JPS59104403A - Preparation of metal powder - Google Patents

Preparation of metal powder

Info

Publication number
JPS59104403A
JPS59104403A JP21326582A JP21326582A JPS59104403A JP S59104403 A JPS59104403 A JP S59104403A JP 21326582 A JP21326582 A JP 21326582A JP 21326582 A JP21326582 A JP 21326582A JP S59104403 A JPS59104403 A JP S59104403A
Authority
JP
Japan
Prior art keywords
powder
metal
molten metal
inert gas
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21326582A
Other languages
Japanese (ja)
Other versions
JPH0114963B2 (en
Inventor
Tatsuya Tomioka
達也 富岡
Takeo Hisada
建男 久田
Shunji Shimura
紫村 俊次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP21326582A priority Critical patent/JPS59104403A/en
Publication of JPS59104403A publication Critical patent/JPS59104403A/en
Publication of JPH0114963B2 publication Critical patent/JPH0114963B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To obtain a metal powder reduced in oxidation, by a method wherein a molten metal is comminuted by using inert gas as a spray medium and the comminuted metal is cooled in a liquid cooling medium such as an org. solvent, mineral oil or animal and vegetable oil. CONSTITUTION:The molten metal 2 in a tandish 1 is flowed down into a protective curtain 5 from the effluent nozzle provided to the bottom part of the tandish 1 while inert gas, for example, Ar, He or N2 is injected to the flowed-down molten metal from a plurality of inert gas nozzles 7 provided to an inert gas supply pipe 6 to comminute the same into metal particles 10 which are, in turn, fallen into the liquid cooling medium 11 in a cooling tank 12 to be cooled and solidified. As the liquid cooling medium, an org. solvent, mineral oil or animal and vegetable oil are used. The solidified metal particles 13 are taken out by a conveyor 14.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、酸化が少なくかつ球状化した金属粉末をYJ
4ることかできる金属粉末の製造方法に関する。 従来、溶融金属を噴霧媒により粉化して金属粉末を製造
する方法としては種々の方法が広く知られているが、特
に工業的規模で量産ができる一般的な方法としては、■
噴霧媒として水を用いる水噴霧法、■噴霧媒としてガス
を用いるガス噴霧法、■噴霧媒として油を用いる油噴霧
法が知られている。 これらのうち、水噴霧法は最も一般的な噴霧法であり、
噴霧媒である水が安価である一方、噴霧媒の取扱いも容
易なために量産体制の確立が容易であり従って製造原価
が最も低いという利点を有しているが、粉化時に溶融金
属が酸化されるため、粉末の表層が酸化膜でおおわれた
酸素濃度の高い粉末となる。この酸素濃度の高い金属粉
末は、その後の還元工程あるいは焼結工程においである
程度酸素を還元除去することができるが、酸素との親和
力の強い元素たとえばSi、Mn。 Cr、Vなどを含んでいる合金では粉化時の酸化が著し
いために、上記還元工程あるいは焼結工程では必ずしも
十分に還元されないという問題点があった。従って、高
強度が要求される焼結体の原料粉末あるいは焼結鍛造用
の原料粉末としては不適当であった。 また、ガス噴霧法では、粉化時におけるガスの冷却能が
低いために溶融金属滴が球状化し易いと共に、酸化の少
ない金属粉末が得られるという優れた利点を有している
。そのために近年では粉末焼結ハイス用の金属粉末を製
造する方法として適用される傾向にある。しかしながら
、このガス噴霧法では、噴霧[7た溶融金属滴を冷却能
の低いガスで冷却するために、凝固するのに長時間を要
する。そのために、噴霧装置における冷却塔の高さを1
0m以上とする必要があり、さらに冷却塔の上に溶解設
備を設置すれば装置全体の高さは10数メートルにも及
び、一般の工場内に設置するのがほとんど不可能となる
。そこで近年では、横吹き噴霧法などが提唱されてはい
るが装置が大型化することになり、工業的規模において
も必ずしも一般化されていない。 一方、噴霧媒として水の代りに油を用いる方法、すなわ
ち、油噴霧法が最近提案されている(特開昭57年47
804号)。この油噴霧法では水の代りに油を噴霧媒と
して用いるために比較的酸化を防止でき、酸素濃度の低
い粉末を得ることができるが、溶融金属に噴霧媒の油が
直接接触するために、凝固過程で金属粉末が浸炭され、
金属粉末の炭素濃度が上昇するという欠点を有している
一方、冷却能の高い油で急冷するために不規則形状の粉
末となると共に、不規則形状の粉末に溶媒(油)が内包
されることも少なくなく、この溶媒を分離するのに多大
な工程を要するという欠点をも有している。 本発明は上記従来法の欠点を解消するためになされたも
ので、酸化の少ない金属粉末の製造方法を提供すること
を目的とする。 すなわち本発明は、溶融金属を噴霧して粉末を製造する
方法において、噴霧媒として不活性なガスを用いて溶融
金属を粉化し、前記粉化した金属を有機溶媒、鉱物油あ
るいは動植物油などの液状冷却媒中にて冷却することを
特徴とするものである。 以下、本発明の詳細な説明する。 まず、電気炉等の溶解炉で所定の化学成分に調整した溶
融金属を取鍋に移し、その後、添付図に示す噴霧装置の
タンディツシュ1内に溶融金属2を注入する。次いでタ
ンディツシュ1の底部に設けた流出ノズル3から溶融金
