及びT1 これらの成分には、いずれも析出硬化によシ鋼の強度を
上昇する作用があるが、これCの含有量が0.01%未
満では前記作用に所望の効果が得られず、一方、Nbは
0.01%を越えて含有されても前記作用にそれ以上の
向上効果が得られない上、溶接部靭性に悪影響を及ぼす
ようになシ、またVが012%を越えて、そしてT1が
020係を越えて含有せしめられると母材靭性が劣化す
るようになることから、Nb: 0.01〜0.12 
%、  V :0.01〜0.12%、及びT1.0,
01〜0.20 %とそれぞれ定めた。
■Nt), V, and T1 All of these components have the effect of increasing the strength of steel through precipitation hardening, but if the C content is less than 0.01%, the desired effect is not achieved. On the other hand, even if Nb is contained in an amount exceeding 0.01%, it is not possible to obtain any further improvement in the above-mentioned action, and the weld toughness is adversely affected. Nb: 0.01 to 0.12 since the base material toughness deteriorates if the content exceeds 0.02% and T1 exceeds 0.020%.
%, V: 0.01-0.12%, and T1.0,
01 to 0.20%, respectively.

B、連続鋳造直後の圧延(1次圧延) 連続鋳造時の凝固のための冷延を必要最小限に抑えて、
加熱を行うことな〈実施する連続鋳造直後の圧延には、
鋳片スラブのミクロ欠陥を圧着することによって中心部
に存在する偏析を軽減しやすくシ、耐水素誘起割れ性を
向上する効果があるとともに、スラブの冷却を速くして
析出物が粗大化するのを防止する効果がある。
B. Rolling immediately after continuous casting (primary rolling) By minimizing cold rolling for solidification during continuous casting,
Rolling immediately after continuous casting requires no heating.
By compressing the micro defects in the cast slab, it is easy to reduce the segregation that exists in the center, and it has the effect of improving hydrogen-induced cracking resistance, and it also speeds up the cooling of the slab and prevents the coarsening of precipitates. It is effective in preventing

そして、この場合に、圧下率が10%未満では前記のよ
うな効果を期待できず、一方、圧下率が70%を越えた
値になると、つぎの熱間圧延時の圧下比を3以上とする
ことができないので所望の強度及び靭性を備えた熱延コ
イルを得られなくなることから、圧下率をlO〜′Po
%と定め、た。好ましくは圧下率を20%以上とするこ
とが推奨される。
In this case, if the rolling reduction ratio is less than 10%, the above effect cannot be expected; on the other hand, if the rolling reduction ratio exceeds 70%, the rolling ratio during the next hot rolling should be set to 3 or more. Since it is not possible to obtain a hot-rolled coil with the desired strength and toughness, the rolling reduction ratio is
%. It is recommended that the rolling reduction ratio be preferably 20% or more.

さらに、このときの圧延温度は、熱延加熱時の熱効率、
析出硬化型元素の析出防止の観点から高温とするのが望
ましく、700℃を下廻る温度での圧延では上記の効果
が期待できなくなるので、仕上温度を’i’oo℃以上
と定めた。
Furthermore, the rolling temperature at this time is the thermal efficiency during hot rolling heating,
From the viewpoint of preventing precipitation of precipitation-hardening elements, it is desirable to use a high temperature, and since the above effects cannot be expected when rolling at a temperature below 700°C, the finishing temperature was set at 'i'oo°C or higher.

C0熱間圧延 熱間圧延の際の加熱温度が1000℃未満では、一部析
出した析出硬化型元素を再固溶させることができず、所
望の強度や靭性を得ることができなくなるほか、耐水素
誘起割れ性も劣化することとなるので、加熱温度を1O
Oo℃以上と定めた。
C0 Hot Rolling If the heating temperature during hot rolling is less than 1000°C, the precipitation-hardening elements that have partially precipitated cannot be solid-dissolved again, making it impossible to obtain the desired strength and toughness, and also decreasing the durability. Since the hydrogen-induced cracking property will also deteriorate, the heating temperature should be set at 100
The temperature was set at 00°C or higher.

