JPH01319607A - Production of metal or alloy powder - Google Patents
Production of metal or alloy powderInfo
- Publication number
- JPH01319607A JPH01319607A JP15123688A JP15123688A JPH01319607A JP H01319607 A JPH01319607 A JP H01319607A JP 15123688 A JP15123688 A JP 15123688A JP 15123688 A JP15123688 A JP 15123688A JP H01319607 A JPH01319607 A JP H01319607A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- metal
- melt
- polymer
- metal powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 74
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 52
- 239000002184 metal Substances 0.000 title claims abstract description 52
- 239000000956 alloy Substances 0.000 title claims abstract description 17
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 229920000620 organic polymer Polymers 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims 1
- 229920000642 polymer Polymers 0.000 abstract description 13
- 238000001746 injection moulding Methods 0.000 abstract description 12
- 239000012188 paraffin wax Substances 0.000 abstract description 8
- 239000000203 mixture Substances 0.000 abstract description 6
- 239000002131 composite material Substances 0.000 abstract description 5
- 238000002347 injection Methods 0.000 abstract description 5
- 239000007924 injection Substances 0.000 abstract description 5
- 239000002994 raw material Substances 0.000 abstract description 3
- 239000000155 melt Substances 0.000 abstract 3
- 239000012803 melt mixture Substances 0.000 abstract 1
- 230000008023 solidification Effects 0.000 abstract 1
- 238000007711 solidification Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 35
- 239000003921 oil Substances 0.000 description 11
- 238000000889 atomisation Methods 0.000 description 8
- 238000009689 gas atomisation Methods 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 7
- 238000005238 degreasing Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000009692 water atomization Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 238000004663 powder metallurgy Methods 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 238000009941 weaving Methods 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は金属粉末又は合金粉末と有機バインターを混合
、混練した材料を射出成形手法によって得られた成形体
を脱脂、焼結することによって、任意形状の焼結体を得
=るいわゆるニアネジ1〜シエ−プを考慮した粉末冶金
プロセスにおいて使用する金属又は合金粉末の製造方法
に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention involves degreasing and sintering a molded body obtained by injection molding a material obtained by mixing and kneading metal powder or alloy powder and an organic binder. The present invention relates to a method for producing metal or alloy powder used in a powder metallurgy process that takes into account so-called near-screw shapes to obtain sintered bodies of arbitrary shapes.
[従来の技術]
従来、任意形状の金属物品の形成法としては、1、機織
加工法、2.鋳造法、3 粉末冶金法等かありそれぞれ
多くの利/ACを有しているか、近年、対称とする金属
が錐加工性金属および高融点金属などにおいては特に粉
末冶金法の重要性が増している。ところで、これまでの
粉末冶金法は、金属粉末を所定の金型に装填後一定の加
圧力により成形体を作製し、その後の焼結工程を経て金
属物品を得る方式か一般的であった。しかし同方式にお
いては、柱状、筒状のような単純形状においては、作製
か容易でありコスl〜の削減におおいに寄与するか、3
次元的により複雑形状となった揚台、成形後もしくは焼
結後に切削、研削等の2次加工を施す必要があり、これ
がコス1〜の上昇を招く原因ともなっている。[Prior Art] Conventionally, methods for forming metal articles of arbitrary shapes include: 1. weaving method; 2. weaving method; Casting method, 3. Powder metallurgy method, etc.Each of them has many advantages/AC, and in recent years, powder metallurgy method has become increasingly important especially when the target metal is drill-formable metal or high melting point metal. There is. By the way, in the conventional powder metallurgy method, a molded body is produced by applying a constant pressure after metal powder is loaded into a predetermined mold, and a metal article is obtained through a subsequent sintering process. However, in this method, for simple shapes such as columnar and cylindrical shapes, it is easy to manufacture and contributes greatly to the reduction of cost l~.
It is necessary to perform secondary processing such as cutting and grinding after forming or sintering the platform, which has a dimensionally more complicated shape, and this is also a cause of an increase in cost.