属2を保護カーテン5内で流出させる。これと同時に、
不活性ガス供給管6に設けた複数の不活性ガスノズル7
から不活性なガス8を高圧で前記溶融金属流に向けて噴
射することにより、前記金属を粉化する。この場合、不
活性なガスとしては、Ar、He、N2などを単体ある
いは複合で用いることができ、粉化しようとする金属の
種類によって適宜に選択する。ここで噴霧媒として不活
性なガスを用いる理由は、噴霧する際に粉末が極力酸化
しないようにするためと、粉末形状を比較的不規則度の
小さい球状粉末にするためである。この不活性なガスを
使用することにより、タンディツシュ1底部の流出ノズ
ル3から流出する溶融金属2を不活性雰囲気中で噴霧す
ると共に、松露化した溶融金属粒子が自らの表面張力に
より球状化を促進することが可能となる。すなわち、溶
融金属粒子が凝固するまでの時間をある程度長くすれば
表面張力によって球状化しやすいことは一般によく知ら
れており、噴霧媒としてのガスは比較的冷却能が低いた
めに凝固まで時間が掛り、溶融金属粒子を球状化するの
に有効である。 また、不活性なガスを噴射する方法としては、タンディ
1.シュ1底部の流出ノズル3から溶融金属流に対し図
示の如く角度をつけて噴射する方法、溶融金属流に対し
て直角に噴射する方法、あるいは溶融金属流の周辺に渦
流ジエ・ントを形成する方法などかあるが、金属粉末の
種類や用途等に応じて適宜に選択される。 次に、粉化した金属粒子10を有機溶媒、鉱物油あるい
は動植物油などの液状冷却座11中に落下して冷却する
。この冷却座11は噴霧装置の下部に設けた冷却槽12
内に収容してあり、その収容量は粉末の種類、粉末粒径
、冷却座11の冷却能、粉末の降下速度等から設定する
。さらに上記冷却槽12を用いる代りに、冷却槽12の
内壁部から冷却座をシャワー状に噴射して冷却する方式
を採用することもできる。このように冷却座11として
冷却能の高い有機溶媒、鉱物油、あるいは動植物油など
の液状物質を用いることにより、従来のガス噴霧法に比
して装置全体の高さをかなり低くすることができ、例え
ば数メートル程度に設計することが可能になり、工場建
屋の制限を受けずかつ設備費用を軽減することが可能に
なる。さらにタンディツシュ1の底部ノズル3と冷却槽
12内の冷却媒11との距離を適正に設定して適宜の保
護カーテン5を設置すれば、噴霧化した溶融金属粒子が
冷却媒上面に到達する間に不活性雰囲気中で冷却される
ので、酸化することなく、かつ冷却媒11に接触しても
すでに浸炭温度以下に冷却されているために浸炭するお
それがない。 このようにして、冷却媒ll中に落下した金属粉末13
は冷却されながら落下して冷却槽12の底部に設けたコ
ンベヤ14上に集積される。集積した金属粉末13は冷
却槽12の底部からコンベヤ14の回転により取り出さ
れ、例えばアルコール、エーテルなどの洗浄液で洗浄す
るか、H2。 分解アンモニア中で加熱して冷却媒11を除去する。末
法により製造した金属粉末は球状化されているため表面
積が小さく、金属粉末に冷却媒が内包される傾向もほと
んどないため、従来の油噴霧法に比較して冷却媒の分離
回収工程が著しく簡略化される。 以下、本発明の詳細な説明する。 実施例1 まず、Al5I  4600規格に準拠した1、9%N
 i−0、5%MO相当の組成の鋼を誘導炉により30
kg溶解して溶融金属を得た。次いで表1に示す製造条
件により、本発明法に基づいて金属粉末を製造すると共
に、比較のために従来の水噴霧法によって金属粉末を製
造した。 表    1 次に、得られた両金属粉末を一100メ・ンシに分級し
て粉末の化学成分(0%、〔O〕%)よび粉末特性(見
掛密度、流動度)を調査したその結果は表2の如くであ
った。 表から明らかなように、従来の水噴霧法で製造した金属
粉末の酸素濃度(%)が0.63%と高いのに対して、
本発明による金属粉末では0.013%と極めて砥〈な
っていた。したがって、本発明法によれば極めて酸素の
低い金属粉末を製造できることが分った。さらに粉末特
性の結果を見ると、従来法では見掛音度が2.53g/
cm3であるのに対して本発明法では4.33g/Cm
3へであり、見掛密度が高いことから球状化が図られて
いることが裏付けられた。この球状化によって、金属粉
末に付着した油の分離が容易であることが推定され、本
実験においても、粉末後処理においてはエーテル洗浄に
より容易に冷却媒を分離除去することができた。 実施例2 この実施例においては、JIS  5KH9相当の組成
をもつ鋼を誘導炉にて30kg溶解して溶鋼を得た。次
いで本発明法により金属粉末を製造すると共に、比較の
ために従来の水噴霧法とガス噴霧法により金属粉末を製
造した。その製造条件は表3の如くである。 表    3 次に各々製造した金属粉末を一80メツシュに分級して
粉末の化学成分および粉末特性を調査した。その結果は
表4の如くであった。 表4に示すように、化学成分は水噴霧法では粉末のC%
がタップ直前の溶鋼C%より若干低下する傾向にあるが
5本発明法およびガス噴霧法ではほぼ同等であり浸炭現
象が生じていないことが分った。一方、粉末の
The present invention uses YJ metal powder that is less oxidized and spheroidized.
This invention relates to a method for producing metal powder that can perform four functions. Conventionally, various methods have been widely known for producing metal powder by pulverizing molten metal with an atomizing medium, but a general method that can be mass-produced on an industrial scale is
A water spray method using water as a spray medium, (1) a gas spray method using gas as a spray medium, and (2) an oil spray method using oil as a spray medium are known. Among these, water spray method is the most common spray method;