なお、加熱は高温・長時間はど耐水素誘起割れ性改善に
有効であるが、1250℃を越えるとこの発明の方法に
よってもたらされる効果が少なくなるので、好ましくは
1150℃以下程度で1時間以上加熱することが推奨さ
れる。
Note that heating at high temperatures and for long periods of time is effective in improving hydrogen-induced cracking resistance, but if the temperature exceeds 1250°C, the effect brought about by the method of the present invention will be reduced, so heating is preferably performed at about 1150°C or less for 1 hour or more. Heating is recommended.

さらに、熱延加熱にあたっては、その前の連続鋳造直後
の圧延の後、650℃以上の温度を保っているうちにス
ラブを加熱炉に装入するのが好ましく、これによって昇
温効率が向上するとともに、析出硬化型元素の析出も防
止される。
Furthermore, for hot rolling heating, it is preferable to charge the slab into the heating furnace while the temperature is maintained at 650°C or higher after rolling immediately after the previous continuous casting, which improves temperature raising efficiency. At the same time, precipitation of precipitation hardening elements is also prevented.

D1巻取温度 熱延コイルにおいては、巻取シ後徐冷されると、徐冷過
程を有さない厚板材に比べて、自己焼戻しによる耐硫化
水素割れ性が改善されるものでるるか、巻取温度が40
0℃未満ではこのような効果を得ることができず、一方
640℃を越えるとパーライト層状組織を呈するように
なって耐硫化水素割れ性が悪化するようになることから
、その温度を400〜640℃と定めた。
In a hot-rolled coil with a D1 winding temperature, if it is slowly cooled after winding, will the hydrogen sulfide cracking resistance due to self-tempering be improved compared to a thick plate material that does not have a slow cooling process? Winding temperature is 40
If the temperature is lower than 0°C, such an effect cannot be obtained, whereas if the temperature exceeds 640°C, a pearlite layered structure will appear and the hydrogen sulfide cracking resistance will deteriorate. It was set as ℃.

つぎに、この発明を実施例により比較例と対比しながら
説明する。
Next, the present invention will be explained using examples and comparing with comparative examples.

実施例 まず、第1表に示されるような化学成分組成の鋼を、通
常の方法で溶製し、連続鋳造によって第2表に示される
板厚のスラブを製造した。つぎに引続いて、温度の降下
しないうちに、同様に第2表に示した条件の1次圧延を
施し、熱延・巻取シを行って、第2表の如き厚さの熱延
コイルを製造した。
Example First, steel having the chemical composition shown in Table 1 was melted by a conventional method, and slabs having the thickness shown in Table 2 were manufactured by continuous casting. Next, before the temperature drops, primary rolling is similarly performed under the conditions shown in Table 2, followed by hot rolling and winding to form a hot rolled coil with a thickness as shown in Table 2. was manufactured.

ついで、得られた熱延コイルについて、機械的性質や耐
水素誘起割れ性を測定し、その結果も第2表に併せて示
した。なお、HjC(水素誘起割れ)テストは、側面コ
ーティングなしの試片(厚さ、製品厚さ−27HL 、
幅:20韮、長さ1100M)をNACE条件に96時
間浸漬した後、超音波探傷試験(UST)での欠陥発生
面積率を測定して行った。
Next, the mechanical properties and hydrogen-induced cracking resistance of the obtained hot rolled coils were measured, and the results are also shown in Table 2. In addition, the HjC (hydrogen-induced cracking) test was conducted using specimens without side coating (thickness, product thickness -27HL,
After immersing a specimen (width: 20mm, length: 1100M) under NACE conditions for 96 hours, the defect generation area ratio was measured using an ultrasonic flaw detection test (UST).

なお、第1表及び第2表中における※印は、この発明の
方法の条件を外れていることを示すものである。
Note that the * mark in Tables 1 and 2 indicates that the conditions of the method of this invention are not met.