一方、以前より2次加工を必要としないニアネy l−
シェープを考慮した粉末冶金的な手法は、たとえばCI
P 、 1−I I Pおよびスリップキャスデイン
ク法等の技術により実用化されていたがその工程が複雑
で量産性に乏しくコス1〜が高い点などから、例えは航
空機用ジェッI〜エンジンの様に、歎加工性金属でかつ
高付加価値の部品への適用が主であり、末な一般部品へ
は波及していないのが現状となっている。On the other hand, near-terminals that do not require secondary processing compared to before
Powder metallurgy methods that take shape into consideration are, for example, CI
Although it has been put into practical use by technologies such as P, 1-I I P and slip cast ink method, the process is complicated, it is not suitable for mass production, and the cost is high. Currently, it is mainly applied to high-value-added parts made of processable metals, and has not spread to lower-level general parts.
ところが近年、金属粉末と有機バインターとを混合、混
練した材料を射出成形により所定形状の成形体を作製し
、その後成形体を脱バインター処理(脱脂)、焼結を施
すことにより、容易に複雑形状の金属物品を高精度てか
つ多量に作製することが可能となっている。この焼結体
製造工程において重要な技術的な要件としては、
■ 高精度な成形体の作製
■ 多量に含有するバインターの完全脱脂が挙げられ、
これを実現する為に金属粉末に要求される粉末特性は、
以下に示す様に多岐に渡っている。However, in recent years, by injection molding a material obtained by mixing and kneading metal powder and organic binder into a molded body of a predetermined shape, and then subjecting the molded body to debinder treatment (degreasing) and sintering, complex shapes can be easily formed. It has become possible to manufacture metal articles with high precision and in large quantities. The important technical requirements in this sintered body manufacturing process include: ■ Production of highly accurate molded bodies ■ Complete degreasing of the binder that contains a large amount.
In order to achieve this, the powder properties required for metal powder are:
There is a wide range of options as shown below.
■ 成形性を考慮し流動性のある球形状粉末とする。■ Considering moldability, create a fluid spherical powder.
■ バインダーの脱脂が容易となる様に表面が滑らかな
粉末とする。■ The powder should have a smooth surface so that the binder can be easily degreased.
■ 焼結性を考慮し平均粒径が10μm以下の微細粉末
とする。■ Considering sinterability, use fine powder with an average particle size of 10 μm or less.
従来、これらの粉体#I性を満足させる為の粉末のV造
法としては、ノズルから流出された溶融金属(溶湯)に
高圧の流体を衝突せしめそのエネルギーにより微粉化さ
せるいわゆるアトマイズ法によって得られた粉末を使用
することが一般的となっている。 なお、このアトマイ
ズ法には噴霧媒質により大別して水アトマイズ法および
ガスアトマイズ法がありそれぞれ種々な利点を有してい
るが、射出成形に適した粉体特性として水アトマイズ法
によれば平均粒径が10μm以下の微細粉末の作製が容
易である。Conventionally, the V-formation method for powder to satisfy these powder #I properties has been achieved by the so-called atomization method, in which high-pressure fluid collides with molten metal (molten metal) flowing out of a nozzle, and the resulting energy is used to pulverize it. It has become common to use powdered powder. Note that this atomization method is roughly divided into water atomization method and gas atomization method depending on the spray medium, and each has various advantages, but according to the water atomization method, the average particle size is It is easy to produce fine powder of 10 μm or less.
又、ガスアトマイズ法によれば、球状粉末てかつ表面が
滑らかな粉末が得られる等が挙げられる。Further, according to the gas atomization method, a spherical powder with a smooth surface can be obtained.
しかし、前記水およびガスアトマイズ法には、以下に示
す様な問題点も多数存在し、これか末なに射出成形プロ
セスの社会への認識を遅らせる原因の1つとなっている
。However, the water and gas atomization method has a number of problems as described below, which are one of the reasons why the injection molding process is not recognized by society.
■ 水アトマイス法:粉末が異形状であり、射出成形時
の流動性が悪く、その対策としてバインター量を増加さ
せる必要があり脱脂が難しい。■ Water atomization method: The powder has an irregular shape and has poor fluidity during injection molding.As a countermeasure, it is necessary to increase the amount of binder, making degreasing difficult.
又媒質が水である為粉末の酸素濃度が高く、焼結性が劣
る。Furthermore, since the medium is water, the oxygen concentration in the powder is high, resulting in poor sinterability.