Water, which is a spray medium, is cheap, and since the spray medium is easy to handle, it is easy to establish a mass production system, and therefore the manufacturing cost is the lowest. However, the molten metal is oxidized during powdering. As a result, the surface layer of the powder is covered with an oxide film and has a high oxygen concentration. This metal powder with a high oxygen concentration can reduce and remove oxygen to some extent in the subsequent reduction process or sintering process, but it is possible to reduce and remove oxygen to some extent in the subsequent reduction process or sintering process. Since alloys containing Cr, V, etc. are significantly oxidized during powdering, there is a problem in that they are not necessarily sufficiently reduced in the reduction step or sintering step. Therefore, it was unsuitable as a raw material powder for a sintered body requiring high strength or a raw material powder for sintering and forging. In addition, the gas atomization method has the excellent advantage that the molten metal droplets are easily formed into spherules due to the low cooling ability of the gas during powdering, and metal powder with little oxidation can be obtained. Therefore, in recent years, there has been a tendency for this method to be applied as a method for producing metal powder for powder sintered high speed steel. However, in this gas atomization method, since the sprayed molten metal droplets are cooled with a gas having a low cooling ability, it takes a long time to solidify them. For this purpose, the height of the cooling tower in the spray equipment should be increased by 1
0 m or more, and if melting equipment is installed on top of the cooling tower, the height of the entire device will reach over 10 meters, making it almost impossible to install it inside a general factory. Therefore, in recent years, a horizontal spray method has been proposed, but the equipment becomes larger and it has not necessarily been generalized on an industrial scale. On the other hand, a method using oil instead of water as a spray medium, that is, an oil spray method, has recently been proposed (Japanese Unexamined Patent Publication No. 1987-47
No. 804). This oil spraying method uses oil as the spraying medium instead of water, so it can relatively prevent oxidation and produce powder with a low oxygen concentration, but since the oil as the spraying medium comes into direct contact with the molten metal, Metal powder is carburized during the solidification process,
While it has the disadvantage that the carbon concentration of the metal powder increases, it becomes an irregularly shaped powder because it is rapidly cooled with oil that has a high cooling ability, and the irregularly shaped powder also encapsulates the solvent (oil). This also has the disadvantage of requiring a large number of steps to separate the solvent. The present invention was made in order to eliminate the drawbacks of the above-mentioned conventional methods, and it is an object of the present invention to provide a method for producing metal powder with less oxidation. That is, the present invention provides a method for producing powder by spraying molten metal, in which the molten metal is pulverized using an inert gas as a spraying medium, and the pulverized metal is treated with an organic solvent, mineral oil, animal or vegetable oil, etc. It is characterized by being cooled in a liquid coolant. The present invention will be explained in detail below. First, molten metal adjusted to a predetermined chemical composition in a melting furnace such as an electric furnace is transferred to a ladle, and then molten metal 2 is poured into a tundish 1 of a spraying device shown in the attached drawing. The molten metal 2 is then flowed out from an outflow nozzle 3 provided at the bottom of the tundish 1 within a protective curtain 5. At the same time,