第2表に示される結果からも明らかなように、本発明の
方法1〜13によれば、良好な機械的特性と耐水素誘起
割れ性の優れた熱延コイルが得られるのに対して、成分
組成範囲が本発明方法の範囲から外れたもの(14〜1
6)、及び圧延、加熱1巻取シ条件が本発明方法の範囲
から外れたもの(17〜22)は、いずれも機械的性質
が劣っているか、あるいは耐水素誘起割れ性に劣る熱延
コイルしか得られなかった。
As is clear from the results shown in Table 2, according to methods 1 to 13 of the present invention, hot rolled coils with good mechanical properties and excellent hydrogen-induced cracking resistance can be obtained. Those whose component composition range is outside the range of the method of the present invention (14 to 1
6) and coils (17 to 22) whose rolling and heating conditions are outside the range of the method of the present invention are hot-rolled coils with poor mechanical properties or poor resistance to hydrogen-induced cracking. I could only get it.

上述のように、この発明によれば、従来のような1次加
熱を施すことなく、優れた耐水素誘起割れ性を備えた熱
延コイルを量産することができ、エネルギー消費量を格
段に節約できる上、作業能率も向上するなど、工業上有
用な効果がもたらされるのである。
As described above, according to the present invention, hot-rolled coils with excellent hydrogen-induced cracking resistance can be mass-produced without the need for primary heating as in conventional methods, resulting in significant savings in energy consumption. Not only that, but it also brings about industrially useful effects such as improved work efficiency.