■ ガスアトマイズ法:粉末の平均粒径が大きくかつ真
球体であることより粉体相互の絡み合いが小さく脱脂工
程でのふくれ、割れを生じやすく、焼結密度の向上が難
しい。■ Gas atomization method: Since the average particle size of the powder is large and it is a true sphere, the entanglement of the powders with each other is small, making it easy to blister and crack during the degreasing process, making it difficult to improve the sintered density.
これらアトマイズ法の改善対策として、噴霧媒質を例え
ば、特開昭58−153711号公報のように、油脂、
鉱物油、純有機化合物等を用いる方式が提案されており
、酸化の抑制効果と粒子形状をガスと水アトマイズ粉末
の中間的な形状にすることが可能となり、粉体相互の適
度な絡み合いも発生し、射出成形粉末としては良好な特
性を有する粉末も得られている。As a measure to improve these atomization methods, the spray medium may be changed to oil, fat,
A method using mineral oil, pure organic compounds, etc. has been proposed, which has the effect of suppressing oxidation and makes it possible to make the particle shape intermediate between gas and water atomized powder, and also causes moderate entanglement of the powders. However, powders with good properties as injection molding powders have also been obtained.
[発明が解決しようとする課題]
−弓 −−
しかしながら、上記有機化合物噴霧媒質を用いる方式に
おいて噴霧媒の熱分解に由来する炭素の付着の結果生ず
る粉末の浸炭、活性金属を多量に含有した合金を噴霧す
るなめに油中に含まれる徽星水分によって酸化が進行す
ることと、又、このような油の熱分解および発火を防1
トする為に油の温度を低くする必要性から噴霧媒の粘性
が高くなりlJJ&霧川ポン用の能力を高める必要があ
る6等の問題によりその使用が限定される結果となって
いる。[Problems to be Solved by the Invention] - Bow - However, in the method using the above-mentioned organic compound spray medium, carburization of powder resulting from adhesion of carbon derived from thermal decomposition of the spray medium, and alloy containing a large amount of active metal. To prevent oxidation from progressing due to the water content in the oil that is sprayed, and also to prevent such thermal decomposition and ignition of the oil.
The viscosity of the spray medium increases due to the need to lower the temperature of the oil in order to reduce the temperature of the oil, and its use has been limited due to problems such as 6, which requires increased capacity for IJJ & Kirikawa pumps.
斯る観点に鑑み、本発明の技術的課題は、従来の種々の
アトマイズ法の概念を踏襲し、射出成形プロセスに要求
される粉体特性を濯足ずべき新たな発明を加え、安価か
つ大量に複合粉末を製造することが可能な金属又は合金
粉末の製造方法を提r共しようとするものである。In view of this, the technical problem of the present invention is to follow the concepts of various conventional atomization methods, add a new invention that improves the powder properties required for the injection molding process, and create an inexpensive and large-scale atomization method. The present invention aims to provide a method for producing metal or alloy powder that can produce composite powder.
本発明者らは、従来の水ア)・マイズ法、ガスアトマイ
ズ法および油ア1〜マイス法の長所を生かし短所を補う
方法を確立すべく鋭意研究を行なった結果、本発明を完
成するに至っなものである。The present inventors have completed the present invention as a result of intensive research to establish a method that takes advantage of the strengths of the conventional water atomization method, gas atomization method, and oil atomization method and compensates for the weaknesses. It is something.
= 6−
1課題を解決するための手段コ
本発明によれは、ノズルより流出する金属又は合金の溶
湯にガスを衝突させて実質的に半溶融状態の金属又は合
金の粉末を形成し冷却する金属粉末の製造方法において
、上記半溶剛(状態の金属又は合金を加熱生成した有機
高分子溶融液中に投入して凝固することを特徴とする金
属又は合金粉末の製造方法が得られる。= 6-1 Means for Solving the Problems According to the present invention, gas is caused to collide with the molten metal or alloy flowing out from a nozzle to form a substantially semi-molten metal or alloy powder and then cooled. There is obtained a method for producing a metal or alloy powder, characterized in that the metal or alloy in a semi-molten state is poured into a heated organic polymer melt and solidified.
ここで、本発明においては、有機高分子溶融液はワック
ス7ボリマーの少くとも1種よりなることが望ましい。Here, in the present invention, it is desirable that the organic polymer melt comprises at least one type of wax 7 polymer.