A plurality of inert gas nozzles 7 provided in the inert gas supply pipe 6
The metal is pulverized by injecting an inert gas 8 at high pressure into the molten metal stream. In this case, as the inert gas, Ar, He, N2, etc. can be used alone or in combination, and are appropriately selected depending on the type of metal to be pulverized. The reason why an inert gas is used as the atomizing medium is to prevent the powder from being oxidized as much as possible during atomization, and to form the powder into a spherical powder with relatively low irregularity. By using this inert gas, the molten metal 2 flowing out from the outflow nozzle 3 at the bottom of the tundish 1 is atomized in an inert atmosphere, and the molten metal particles that have become pine dew are promoted to become spheroidized by their own surface tension. It becomes possible to do so. In other words, it is generally well known that if molten metal particles take a certain amount of time to solidify, they tend to become spheroidized due to surface tension, and gas as an atomizing medium has a relatively low cooling ability, so it takes a long time to solidify. , is effective in spheroidizing molten metal particles. Also, as a method of injecting inert gas, Tandy 1. A method of injecting the molten metal stream from the outflow nozzle 3 at the bottom of the shell 1 at an angle as shown in the figure, a method of injecting the molten metal stream at right angles to the molten metal stream, or a method of forming a vortex jet around the molten metal stream. There are several methods, but they are selected appropriately depending on the type of metal powder, its use, etc. Next, the powdered metal particles 10 are cooled by falling into a liquid cooling seat 11 made of organic solvent, mineral oil, animal or vegetable oil, or the like. This cooling seat 11 is connected to a cooling tank 12 provided at the bottom of the spray device.
The amount of the powder to be accommodated is determined based on the type of powder, powder particle size, cooling capacity of the cooling seat 11, descending speed of the powder, etc. Furthermore, instead of using the cooling tank 12 described above, it is also possible to employ a method of cooling by spraying the cooling seat from the inner wall of the cooling tank 12 in the form of a shower. By using liquid substances such as organic solvents, mineral oils, or animal and vegetable oils with high cooling capacity as the cooling seat 11, the height of the entire apparatus can be made considerably lower than in conventional gas spraying methods. , for example, can be designed to be several meters long, making it possible to reduce equipment costs without being limited by factory buildings. Furthermore, if the distance between the bottom nozzle 3 of the tundish 1 and the coolant 11 in the cooling tank 12 is appropriately set and an appropriate protective curtain 5 is installed, the atomized molten metal particles can reach the upper surface of the coolant. Since it is cooled in an inert atmosphere, it will not be oxidized, and even if it comes into contact with the cooling medium 11, there is no risk of carburizing because it has already been cooled to below the carburizing temperature. In this way, the metal powder 13 that fell into the cooling medium