出願人  住友金属工業株式会社Applicant: Sumitomo Metal Industries, Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)  C: 0.02〜0.18%、Si: 0.
01−1.00%、 Mn : 0.4〜2.0%、 Ca:Ca/8の値が2〜8となる量、を含有し、 Fe及び不可避不純物、残シ、 から成る組成(以上重量割合)の鋼を連続鋳造した後、
その鋳片を加熱することなく直ちに、圧下率:10〜7
0%、仕上温度: 700℃以上の条件で圧延し、引続
いてこれを10 ’O0℃以上の温度に加熱後、再度熱
間圧延を施して、400〜640℃の温度範囲で巻取る
ことを特徴とする耐水素誘起割れ性に優れた熱延コイル
の製造方法。
(1) C: 0.02-0.18%, Si: 0.
01-1.00%, Mn: 0.4-2.0%, Ca: an amount such that the value of Ca/8 is 2-8, and a composition consisting of Fe, unavoidable impurities, and the remainder (the above After continuous casting of steel (weight percentage),
Immediately without heating the slab, rolling reduction: 10-7
0%, Finishing temperature: Rolling at 700°C or higher, then heating to 10'O0°C or higher, hot rolling again, and winding at a temperature range of 400 to 640°C. A method for manufacturing a hot-rolled coil with excellent resistance to hydrogen-induced cracking.
(2)  C: 0.02〜0.18%、Si : 0
.01〜1.00%、 Mn:0.4〜2.0%、 Ca : Ca/Sの値が2〜8となる量、を含有し、
さらに、 Cu : 0.2〜1.0%、 Ni:0.1〜1.0嘱、 Cr  、  02〜 ユ、 0 % 、Mo:0.0
5〜10%、 のうちの1種以上をも含有し、 Fe及び不可避不純物、残り、 から成る組成(以上重量割合)の鋼を連続鋳造した後、
その鋳片を加熱することなく直ちに、圧下率:10〜7
0%、仕上温度、700℃以上の条件で圧延し、引続い
てこれを1000℃以上の温度に加熱後、再度熱間圧延
を施して、400〜540℃の温度範囲で巻取ることを
特徴とする耐水素誘起割れ性に優れた熱延コイルの製造
方法。
(2) C: 0.02-0.18%, Si: 0
.. 01 to 1.00%, Mn: 0.4 to 2.0%, Ca: an amount such that the Ca/S value is 2 to 8,
Further, Cu: 0.2~1.0%, Ni: 0.1~1.0%, Cr: 02~0%, Mo: 0.0
After continuously casting a steel having a composition (the above weight percentage) that also contains 5 to 10% of one or more of the following, and the remainder consisting of Fe and unavoidable impurities,
Immediately without heating the slab, rolling reduction: 10-7
It is characterized by being rolled at a finishing temperature of 700°C or higher, then heated to a temperature of 1000°C or higher, hot rolled again, and wound at a temperature range of 400 to 540°C. A method for manufacturing a hot-rolled coil with excellent hydrogen-induced cracking resistance.
(3)  C: 0.02〜0.18%、Si:0.0
1〜1.00 %、 Mn:0.4〜2.0 %、 Ca:Ca/Sの値が2〜8となる量、を含有し、さら
に。 Nb  二  0.01 〜0. 1 2  %  、
V : O,、C11〜Oユ2%、 Ti:0.01〜0.20%、 のうちの1種以上をも含有し、 Fe及び不可避不純物:残シ、 から成る組成(以上重量割合)の鋼を連続鋳造した後、
その鋳片を加熱することなく直ちに、圧下率:lO〜7
0チ、仕上温度: 700℃以上の条件で圧延し、引続
いてこれを1000℃以上の温度に加熱後、再度熱間圧
延を施して、400〜640℃の温度範囲で巻取ること
を特徴とする耐水素誘起割れ性に優れた熱延コイルの製
造方法。
(3) C: 0.02-0.18%, Si: 0.0
1 to 1.00%, Mn: 0.4 to 2.0%, and Ca: an amount such that the Ca/S value is 2 to 8. Nb2 0.01 to 0. 12%,
V: O, 2% of C11 to O, Ti: 0.01 to 0.20%, a composition consisting of Fe and unavoidable impurities: remainder (weight percentage) After continuous casting of steel,
Immediately without heating the slab, rolling reduction rate: lO ~ 7
Finishing temperature: Rolled at a temperature of 700°C or higher, then heated to a temperature of 1000°C or higher, hot rolled again, and coiled at a temperature range of 400 to 640°C. A method for manufacturing a hot-rolled coil with excellent hydrogen-induced cracking resistance.
(4)  C: 0.02〜0.18%、Si:0.0
1〜1.00%、 Mn: 0.4〜2.0%、 Ca : Ca/’Sの値が2〜8となる量、を含有し
、さらに、 Cu:0.2〜1.0%、 Ni:0.1〜1.0%、 Cr:0.2〜1.0%、 Mo : 0.05〜1.0%、 のうちの1種以上を含有するとともに、Nb:O,O2
N2.12%、 V : 0.01〜0.12%、 Ti: 0.01〜0.20%、 のうちの1種以上をも含有し、 Fe及び不可避不純物:残シ、 から成る組成C以上重量割合)の鋼を連続鋳造した後、
その鋳片を加熱することなく直ちに、圧下率:10〜7
0%、仕上温度ニア00℃以上の条件で圧延し、引続い
てこれを1000℃以上の温度に加熱後、再度熱間圧延
を施して、400〜640℃の温度範囲で巻取ることを
特徴とする耐水素誘起割れ性に優れた熱延コイルの製造
方法。
(4) C: 0.02-0.18%, Si: 0.0
1 to 1.00%, Mn: 0.4 to 2.0%, Ca: an amount such that the Ca/'S value is 2 to 8, and Cu: 0.2 to 1.0%. , Ni: 0.1-1.0%, Cr: 0.2-1.0%, Mo: 0.05-1.0%, and Nb: O, O2
N2.12%, V: 0.01 to 0.12%, Ti: 0.01 to 0.20%, Composition C consisting of Fe and inevitable impurities: residue. After continuous casting of steel with a weight ratio of
Immediately without heating the slab, rolling reduction: 10-7
0%, rolling at a finish temperature of near 00°C or higher, then heated to a temperature of 1000°C or higher, hot rolling again, and winding at a temperature range of 400 to 640°C. A method for manufacturing a hot-rolled coil with excellent hydrogen-induced cracking resistance.
JP21218782A 1982-12-03 1982-12-03 Preparation of hot rolled coil excellent in hydrogen induced cracking resistance Pending JPS59104428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21218782A JPS59104428A (en) 1982-12-03 1982-12-03 Preparation of hot rolled coil excellent in hydrogen induced cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21218782A JPS59104428A (en) 1982-12-03 1982-12-03 Preparation of hot rolled coil excellent in hydrogen induced cracking resistance