すなわち本発明の特徴とするところは、いわゆるガスア
1〜マイズ法によって溶湯(溶融金属)を噴霧ぜしめそ
の噴霧体力畳疑固する以前の半溶融状態て、融点以上に
保持されたワックスとポリマーもしくはポリマーの溶融
液体槽内ノ\直接投入し急速凝固せしめる所にある。こ
の結果、従来法である水アトマイス法に比較し極めて酸
化の抑制効果が大きく、又油ア1〜マイス法のように溶
湯が有機物質と直接接触ぜす、温度が低下した半溶融状
態て接触することにより粉末炭化の防止効果も大きい。That is, the feature of the present invention is that the molten metal is atomized by the so-called gas atomization method, and the wax and polymer or This is where the molten polymer liquid is directly poured into the tank and rapidly solidified. As a result, the effect of suppressing oxidation is extremely large compared to the conventional water atomization method, and when the molten metal comes into direct contact with organic substances as in the oil atomization method, the contact occurs in a semi-molten state at a lower temperature. By doing so, the effect of preventing powder carbonization is also great.
一方粉末形状は、半溶融状態で溶融液面に衝突する際の
衝撃エネルギーによりガスア1〜マイズ特有の真球状粉
末が変形もしくは分断された状態て凝固する。よってそ
の形状はガスアI〜マイズ粉末と水ア1〜マイズ粉末の
中間的ないわゆるT:f:形状粉末となり、上記した射
出成形用粉末としては理想的な形態となる。一方、有機
高分子溶融?夜体内から回収された粉末は、大気中て冷
却乾燥することで、表面に射出成形時のバインターの主
成分となるパラフィンとポリマーの混合体もしくはポリ
マーが均一に被覆された複合状態となることより、従来
、油ア1−マイズ法で行なわれていた粉末の脱油上杵を
経ることなく直接射出成形用原料粉末としての使用力首
11能となり、粉末製造コス1への削減にも大きい効果
をもたらず。On the other hand, when the powder is in a semi-molten state and collides with the molten liquid surface, the impact energy causes the truly spherical powder characteristic of gas atomization to be deformed or fragmented and solidified. Therefore, the shape thereof becomes a so-called T:f: shape powder, which is intermediate between the gas atomized powder and the water atomized powder, and is an ideal form for the above-mentioned injection molding powder. On the other hand, organic polymer melting? When the powder collected from the night body is cooled and dried in the atmosphere, the surface becomes a mixture of paraffin and polymer, which is the main component of the binder during injection molding, or a composite state in which the polymer is uniformly coated. , it can be used directly as a raw material powder for injection molding without going through the deoiling process that was conventionally done with the oil amalization method, and has a great effect on reducing powder manufacturing costs by 1. It doesn't bring.
次に本発明の実施例を図面を参照して説明する。Next, embodiments of the present invention will be described with reference to the drawings.
「実施例」
第1[Jは本発明を実施すべく構成された粉末製造装置
の一例を示ずし1である。この図において、溶融るつぼ
に設けられた溶湯噴射ノズル1より流出されたFe−5
ONi(■1%)からなる溶剛l金属く溶湯)2に対し
、環帯ノズル3より高圧A rガスを噴出して衝突せし
め溶融金属2を噴霧化する。さらにその噴霧化された金
属を凝固する以前の半溶融状態てパラフィンワックスと
ポリマーの混合体が加熱装置7によりこの混合物の融点
以」二の温度に保持された混合溶融液て充たされた浴槽
4内に投入し急速凝固を行ない金属粉末化する。``Example'' 1 shows an example of a powder manufacturing apparatus configured to carry out the present invention. In this figure, Fe-5 flows out from the molten metal injection nozzle 1 provided in the melting crucible.
High-pressure Ar gas is ejected from an annular nozzle 3 to collide with a molten metal 2 made of ONi (1%) to atomize the molten metal 2. Furthermore, before solidifying the atomized metal, a mixture of paraffin wax and polymer in a semi-molten state is kept in a bathtub filled with a mixed molten liquid maintained by a heating device 7 at a temperature above the melting point of this mixture. 4 and rapidly solidified into metal powder.