The particles fall while being cooled and are accumulated on a conveyor 14 provided at the bottom of the cooling tank 12. The accumulated metal powder 13 is taken out from the bottom of the cooling tank 12 by the rotation of the conveyor 14, and is washed with a cleaning liquid such as alcohol or ether, or washed with H2. The coolant 11 is removed by heating in decomposed ammonia. Since the metal powder produced by this method is spherical, it has a small surface area and there is almost no tendency for the coolant to be encapsulated in the metal powder, so the process of separating and recovering the coolant is significantly simpler than in the conventional oil spray method. be converted into The present invention will be explained in detail below. Example 1 First, 1.9%N based on Al5I 4600 standard
I-0, steel with a composition equivalent to 5% MO was heated in an induction furnace to 30%
kg was melted to obtain molten metal. Next, metal powder was manufactured based on the method of the present invention under the manufacturing conditions shown in Table 1, and for comparison, metal powder was also manufactured using the conventional water spray method. Table 1 Next, the obtained two metal powders were classified into 1100 mm and the chemical composition (0%, [O]%) and powder properties (apparent density, fluidity) of the powder were investigated. was as shown in Table 2. As is clear from the table, while the oxygen concentration (%) of metal powder produced by the conventional water spray method is as high as 0.63%,
The metal powder according to the present invention was 0.013%, which was extremely abrasive. Therefore, it was found that metal powder with extremely low oxygen content can be produced by the method of the present invention. Furthermore, looking at the results of powder properties, the apparent soundness was 2.53g/
cm3, whereas in the method of the present invention it is 4.33g/Cm
3, and the high apparent density confirmed that spheroidization was being achieved. It is presumed that this spheroidization makes it easy to separate the oil adhering to the metal powder, and in this experiment as well, the coolant could be easily separated and removed by ether washing in the powder post-treatment. Example 2 In this example, molten steel was obtained by melting 30 kg of steel having a composition equivalent to JIS 5KH9 in an induction furnace. Next, metal powder was produced by the method of the present invention, and for comparison, metal powder was also produced by the conventional water spray method and gas spray method. The manufacturing conditions are as shown in Table 3. Table 3 Next, each of the produced metal powders was classified into 180 meshes, and the chemical components and powder characteristics of the powders were investigated. The results were as shown in Table 4. As shown in Table 4, the chemical composition is C% of the powder in the water spray method.
It was found that although C% of molten steel tends to be slightly lower than that of molten steel immediately before tapping, it is almost the same in the method of the present invention and the gas atomization method, indicating that no carburization phenomenon occurs. On the other hand, powder