Publications (1)

Publication Number Publication Date
JPS59104428A true JPS59104428A (en) 1984-06-16

Family

ID=16618362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21218782A Pending JPS59104428A (en) 1982-12-03 1982-12-03 Preparation of hot rolled coil excellent in hydrogen induced cracking resistance

Country Status (1)

Country Link
JP (1) JPS59104428A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681034A (en) * 1992-08-31 1994-03-22 Sumitomo Metal Ind Ltd Production of hot rolled steel strip for steel pipe excellent in hic resistance
JPH08134549A (en) * 1994-11-10 1996-05-28 Kobe Steel Ltd Production of ultrahigh strength steel sheet excellent in hydrogen embrittlement resistance
CN111500939A (en) * 2020-05-15 2020-08-07 佛山科学技术学院 anti-HIC pipeline steel based on cluster strengthening and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681034A (en) * 1992-08-31 1994-03-22 Sumitomo Metal Ind Ltd Production of hot rolled steel strip for steel pipe excellent in hic resistance
JPH08134549A (en) * 1994-11-10 1996-05-28 Kobe Steel Ltd Production of ultrahigh strength steel sheet excellent in hydrogen embrittlement resistance
CN111500939A (en) * 2020-05-15 2020-08-07 佛山科学技术学院 anti-HIC pipeline steel based on cluster strengthening and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4624808B2 (en) Ferritic stainless steel sheet with excellent workability and method for producing the same
JP5866378B2 (en) Ferritic stainless steel hot-rolled steel sheet with excellent cold cracking property and method for producing the same
JP4510680B2 (en) High-strength steel pipe for pipelines with excellent deformation characteristics after aging and method for producing the same
CN111057945B (en) 500 MPa-level high-toughness weather-resistant bridge steel and preparation method thereof
JP5047180B2 (en) Steel plate for automobile muffler with excellent corrosion resistance and method for producing the same
JP6112273B1 (en) Ferritic stainless hot-rolled steel sheet, hot-rolled annealed sheet, and methods for producing them
CN101319295A (en) High-strength hot rolled steel plate and manufacturing method thereof
KR101417295B1 (en) Cold-rolled steel sheet having excellent sulfuric acid-corrosion resistant and surface properties and method for manufacturing thereof
JP2014051683A (en) Cold rolled steel sheet and its manufacturing method
CN112195409A (en) High-strength low-hardness hydrogen sulfide corrosion resistant steel and preparation method thereof
CN109594015A (en) A kind of low cost acid-resisting corrosion X70MS pipe line steel and preparation method thereof
JP6179604B2 (en) Steel strip for electric resistance welded steel pipe, electric resistance welded steel pipe, and method for producing steel strip for electric resistance welded steel pipe
CN110306103A (en) A kind of 555MPa grades of anti-H2S corrodes oil pipe steel band and preparation method thereof
JP2783809B2 (en) High tensile hot-rolled steel strip with excellent cold workability and weldability and a tensile strength of 55 kg / f / mm 2 or more
TWI731672B (en) Low carbon steel sheet and method of manufacturing the same
CN108950392A (en) A kind of superelevation ductility low density steel and preparation method thereof
JPS5827327B2 (en) Manufacturing method of controlled rolled high strength steel without separation
JPS589919A (en) Production of high tensile hot rolled steel strip of superior low temperature toughness
JPS59104428A (en) Preparation of hot rolled coil excellent in hydrogen induced cracking resistance
JPH06136440A (en) Production of high strength steel sheet excellent in sour resistance
JPH02267242A (en) Low carbon aluminum killed cold rolled steel sheet having excellent workability, roughening resistance on the surface and earing properties and its manufacture
JPH09296216A (en) Production of high strength steel plate excellent in hydrogen induced cracking resistance
CN113981310B (en) High-fatigue-resistance and high-corrosion-resistance steel for train bogie and preparation method thereof
JP5994262B2 (en) Manufacturing method of high-strength steel sheet with excellent workability
JPS581015A (en) Production of high-toughness ultralow carbon hot coil having high hydrogen-induced cracking resistance