次に回収容器5およびフィルタ6より金属粉末を回収し
室温状態で金属粉末表面に均一に付着したパラフィンワ
ックスとポリマーの混合体を固化させポリマー、パラフ
ィンワックス及び金属粉末よりなる複合粉末とする。Next, the metal powder is collected from the collection container 5 and the filter 6, and the mixture of paraffin wax and polymer uniformly adhered to the surface of the metal powder is solidified at room temperature to form a composite powder consisting of the polymer, paraffin wax, and metal powder.
なお比較材としては、同一・組成の水アI・マイズ粉末
、ガスアl−マイズ粉末、油ア1〜マイズ粉末を用いた
。As comparison materials, water aluminized powder, gas aluminized powder, and oil aluminized powder having the same composition were used.
第1゜表は、本発明及び水アl〜マイズ法、ガスアトマ
イス法、油ア1〜マイズ法の各製造法て作製した金属粉
末を表面に付着した有機成分を除去後金有酸素および炭
素?農度を酸素及び炭素分析計にて測定しな。その結果
、本発明が不純物混入を防止する手法として極めて優れ
ていることがわかり、特に本発明における炭素の焼きイ
」き防止効果は大てあった。Table 1 shows the difference between metal powders produced by the present invention and the water atomization method, gas atomization method, and oil atomization method after removing the organic components attached to the surface of the metal powders. Measure agricultural yield using an oxygen and carbon analyzer. As a result, it was found that the present invention is extremely excellent as a method for preventing contamination with impurities, and in particular, the effect of the present invention in preventing carbon burning was significant.
次に、本発明による粉末に適宜パラフィンワックス及び
ポリマーを添加したものと粉末及び水アトマイズ、ガス
ア1ヘマイズ、油7’ 1−マイスによる粉末とパラフ
ィンワックスとポリマーを主成分とするバインダーを混
合、混練したものとを、それぞれ射出成形、脱脂、焼結
を行なった。これらの試料の射出成形性、脱脂性及び焼
結性について調べた一運の結果を第2表に示す。第2表
で示すように、本発明の製造方法て作製した粉末を用い
た場合、従来粉末に比較し極めて脱脂性が良好で焼結密
度が大きく、変形か少なく、不純物が少い焼結体が得ら
れることが7+1′認出来な。Next, the powder according to the present invention to which paraffin wax and polymer are added as appropriate, the powder and water atomized, gas atomized, oil 7'1-mice powder, paraffin wax and a binder mainly composed of polymer are mixed and kneaded. These were then injection molded, degreased, and sintered. Table 2 shows the results of examining the injection moldability, degreasing properties, and sinterability of these samples. As shown in Table 2, when the powder produced by the manufacturing method of the present invention is used, the sintered body has extremely good degreasing properties, has a high sintered density, is less deformed, and has fewer impurities than conventional powders. 7+1' cannot be recognized as being obtained.
1、L″′F′
F斧b、−,] 0 −
〜 12 −
[発明の効果]
以上述べたように、本発明の金属又は合金粉末の製造方
法によって作製された粉末は、従来の製造法で作製した
粉末に比較して極めて汚染か少なく、形状も球状を呈す
ることにより、射出成形用原利粉末として極めて優れた
特性を有するばかりではなく、粉末製造コス1〜を大幅
に削減することが可能となり実用的価値は大である。1, L″′F′ F ax b, −, ] 0 − ~ 12 − [Effects of the invention] As described above, the powder produced by the method for producing metal or alloy powder of the present invention is superior to conventional production methods. Compared to the powder produced by the method, it has extremely less contamination and has a spherical shape, so it not only has extremely excellent properties as a raw material powder for injection molding, but also significantly reduces the powder manufacturing cost. This makes it possible and has great practical value.
第1図は本発明を実施する為の粉末製造装置の一棺成例
を示す図である。
図中、1・・・溶湯噴射ノズル、2・・・溶融金属、3
・・・環帯ノズル、4・・・浴槽、5・・・回収容器、
6・・・フィルタ、7・・・加熱装置。FIG. 1 is a diagram showing an example of a powder manufacturing apparatus for carrying out the present invention. In the figure, 1... Molten metal injection nozzle, 2... Molten metal, 3
... ring nozzle, 4 ... bathtub, 5 ... collection container,
6... Filter, 7... Heating device.