〔0〕%
につぃては、本発明法およびガス噴霧法とも0.008
2%(82ppm)8よびo、oos9%(89ppm
)と極めて低いのに対し、水噴霧法では0.17%と極
めて高く粉末の酸化が著しいことが判明した。 他方、粉末特性については、本発明法およびガス噴霧法
はほぼ同等な見掛密度、流動度が得られたが、水噴霧法
では見掛音度が2 、63 g/cm:1と極めて低く
、粉末が球状化していないことが分った。 本発明法による金属粉末は上記球状化の効果によって、
冷却に用いた灯油をエーテルで洗浄することにより簡単
に分離除去できた。これは溶鋼中のC%と洗浄した粉末
中のC%が同じであったことからも裏付けられる。 次に、上゛記各々金属粉末を用いて焼結体を成′形して
各々の機械的性質を比較した。 まず、各々の粉末を3關厚さの軟鋼製容器に入れ、電子
ビーム溶接により真空封入し、次いて1100’CX 
I OOOatm X2hrの条件で熱間静水圧成形プ
レス(HIP)により成形、焼結した。HIP後の焼結
体から厚ざ3rrm、幅5mm。 長さ30mmの試験片を削り出し、この試験片を121
0’C!で油焼入れし、次いで560’Cの焼戻しを行
った後、硬度試験および抗折試験(支点圧fFff12
0mm)に供した。その結果は表5の如くであった。 表   5 表から明らかなように、硬度については三つの方法とも
に同等の値を示したが、抗折力については酸素濃度の高
い水噴霧法が極めて低く、本発明法およびガス噴霧法は
ほぼ同等でいずれも良好な結果を得ることができ、装置
の小型化と相まって本発明のすぐれた特長が実証された
。 以上の説明から明らかなように本発明法によれば、溶融
金属を噴霧して粉末を製造する方法において噴霧媒とし
て不活性なガスを用いて溶融金属を粉化し、前記粉化し
た金属を有機溶媒、鉱物油、植物油等の液状冷却媒中に
て冷却するようにしたから、次のようなすぐれた効果を
発揮する。 (イ)溶融金属流に不活性なガスを噴出させて当該溶融
金属を飛散粉化させるために、粉末を酸化させることが
ないこと、 (ロ)不活性なガスは冷却能が低く、粉化、した溶融金
属の凝固速度を遅らすために、溶融金属臼らの表面張力
により球状化か図れること、(ハ)不活性雰囲気中で粉
化された金属粒子がある程度まで冷却されるために浸炭
などが起らず、金属粉末の成分変動が少ないこと、(ニ
)不活性なカスで噴霧した粒子は冷却能の高い液状冷却
媒で急冷されるために、冷却装置の高さを短1宿するこ
とができ、設備費の低減を図ることができること、 (ホ)粉末粒子が球状化しているために、粉末から溶媒
を分離回収することか容易で回収工程の簡便化を図るこ
とができること、 等の優れた効果を有するものである。
[0]%
For both the method of the present invention and the gas atomization method, it is 0.008
2% (82ppm) 8 and o, oos9% (89ppm
), which was extremely low, whereas in the water spray method, it was extremely high at 0.17%, indicating that the oxidation of the powder was significant. On the other hand, regarding the powder properties, the method of the present invention and the gas atomization method obtained almost the same apparent density and fluidity, but the water atomization method had an extremely low apparent density of 2.63 g/cm:1. It was found that the powder was not spheroidized. The metal powder produced by the method of the present invention has the following effects due to the above-mentioned spheroidization effect:
It was easily separated and removed by washing the kerosene used for cooling with ether. This is supported by the fact that the C% in the molten steel and the C% in the washed powder were the same. Next, sintered bodies were formed using each of the metal powders described above, and the mechanical properties of each were compared. First, each powder was placed in a 3-inch thick mild steel container, vacuum sealed by electron beam welding, and then 1100'CX
It was molded and sintered using a hot isostatic pressing (HIP) under the conditions of I OOOatm X2hr. The sintered body after HIP has a thickness of 3 rrm and a width of 5 mm. A test piece with a length of 30 mm was cut out, and this test piece was
0'C! After oil quenching at 560'C and tempering at 560'C, hardness test and bending test (fulcrum pressure fFff12
0 mm). The results were as shown in Table 5. Table 5 As is clear from the table, all three methods showed equivalent values for hardness, but the transverse rupture strength was extremely low for the water spray method with a high oxygen concentration, and the method of the present invention and the gas spray method were almost equivalent. Good results were obtained in all cases, and the excellent features of the present invention, coupled with the miniaturization of the apparatus, were demonstrated. As is clear from the above description, according to the method of the present invention, in a method for producing powder by spraying molten metal, the molten metal is pulverized using an inert gas as a spray medium, and the pulverized metal is Since cooling is performed in a liquid coolant such as a solvent, mineral oil, or vegetable oil, the following excellent effects are exhibited. (b) Inert gas is ejected into the molten metal flow to scatter and powder the molten metal, so the powder is not oxidized; (b) Inert gas has a low cooling ability and becomes powder. In order to slow down the solidification rate of the molten metal, the surface tension of the molten metal mortar causes it to become spheroidized. (d) The particles sprayed with inert dregs are rapidly cooled by a liquid coolant with high cooling ability, so the height of the cooling device can be reduced by one inch. (e) Since the powder particles are spherical, it is easy to separate and recover the solvent from the powder, simplifying the recovery process, etc. It has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面はこの発明の実施態様における粉末製造装置の
概略を示す断面説明図である。 2・・・溶融金属、3・・・ノズル、7・・・不活性ガ
スノズル、10・・・金属粒子、11・・・液状冷却媒
、13・・・金属粉末。
The accompanying drawing is an explanatory cross-sectional view schematically showing a powder manufacturing apparatus in an embodiment of the present invention. 2... Molten metal, 3... Nozzle, 7... Inert gas nozzle, 10... Metal particles, 11... Liquid coolant, 13... Metal powder.

Claims (1)

【特許請求の範囲】 (])溶融金属を噴霧して粉末を製造する方法にな おいて、噴霧媒として不活性筋゛スを用いて溶融金属を
粉化し、前記粉化した金属を有機溶媒、鉱物油あるいは
動植物油などの液状冷却媒中にて冷却することを特徴と
する金属粉末の製造方法。
[Claims] () A method for producing powder by spraying molten metal, in which the molten metal is pulverized using an inert base as a spraying medium, and the pulverized metal is mixed with an organic solvent, A method for producing metal powder, characterized by cooling in a liquid coolant such as mineral oil or animal or vegetable oil.
JP21326582A 1982-12-07 1982-12-07 Preparation of metal powder Granted JPS59104403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21326582A JPS59104403A (en) 1982-12-07 1982-12-07 Preparation of metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21326582A JPS59104403A (en) 1982-12-07 1982-12-07 Preparation of metal powder

Publications (2)

Publication Number Publication Date
JPS59104403A true JPS59104403A (en) 1984-06-16
JPH0114963B2 JPH0114963B2 (en) 1989-03-15

Family

ID=16636230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21326582A Granted JPS59104403A (en) 1982-12-07 1982-12-07 Preparation of metal powder

Country Status (1)

Country Link
JP (1) JPS59104403A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249961A (en) * 1986-04-21 1987-10-30 Showa Highpolymer Co Ltd Unsaturated urethane compound and production thereof
JPH01188608A (en) * 1988-01-25 1989-07-27 Mitsubishi Metal Corp Apparatus for continuous production of metal grains
JPH01319607A (en) * 1988-06-21 1989-12-25 Tokin Corp Production of metal or alloy powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249961A (en) * 1986-04-21 1987-10-30 Showa Highpolymer Co Ltd Unsaturated urethane compound and production thereof
JPH0314015B2 (en) * 1986-04-21 1991-02-25 Showa Highpolymer
JPH01188608A (en) * 1988-01-25 1989-07-27 Mitsubishi Metal Corp Apparatus for continuous production of metal grains
JPH01319607A (en) * 1988-06-21 1989-12-25 Tokin Corp Production of metal or alloy powder

Also Published As

Publication number Publication date
JPH0114963B2 (en) 1989-03-15

Similar Documents

Publication Publication Date Title
CN106891015B (en) A kind of crystallite, amorphous metal powder fabricating apparatus and its manufacturing method
US3655837A (en) Process for producing metal powder
US3951577A (en) Apparatus for production of metal powder according water atomizing method
US4971133A (en) Method to reduce porosity in a spray cast deposit
US3687654A (en) Method of making alloy steel powder
JP2642060B2 (en) Method and apparatus for producing reactive metal particles
JPS6330364B2 (en)
JPS59104403A (en) Preparation of metal powder
US3533136A (en) Apparatus for producing metal powder
JPS5770206A (en) Preparation of metal alloy powder
CN107127349B (en) A kind of method of high temperature liquid iron aerosolization decarburization steel-making
JP2788919B2 (en) Method and apparatus for producing metal powder
DE4019563A1 (en) Prodn. of e.g. iron powder by atomising cast melt stream - using gaseous phase of liquid droplets esp. water to effect atomisation
CN1058918C (en) Method for preparing hydraulic atomized silver powder
CA1315055C (en) Atomization process
JP3598844B2 (en) Method and apparatus for producing metal powder
JP7498043B2 (en) Metal powder manufacturing method
US4224260A (en) Production of metal powder
JPS6343794A (en) Poroduction of solder powder
JPS6024302A (en) Production of amorphous alloy powder
JPH0441063A (en) Spray forming method
JPH075938B2 (en) Method for producing rapidly solidified metal-based powder
JPS5849603B2 (en) Metal powder manufacturing method
JPS61204304A (en) Production of metallic powder
SU956152A1 (en) Method of producing metallic powder