Claims (1)
突させて実質的半溶融状態の金属又は合金の粉末を形成
し冷却する金属粉末の製造方法において、 上記半溶融状態の金属又は合金を加熱生成した有機高分
子溶融液中に投入して凝固することを特徴とする金属又
は合金粉末の製造方法。[Scope of Claims] 1. A method for producing metal powder in which gas collides with a molten metal or alloy flowing out from a nozzle to form substantially semi-molten metal or alloy powder and cooling the semi-molten metal or alloy powder, comprising: 1. A method for producing a metal or alloy powder, which comprises introducing the metal or alloy into a heated organic polymer melt and solidifying the metal or alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63151236A JP2681801B2 (en) | 1988-06-21 | 1988-06-21 | Method for producing injection molding raw material containing metal powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63151236A JP2681801B2 (en) | 1988-06-21 | 1988-06-21 | Method for producing injection molding raw material containing metal powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01319607A true JPH01319607A (en) | 1989-12-25 |
JP2681801B2 JP2681801B2 (en) | 1997-11-26 |
Family
ID=15514226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63151236A Expired - Fee Related JP2681801B2 (en) | 1988-06-21 | 1988-06-21 | Method for producing injection molding raw material containing metal powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2681801B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4910584A (en) * | 1972-05-30 | 1974-01-30 | ||
JPS59104403A (en) * | 1982-12-07 | 1984-06-16 | Daido Steel Co Ltd | Preparation of metal powder |
JPS61143502A (en) * | 1984-12-14 | 1986-07-01 | Itsuo Onaka | Production of granular material of lead alloy |
-
1988
- 1988-06-21 JP JP63151236A patent/JP2681801B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4910584A (en) * | 1972-05-30 | 1974-01-30 | ||
JPS59104403A (en) * | 1982-12-07 | 1984-06-16 | Daido Steel Co Ltd | Preparation of metal powder |
JPS61143502A (en) * | 1984-12-14 | 1986-07-01 | Itsuo Onaka | Production of granular material of lead alloy |
Also Published As
Publication number | Publication date |
---|---|
JP2681801B2 (en) | 1997-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01129902A (en) | Method for processing parts from granular material and feed raw material | |
US4832741A (en) | Powder-metallurgical process for the production of a green pressed article of high strength and of low relative density from a heat-resistant aluminum alloy | |
GB1379261A (en) | Manufacture of metal articles | |
CN106001588A (en) | Ultrafine aluminum alloy powder and production method thereof | |
FI83935C (en) | Ways to process and produce materials | |
US4894086A (en) | Method of producing dispersion hardened metal alloys | |
CN106112000A (en) | A kind of 3D prints the preparation method of metal dust | |
CN107790729A (en) | A kind of method that high-performance aluminium alloy is prepared using Powder Injection Molding Technology | |
CN106747468A (en) | Drain tube material for aerosolization titanium or titanium alloy powder and preparation method thereof | |
CN107900365A (en) | One kind injection moulding WNiFe materials and preparation method thereof | |
JPS62120412A (en) | Production of dispersion hardened metal alloy | |
JP2004525264A (en) | Manufacture of structural members by metal injection molding | |
EP2564955B1 (en) | Process for production of electrode to be used in discharge surface treatment | |
CN106424743A (en) | Production method for high-strength and high-modulus additive manufacturing materials | |
JPH01319607A (en) | Production of metal or alloy powder | |
CN111922345B (en) | Comprehensive utilization method of powder by-product generated in spray forming process and application of product | |
CN115401216A (en) | Method for preparing high-nitrogen stainless steel by selective laser melting of alloy over-mixed powder | |
CN101537495B (en) | Reduced metal particle high speed micro-forging forming process | |
JPH01252738A (en) | Manufacture of porous metallic material consisting of iron or its alloy, nickel or its alloy, or titanium or its alloy | |
JPH04285102A (en) | Production of sintered body | |
RU2032496C1 (en) | Method of obtaining aluminides of transition metals | |
JPH03219035A (en) | Titanium base alloy for high strength structural member, manufacture of titanium base alloy for high strength structural member and manufacture of high strength structural member made of titanium base alloy | |
JPS63100109A (en) | Method for molding powder of al and mg series metal solidified by rapid cooling | |
CN116475411B (en) | High-strength high-toughness low-oxygen component and preparation method thereof | |
JP2000129307A (en) | Method for molding amorphous alloy powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |