JPH04285102A - Production of sintered body - Google Patents

Production of sintered body

Info

Publication number
JPH04285102A
JPH04285102A JP3049767A JP4976791A JPH04285102A JP H04285102 A JPH04285102 A JP H04285102A JP 3049767 A JP3049767 A JP 3049767A JP 4976791 A JP4976791 A JP 4976791A JP H04285102 A JPH04285102 A JP H04285102A
Authority
JP
Japan
Prior art keywords
binder
amount
powder
oxygen
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3049767A
Other languages
Japanese (ja)
Inventor
Yoshihiko Seyama
瀬山 喜彦
Tsutomu Iikawa
勤 飯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3049767A priority Critical patent/JPH04285102A/en
Priority to EP19920302189 priority patent/EP0503966A3/en
Publication of JPH04285102A publication Critical patent/JPH04285102A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • B22F3/1025Removal of binder or filler not by heating only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To efficiently produce the sintered bodies having complicated shapes with high precision. CONSTITUTION:The powders having different particle diameters and density distributions are appropriately mixed to prepare a raw powder having >=40% tap density, and the raw powder is kneaded with <=38vol.% of a binder. The kneaded material is injection-molded, and the molded body is calcined in an atmosphere contg. 1-30% oxygen, degreased and then sintered in a reducing atmosphere.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、焼結体の製造方法に関
する。さらに詳しくは、本発明は、粉末を射出成形によ
って成形し、この成形体を焼結することによって、複雑
な形状の焼結部品を製造する射出成形焼結法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a sintered body. More specifically, the present invention relates to an injection molding sintering method for producing sintered parts with complex shapes by molding powder by injection molding and sintering the molded body.

【0002】射出成形焼結法においては、原料として金
属またはその各種合金、ならびに窒化物、ほう化物など
を含む各種のセラミックス粉末をバインダとよばれる有
機物と混練して、いわゆる混練体を作製し、これらを射
出成形を用いて成形し、バインダを熱分解して発散させ
る脱脂を行った後に、焼結することによって、焼結部品
が製造される。この方法によれば、いかなる金属やその
各種合金ならびにセラミックスを用いても複雑な形状の
部品が得られるため、これまで機械加工や接合などに依
存していた部品の一体成形が可能となり、部品点数の大
幅な削減などが可能となり、各種OA機器を初めとする
多くの装置の高性能化やコストダウンに果たす役割は図
りしれないものがある。
In the injection molding sintering method, metals or their various alloys as raw materials, and various ceramic powders including nitrides, borides, etc. are kneaded with an organic substance called a binder to prepare a so-called kneaded body. A sintered part is manufactured by molding these using injection molding, degreasing the binder by thermally decomposing it to release it, and then sintering it. According to this method, parts with complex shapes can be obtained using any metal, its various alloys, or ceramics, making it possible to integrally mold parts that previously relied on machining or joining, and reducing the number of parts. It has become possible to significantly reduce the amount of energy used, and the role it plays in improving the performance and reducing costs of many devices, including various OA equipment, is immeasurable.

【0003】0003

【従来の技術】射出成形焼結法においては、例えば、特
開昭61−210101に記載されているように、原料
粉末として20μm以下の平均粒径を持つカーボニル粉
末かアトマイズ粉末が使用されている。また、射出成形
を行うためのバインダとしては、例えば特公昭61−4
8563 に記載されているように、数種の相溶性の有
機物を混合したものを使用し、その添加量は原料粉末に
対して40〜50容量%にも及ぶ。特に、前述の如き2
0μm以下の平均粒径の粉末を使用する場合には、バイ
ンダ量は45容量%以上であることが必要となる。
[Prior Art] In the injection molding sintering method, carbonyl powder or atomized powder having an average particle size of 20 μm or less is used as a raw material powder, as described in, for example, Japanese Patent Application Laid-Open No. 61-210101. . In addition, as a binder for injection molding, for example, Japanese Patent Publication No. 61-4
8563, a mixture of several types of compatible organic substances is used, and the amount added ranges from 40 to 50% by volume based on the raw material powder. In particular, the above-mentioned 2
When using powder with an average particle size of 0 μm or less, the amount of binder needs to be 45% by volume or more.

【0004】一方、射出成形後に成形体中のバインダを
焼成により除去する、いわゆる脱脂工程では、多量のバ
インダの分解とその分解物の飛散に伴って発生する亀裂
や膨れを防止するために、例えば特開昭58−1893
02に記載されているように、多くの時間をかけて窒素
またはアルゴンなどの非酸化雰囲気中で熱分解すること
が行われている。
On the other hand, in the so-called degreasing step in which the binder in the molded body is removed by firing after injection molding, in order to prevent cracks and blisters that occur due to the decomposition of a large amount of binder and the scattering of the decomposed products, for example, Japanese Patent Publication No. 58-1893
02, pyrolysis in a non-oxidizing atmosphere such as nitrogen or argon has been carried out for many hours.

【0005】[0005]

【発明が解決しようとする課題】かかる従来方法におい
ては、以下に示すような問題点があった。 1.原料粉末として、カーボニル粉末はFeまたはNi
に限られるため、材料の自由度が少ない欠点がある。一
方、アトマイズ粉末は材料の自由度は高いものの、ロッ
トごとに粒度分布や粉末の表面状態が異なり、かつ表面
の酸化状態が相違するために、入手ロットごとにバイン
ダの種類や量の調整を行う必要がある。また、粉末特性
が射出成形に適さない場合、原料粉末として使用できな
いという問題がある。さらに、アトマイズ法では20μ
m以下の平均粒径を持つ微小粉末の回収率が一チャージ
の10%以下と低いため、原料粉末のコストが非常に高
くなるという欠点がある。
[Problems to be Solved by the Invention] This conventional method has the following problems. 1. Carbonyl powder is Fe or Ni as raw material powder.
The disadvantage is that the degree of freedom in materials is limited. On the other hand, although atomized powder has a high degree of material freedom, the particle size distribution and surface condition of the powder differ from lot to lot, as well as the oxidation state of the surface, so the type and amount of binder must be adjusted for each lot obtained. There is a need. Furthermore, if the powder properties are not suitable for injection molding, there is a problem that it cannot be used as a raw material powder. Furthermore, in the atomization method, 20μ
Since the recovery rate of fine powder having an average particle diameter of m or less is as low as 10% or less of one charge, there is a drawback that the cost of the raw material powder becomes extremely high.

【0006】2.バインダにおいては、40〜50容量
%もの多量のバインダが使用されるため、複雑で大型の
部品や丈の高い部品を製造する際にはバインダの軟化に
伴って、成形体の形状が維持できなくなるなどの脱脂時
の不良が多く発生する。さらに、焼結収縮が大きくなる
ため、寸法精度が低下し、精密な部品をニアネットシェ
イプで作ることが困難であるという問題がある。
2. As a large amount of binder is used, as much as 40 to 50% by volume, when manufacturing complex, large or tall parts, the shape of the molded object cannot be maintained due to the softening of the binder. Many defects occur during degreasing. Furthermore, since sintering shrinkage increases, dimensional accuracy decreases, and there is a problem that it is difficult to produce precise parts with a near net shape.

【0007】3.脱脂においては、有機物であるバイン
ダを熱分解する際に非酸化雰囲気を使用することから、
分解反応が遅くかつ比較的高温となるために、長時間を
要し、量産性が低下してしまうという欠点がある。さら
に、非酸化雰囲気下の脱脂では、時間を短縮しようとし
ても、脱脂時の変形が大きくなり、亀裂や膨れも発生し
易くなるという問題がある。
3. In degreasing, a non-oxidizing atmosphere is used to thermally decompose the organic binder.
Since the decomposition reaction is slow and the temperature is relatively high, it takes a long time and has the disadvantage of reducing mass productivity. Furthermore, in degreasing in a non-oxidizing atmosphere, even if an attempt is made to shorten the time, there is a problem in that degreasing increases deformation and cracks and blisters are more likely to occur.

【0008】[0008]

【課題を解決するための手段】本発明によれば、上記課
題を解決するため、平均粒径および粒度分布の異なる粉
末を適宜混合して40%以上のタップ密度を有する原料
粉末を調製し、これを38容量%以下の量のバインダと
混練して射出成形し、得られた成形体を1〜30%の酸
素を含有する雰囲気中で焼成して脱脂し、次いで還元雰
囲気中で焼結することを特徴とする焼結体の製造方法が
提供される。
[Means for Solving the Problems] According to the present invention, in order to solve the above problems, a raw material powder having a tap density of 40% or more is prepared by appropriately mixing powders having different average particle sizes and particle size distributions, This is kneaded with a binder in an amount of 38% by volume or less and injection molded, and the obtained molded body is degreased by firing in an atmosphere containing 1 to 30% oxygen, and then sintered in a reducing atmosphere. A method for manufacturing a sintered body is provided.

【0009】[0009]

【作用】本発明の方法においては、先ず、平均粒径およ
び粒度分布の異なる粉末を適宜混合し、これを原料粉末
として使用する。また、混合粉末をタップ密度で管理す
るとともに、タップ密度を40%以上、望ましくは55
%以上とする。
[Operation] In the method of the present invention, first, powders having different average particle sizes and particle size distributions are mixed as appropriate, and this is used as a raw material powder. In addition, the mixed powder is controlled by tap density, and the tap density is 40% or more, preferably 55%.
% or more.

【0010】平均粒径および粒度分布の異なる粉末を適
宜混合することによって、粉末の平均粒径および粒度分
布を変化させることが可能である。これによって、入手
ロット間の粉末特性の差を解消するとともに、通常の粉
末の作製方法では入手不可能であり、流動性に優れた粒
度分布を有する粉末が得られる。また、このような混合
粉末をタップ密度で管理する理由は、タップ密度は、平
均粒径、粒度分布、粒子形状、表面状態といった粉末特
性によって変化するため、粉末特性の総合的な値として
考えることが可能であることによる。この際、タップ密
度が40%以上であれば射出成形が可能であり、55%
以上であれば必要とするバインダの量を大幅に低減する
ことが可能となる。
It is possible to change the average particle size and particle size distribution of the powder by suitably mixing powders with different average particle sizes and particle size distributions. This eliminates differences in powder properties between obtained lots, and provides a powder that is not obtainable using normal powder production methods and has a particle size distribution with excellent fluidity. In addition, the reason why such mixed powders are managed by tapped density is that tap density changes depending on powder properties such as average particle size, particle size distribution, particle shape, and surface condition, so it should be considered as a comprehensive value of powder properties. This is because it is possible. In this case, injection molding is possible if the tap density is 40% or more, and 55%
If this is the case, the amount of binder required can be significantly reduced.

【0011】次に、この原料粉末を原料粉末に対して3
8容量%以下の量のバインダと混練して射出成形する。 この場合、2種以上のバインダを用い、このうち少なく
とも1種は他のバインダと相溶性がないかまたは軟化温
度が異なるものとするのが好ましい。また、好ましくは
、原料粉末とこれらのバインダを混練する際、混練を少
なくとも2回以上行う。1回目の混練で軟化温度の最も
高いバインダを粉末の周囲にコーティングし、2回目以
降の混練を粉末の周囲のコーティング層が破壊されない
温度および圧力で行うことにより、射出成形時の温度お
よび圧力のために粉末同士が接触した際に前記コーティ
ング層が滑り層として働き、粉末同士の凝集を防止し、
高い流動性を確保できるためである。なお、この方法に
よれば、混練体は射出成形が可能な流動性を有していれ
ばよいから、バインダの使用量を原料粉末の38容量%
以下と大きく低減することも可能となり、得られる焼結
体の寸法精度を大幅に向上することが可能となる。
[0011] Next, this raw material powder is
The mixture is kneaded with a binder in an amount of 8% by volume or less and then injection molded. In this case, it is preferable to use two or more types of binders, at least one of which is incompatible with the other binders or has a different softening temperature. Moreover, preferably, when kneading the raw material powder and these binders, kneading is performed at least twice or more. By coating the powder with the binder with the highest softening temperature during the first kneading, and performing the second and subsequent kneading at a temperature and pressure that does not destroy the coating layer around the powder, the temperature and pressure during injection molding can be reduced. Therefore, when the powders come into contact with each other, the coating layer acts as a sliding layer to prevent the powders from agglomerating,
This is because high liquidity can be secured. According to this method, the kneaded body only needs to have fluidity that allows injection molding, so the amount of binder used is 38% by volume of the raw material powder.
It becomes possible to greatly reduce the amount of heat to below, and it becomes possible to significantly improve the dimensional accuracy of the obtained sintered body.

【0012】得られた成形体を、次いで、1〜30%の
酸素を含有する雰囲気中で焼成して脱脂する。酸素が脱
脂雰囲気中に存在すると、有機物であるバインダの主鎖
の切断による分解反応がラジカルの発生に伴って、連鎖
的に加速される。このため、バインダの分解開始温度が
低くなり、かつ終了温度も非酸化雰囲気を用いる場合に
比較して約 100℃も低くなり、脱脂温度を低く抑え
ることができ、かつ、バインダの分解が促進される。一
方、非酸化雰囲気下でのバインダの急速な分解は、脱脂
体の亀裂や膨れといった不良の発生原因となるが、酸素
が存在すると、金属粒子表面に形成される酸化膜が強固
に粉末同士を結び付けるため、上記の脱脂不良が抑えら
れ、かつ、この酸化膜によって脱脂体のハンドリング性
も大幅に向上する。従って、これによって、多くの時間
を要していた脱脂工程の時間短縮が可能となる。
The obtained molded body is then degreased by firing in an atmosphere containing 1 to 30% oxygen. When oxygen is present in the degreasing atmosphere, the decomposition reaction due to the cutting of the main chain of the organic binder is accelerated in a chain manner as radicals are generated. Therefore, the decomposition start temperature of the binder is lower, and the end temperature is also approximately 100°C lower than when a non-oxidizing atmosphere is used, making it possible to keep the degreasing temperature low and promoting the decomposition of the binder. Ru. On the other hand, rapid decomposition of the binder in a non-oxidizing atmosphere causes defects such as cracks and blisters in the degreased body, but in the presence of oxygen, the oxide film formed on the surface of the metal particles firmly binds the powders together. Because of this bond, the above-mentioned defective degreasing is suppressed, and the oxide film also greatly improves the handling properties of the degreased body. Therefore, this makes it possible to shorten the time required for the degreasing step, which previously took a lot of time.

【0013】ここで、酸素量が1%以下では、酸素量が
少なすぎるために、上記のような酸素の存在による効果
が発現できない。また、酸素量が30%以上では、原料
粉末の酸化が進みすぎるために、次の還元雰囲気で行う
焼結工程で十分に還元できず、製品の特性の低下を招く
こと、およびバインダが分解する反応があまりにも急激
となるために、大型で複雑形状の部品において脱脂不良
となる亀裂や膨れが発生するという問題がある。
[0013] Here, if the amount of oxygen is 1% or less, the effect due to the presence of oxygen as described above cannot be exhibited because the amount of oxygen is too small. In addition, if the oxygen content is 30% or more, the oxidation of the raw material powder will progress too much, and it will not be possible to reduce it sufficiently in the next sintering process in a reducing atmosphere, resulting in a decrease in product properties and decomposition of the binder. Because the reaction is too rapid, there is a problem in that cracks and blisters occur, which can lead to poor degreasing in large, complex-shaped parts.

【0014】本発明の方法は、例えば、次のように実施
することができる。平均粒径がそれぞれ8μm、20μ
m、47μmである3種の粉末(A〜C)を15:70
:15で混合して、粉末Dを得る。あるいは、粉末A(
平均粒径8μm)の代わりに粉末E(平均粒径10μm
)を用い、粉末EおよびCをそれぞれ20:67:13
で混合することにより、粉末Dと同じ粒度分布の粉末が
得られる。同様に、粉末BおよびCを平均粒径の異なる
他の粉末と置き換え、混合比を変えることにより、粉末
Dと同じ粒度分布の粉末を得ることができる。
The method of the present invention can be carried out, for example, as follows. Average particle size is 8μm and 20μm respectively
m, 47 μm three types of powder (A to C) at 15:70
:15 to obtain powder D. Alternatively, powder A (
Powder E (average particle size: 10 μm) instead of powder E (average particle size: 8 μm)
) and powder E and C at 20:67:13 respectively.
A powder having the same particle size distribution as Powder D can be obtained by mixing with Powder D. Similarly, a powder with the same particle size distribution as Powder D can be obtained by replacing Powders B and C with other powders having different average particle sizes and changing the mixing ratio.

【0015】このように、混合に用いる粉末の平均粒径
や粒度分布が変化しても、混合比を変化させることによ
り、混合に用いる粉末の平均粒径や粒度分布が変化する
前の混合粉末の粒度分布を再現することが可能である。 このことは、入手粉末のロット間格差の解消が可能であ
ることを示している。また、原料粉末およびその混合比
を適当に変化させることにより、通常のアトマイズでは
作製不可能な粒度分布を有する粉末も作製可能である。
In this way, even if the average particle size and particle size distribution of the powders used for mixing change, by changing the mixing ratio, the mixed powder before the average particle size and particle size distribution of the powders used for mixing change. It is possible to reproduce the particle size distribution of This indicates that it is possible to eliminate differences between lots of available powder. Furthermore, by appropriately changing the raw material powder and its mixing ratio, it is possible to produce powder having a particle size distribution that cannot be produced by normal atomization.

【0016】上記のようにして得られた粉末を、ポリメ
チルメタクリレート(PMMA)およびワックスを主成
分とするバインダとともに混練し、射出成形する。射出
成形に必要なバインダ量は、タップ密度が大きいほど射
出成形に必要なバインダ量は少なくなり、タップ密度が
40%以上では、一般の射出成形焼結法で用いられるバ
インダ量よりも少ない量で射出成形が可能である。
The powder obtained as described above is kneaded with a binder whose main components are polymethyl methacrylate (PMMA) and wax, and then injection molded. As for the amount of binder required for injection molding, the larger the tap density, the smaller the amount of binder required for injection molding, and when the tap density is 40% or more, the amount of binder required for injection molding is smaller than the amount of binder used in general injection molding sintering method. Injection molding is possible.

【0017】上記において、ワックスとPMMAは相溶
性がなく、軟化温度もワックスが80℃、PMMAが 
140℃と異なる。粉末とPMMAを 180℃で混練
した後、温度を 100℃に下げてワックスを投入し、
再混練する。 得られた混練体を射出成形する。
[0017] In the above, wax and PMMA are not compatible, and the softening temperature is 80°C for wax and 80°C for PMMA.
It is different from 140℃. After kneading the powder and PMMA at 180℃, the temperature was lowered to 100℃ and wax was added.
Knead again. The obtained kneaded body is injection molded.

【0018】射出成形体を、次いで、1〜30%の酸素
を含む窒素雰囲気中で加熱処理して脱脂する。さらに、
これを、水素雰囲気中、1400℃で1時間焼結する。
The injection molded article is then degreased by heat treatment in a nitrogen atmosphere containing 1 to 30% oxygen. moreover,
This is sintered at 1400° C. for 1 hour in a hydrogen atmosphere.

【0019】[0019]

【実施例】以下、実施例により本発明をさらに説明する
[Examples] The present invention will be further explained below with reference to Examples.

【0020】実施例1 平均粒径がそれぞれ8μm、20μm、47μmである
3種のFe−6.5%Si合金粉末を、2:6:2の割
合で混合し、タップ密度が55%の混合粉末を作製した
。 この粉末とポリメチルメタアクリレートを主成分とする
バインダ(バインダA)と混練し、粉末の周囲にバイン
ダAのコーティング層を形成した。さらに、この混練体
とポリエチレンを主成分とするバインダ(バインダB)
を混練した。バインダの総量は35容量%であった。こ
の混練体を射出成形し、図1に示す如き形状の成形体を
作製した。
Example 1 Three types of Fe-6.5%Si alloy powders with average particle diameters of 8 μm, 20 μm, and 47 μm, respectively, were mixed at a ratio of 2:6:2, and the tap density was 55%. A powder was prepared. This powder was kneaded with a binder (binder A) containing polymethyl methacrylate as a main component to form a coating layer of binder A around the powder. Furthermore, a binder (binder B) mainly composed of this kneaded body and polyethylene
was kneaded. The total amount of binder was 35% by volume. This kneaded body was injection molded to produce a molded body having a shape as shown in FIG.

【0021】この成形体を、以下のように条件を変化さ
せて脱脂した。 雰囲気    :窒素(0〜 100%酸素を混入)最
高温度  : 300〜 450℃ 総脱脂時間:8〜48時間 なお、加熱および冷却は図2に示すカーブにより行った
[0021] This molded body was degreased under the following conditions. Atmosphere: Nitrogen (mixed with 0 to 100% oxygen) Maximum temperature: 300 to 450°C Total degreasing time: 8 to 48 hours Heating and cooling were performed according to the curve shown in FIG. 2.

【0022】次に、これらの脱脂体を水素雰囲気中14
00℃で1時間焼結した。脱脂雰囲気中の酸素量を0〜
 100%と変化させた場合の、脱脂体および焼結体中
の酸素量を図3に示す。脱脂雰囲気中の酸素量が1%以
上の場合の脱脂体中の酸素量は、脱脂雰囲気中の酸素量
が0%の場合の酸素量に比べて大きく、脱脂体が酸化し
ていることを示している。ところが、焼結体中の酸素量
は、脱脂雰囲気中の酸素量0〜30%の範囲においては
ほとんど等しい。これらのことから、脱脂雰囲気中に酸
素が存在すると脱脂体は酸化されるが、脱脂雰囲気中の
酸素量が30%以下であれば、水素雰囲気(還元雰囲気
)中の焼結により還元可能であることが認められる。
Next, these degreased bodies were heated in a hydrogen atmosphere for 14 hours.
Sintering was carried out at 00°C for 1 hour. Reduce the amount of oxygen in the degreasing atmosphere to 0~
FIG. 3 shows the amount of oxygen in the degreased body and the sintered body when it is changed to 100%. The amount of oxygen in the degreased body when the amount of oxygen in the degreased atmosphere is 1% or more is greater than the amount of oxygen when the amount of oxygen in the degreased atmosphere is 0%, indicating that the degreased body is oxidized. ing. However, the amount of oxygen in the sintered body is almost the same in the range of 0 to 30% oxygen in the degreasing atmosphere. From these facts, if oxygen exists in the degreasing atmosphere, the degreased body will be oxidized, but if the amount of oxygen in the degreasing atmosphere is 30% or less, it can be reduced by sintering in a hydrogen atmosphere (reducing atmosphere). It is recognized that

【0023】脱脂雰囲気中の酸素量が0%および20%
の時の最高温度と脱脂体のバインダ残量の関係を図4に
示す。バインダ残量は、脱脂体をさらに窒素中で 60
0℃まで加熱し、バインダ成分をすべて飛散させた時の
重量減少から算出した。脱脂雰囲気中の酸素量が0%の
場合は、最高温度 440℃でバインダ残量が10%と
なり、焼結工程に移行できる。なお、一般に、バインダ
残量が0%になると脱脂体の取扱いが困難になるので、
射出成形焼結法においては脱脂体にバインダを5〜10
%残留させる。また、脱脂体のバインダ残量が10%を
超えると、焼結時にバインダの突発的分解によって不良
が発生し易くなるので、バインダの残量は10%以下に
抑える必要がある。一方、脱脂雰囲気に酸素を混入する
と、最高温度が 340℃でバインダ残量が10%とな
り、脱脂時の最高温度を低くすることができる。なお、
脱脂雰囲気中の酸素量が1〜 100%の範囲で酸素量
が20%の場合と同様の効果が得られた。
[0023] The amount of oxygen in the degreasing atmosphere is 0% and 20%.
FIG. 4 shows the relationship between the maximum temperature and the amount of binder remaining in the degreased body. To reduce the amount of binder remaining, remove the degreased body in nitrogen for 60 minutes.
It was calculated from the weight loss when heated to 0° C. and all the binder components were scattered. When the amount of oxygen in the degreasing atmosphere is 0%, the remaining amount of binder becomes 10% at the maximum temperature of 440° C., and the process can proceed to the sintering process. Generally, when the remaining amount of binder reaches 0%, it becomes difficult to handle the degreased body.
In the injection molding sintering method, 5-10% of the binder is added to the degreased body.
% remain. Furthermore, if the residual amount of binder in the degreased body exceeds 10%, defects are likely to occur due to sudden decomposition of the binder during sintering, so it is necessary to suppress the residual amount of binder to 10% or less. On the other hand, if oxygen is mixed into the degreasing atmosphere, the maximum temperature will be 340° C. and the remaining amount of binder will be 10%, making it possible to lower the maximum temperature during degreasing. In addition,
When the oxygen content in the degreasing atmosphere ranged from 1 to 100%, the same effect as when the oxygen content was 20% was obtained.

【0024】脱脂雰囲気中の酸素量と、不良のない脱脂
体が得られる最短の総脱脂時間との関係を図5に示す。 脱脂雰囲気中の酸素量が0の場合、総脱脂時間が24時
間より少ないと、どのような温度プロファイルを用いて
も不良のない脱脂体は得られなかった。脱脂雰囲気中の
酸素量が1〜30%の場合は、総脱脂時間が12時間以
上で不良のない脱脂体が得られた。脱脂雰囲気中の酸素
量が50%の場合は、総脱脂時間が24時間以上で不良
のない脱脂体が得られた。脱脂雰囲気中の酸素量が 1
00%の場合は、総脱脂時間を48時間としても不良の
ない脱脂体を得ることができなかった。これらのことか
ら、脱脂雰囲気中に酸素を1〜30%混入することによ
り、脱脂時間の短縮が可能となることがわかる。
FIG. 5 shows the relationship between the amount of oxygen in the degreasing atmosphere and the shortest total degreasing time to obtain a defect-free degreased body. When the amount of oxygen in the degreasing atmosphere was 0 and the total degreasing time was less than 24 hours, no defect-free degreased body could be obtained no matter what temperature profile was used. When the amount of oxygen in the degreasing atmosphere was 1 to 30%, a degreased body with no defects was obtained with a total degreasing time of 12 hours or more. When the amount of oxygen in the degreasing atmosphere was 50%, a degreased body with no defects was obtained with a total degreasing time of 24 hours or more. The amount of oxygen in the degreasing atmosphere is 1
In the case of 00%, even if the total degreasing time was 48 hours, a defect-free degreased body could not be obtained. These results show that the degreasing time can be shortened by mixing 1 to 30% oxygen into the degreasing atmosphere.

【0025】脱脂体のハンドリング性を、脱脂体を木製
台に落とした時に、脱脂体が欠けたり割れたりしない高
さによって評価した。脱脂雰囲気中の酸素量とこの高さ
との関係を図6に示す。なお、脱脂体のバインダ残量は
10%である。脱脂雰囲気中の酸素量が0%の場合は、
木製台の上に落とす高さが1cm以上になると、脱脂体
に欠けや割れが発生した。脱脂雰囲気中の酸素量が1%
以上の場合は、10cm以上の高さから落としても、脱
脂体に欠けや割れが発生しなかった。これは、脱脂体中
の粉末の酸化被膜が、粉末を強固に結び付けているため
と考えられる。なお、脱脂体からバインダをすべて飛散
させてしまった状態では、脱脂雰囲気中の酸素量が0%
の場合は触れただけで脱脂体が崩壊したが、脱脂雰囲気
中の酸素量が1%以上の場合にはバインダ残量が10%
の場合と同様の結果を示した。
The handleability of the degreased body was evaluated based on the height at which the degreased body would not chip or crack when dropped onto a wooden stand. The relationship between the amount of oxygen in the degreasing atmosphere and this height is shown in FIG. Note that the binder remaining amount in the degreased body was 10%. When the amount of oxygen in the degreasing atmosphere is 0%,
If the height of the drop onto the wooden stand was 1 cm or more, the degreased body would chip or crack. The amount of oxygen in the degreasing atmosphere is 1%.
In the above case, no chipping or cracking occurred in the degreased body even if it was dropped from a height of 10 cm or more. This is considered to be because the oxide film of the powder in the degreased body firmly binds the powder. In addition, when all the binder is scattered from the degreased body, the amount of oxygen in the degreased atmosphere is 0%.
In this case, the degreased body disintegrated just by touching it, but when the amount of oxygen in the degreasing atmosphere was 1% or more, the remaining amount of binder was 10%.
The results were similar to those in the case of .

【0026】実施例2 実施例1のFe−6.5%Si合金粉末に代えてFe−
50%Co合金粉末を用いたことを除き、実施例1を繰
り返し、実施例1とほぼ同様の結果を得た。
Example 2 Fe-6.5%Si alloy powder in Example 1 was replaced with Fe-6.5%Si alloy powder.
Example 1 was repeated, with almost the same results as Example 1, except that 50% Co alloy powder was used.

【0027】上記の実施例は、水素中で還元可能な金属
であれば、ほとんどの材料に適用できると考えられる。 例えば、ハイスや超硬合金等の工具材料、ステンレス等
の機構部品材料、Fe−50%Co合金、Fe−Si合
金、純鉄等の磁気部品材料に適用できる。
The above embodiment is considered to be applicable to most materials as long as they are metals that can be reduced in hydrogen. For example, it can be applied to tool materials such as high speed steel and cemented carbide, mechanical component materials such as stainless steel, and magnetic component materials such as Fe-50%Co alloy, Fe-Si alloy, and pure iron.

【0028】[0028]

【発明の効果】本発明の方法により、脱脂時間の短縮が
可能となり、コスト低減および生産量の増加が期待でき
る。また、脱脂体のハンドリング性の向上により、今ま
で壊れやすいために困難であった輸送等を行うことがで
き、歩留まりの向上が可能である。さらに、脱脂雰囲気
に大気を使用できるため、ランニングコストも低減でき
る。
[Effects of the Invention] The method of the present invention makes it possible to shorten the degreasing time, and is expected to reduce costs and increase production. Furthermore, by improving the handling properties of the degreased body, it is possible to carry out transportation, which has been difficult until now due to the degreased body, and it is possible to improve the yield. Furthermore, since the atmosphere can be used as the degreasing atmosphere, running costs can also be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例で作製した成形体の形状および寸法を示
す図である。aは平面図、bはA−A断面図であり、数
字の単位はmmである。
FIG. 1 is a diagram showing the shape and dimensions of a molded article produced in an example. a is a plan view, b is a sectional view taken along the line A-A, and the units of numbers are mm.

【図2】実施例の脱脂において用いた加熱および冷却の
カーブを示すグラフである。
FIG. 2 is a graph showing heating and cooling curves used in degreasing in Examples.

【図3】脱脂雰囲気中の酸素量を0〜 100%と変化
させた場合の、脱脂体および焼結体中の酸素量を示すグ
ラフである。
FIG. 3 is a graph showing the amount of oxygen in the degreased body and the sintered body when the amount of oxygen in the degreased atmosphere is varied from 0 to 100%.

【図4】脱脂雰囲気中の酸素量が0%および20%の時
の最高温度と脱脂体のバインダ残量の関係を示すグラフ
である。
FIG. 4 is a graph showing the relationship between the maximum temperature and the amount of binder remaining in the degreased body when the oxygen content in the degreased atmosphere is 0% and 20%.

【図5】脱脂雰囲気中の酸素量と、不良のない脱脂体が
得られる最短の総脱脂時間との関係を示すグラフである
FIG. 5 is a graph showing the relationship between the amount of oxygen in the degreasing atmosphere and the shortest total degreasing time to obtain a defect-free degreased body.

【図6】脱脂体のハンドリング性を、脱脂体を木製台に
落とした時に、脱脂体が欠けたり割れたりしない高さに
よって評価したときの、脱脂雰囲気中の酸素量とこの高
さとの関係を示すグラフである。
[Figure 6] The relationship between the amount of oxygen in the degreasing atmosphere and this height when the handleability of the degreased body was evaluated by the height at which the degreased body would not chip or crack when dropped onto a wooden stand. This is a graph showing.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  平均粒径および粒度分布の異なる粉末
を適宜混合して40%以上のタップ密度を有する原料粉
末を調製し、これを38容量%以下の量のバインダと混
練して射出成形し、得られた成形体を1〜30%の酸素
を含有する雰囲気中で焼成して脱脂し、次いで還元雰囲
気中で焼結することを特徴とする焼結体の製造方法。
Claim 1: A raw material powder having a tap density of 40% or more is prepared by suitably mixing powders with different average particle sizes and particle size distributions, and this is kneaded with a binder in an amount of 38% by volume or less and injection molded. A method for producing a sintered body, which comprises firing the obtained molded body in an atmosphere containing 1 to 30% oxygen to degrease it, and then sintering it in a reducing atmosphere.
JP3049767A 1991-03-14 1991-03-14 Production of sintered body Pending JPH04285102A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3049767A JPH04285102A (en) 1991-03-14 1991-03-14 Production of sintered body
EP19920302189 EP0503966A3 (en) 1991-03-14 1992-03-13 Process for production of sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3049767A JPH04285102A (en) 1991-03-14 1991-03-14 Production of sintered body

Publications (1)

Publication Number Publication Date
JPH04285102A true JPH04285102A (en) 1992-10-09

Family

ID=12840327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3049767A Pending JPH04285102A (en) 1991-03-14 1991-03-14 Production of sintered body

Country Status (2)

Country Link
EP (1) EP0503966A3 (en)
JP (1) JPH04285102A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027105A (en) * 2001-04-25 2003-01-29 Extrude Hone Corp Binder composition
JP2003193108A (en) * 2002-12-09 2003-07-09 Seiko Epson Corp Method for manufacturing metallic sintered compact

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985208A (en) * 1998-08-27 1999-11-16 Alliedsignal Inc. Process for debinding and sintering metal injection molded parts made with an aqueous binder
US6517773B1 (en) * 1999-09-23 2003-02-11 Innovative Technology Licensing, Llc Direct metal fabrication of parts with surface features only
WO2010129281A2 (en) 2009-04-27 2010-11-11 Mohawk Carpet Corporation Flooring systems and methods of making and using same
CN112453408A (en) * 2020-11-06 2021-03-09 东莞华晶粉末冶金有限公司 Preparation method of stainless steel high-density electronic product shell
CN115178733B (en) * 2022-05-12 2024-03-22 南京晨光集团有限责任公司 Large-particle-size powder evaluation and recycling method for high-power selective laser melting

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223104A (en) * 1987-03-12 1988-09-16 Sekometsukusu Kk Production of sintered hard alloy product
JPH01319601A (en) * 1988-06-20 1989-12-25 Tokin Corp Production of sintering metal
JPH02141503A (en) * 1988-11-18 1990-05-30 Seiko Instr Inc Method for removing binder for injection molding

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816002A (en) * 1981-07-21 1983-01-29 Namiki Precision Jewel Co Ltd Production of resin bound permament magnet
GB2198433B (en) * 1986-12-05 1990-11-07 Romain Louis Billiet Improvements in or relating to the removal of organic binding agents from articles moulded from sinterable materials
JPH0641601B2 (en) * 1988-11-24 1994-06-01 三洋化成工業株式会社 Molding composition
JPH02294403A (en) * 1989-05-09 1990-12-05 Kawasaki Steel Corp Metal powder for injection molding having excellent injection moldability and sintering ability and manufacture thereof and compound for metal powder injection molding
JPH03104801A (en) * 1989-09-20 1991-05-01 Fujitsu Ltd Injection compacting method
JPH0692603B2 (en) * 1989-10-17 1994-11-16 住友金属鉱山株式会社 METAL POWDER FOR PRODUCTION OF METAL SINTERED BODY AND METHOD FOR PRODUCING METAL SINTERED BODY PRODUCT USING THE SAME

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223104A (en) * 1987-03-12 1988-09-16 Sekometsukusu Kk Production of sintered hard alloy product
JPH01319601A (en) * 1988-06-20 1989-12-25 Tokin Corp Production of sintering metal
JPH02141503A (en) * 1988-11-18 1990-05-30 Seiko Instr Inc Method for removing binder for injection molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027105A (en) * 2001-04-25 2003-01-29 Extrude Hone Corp Binder composition
JP2003193108A (en) * 2002-12-09 2003-07-09 Seiko Epson Corp Method for manufacturing metallic sintered compact

Also Published As

Publication number Publication date
EP0503966A2 (en) 1992-09-16
EP0503966A3 (en) 1993-04-14

Similar Documents

Publication Publication Date Title
JP6162311B1 (en) Manufacturing method of powder metallurgy sintered body by additive manufacturing method
CN105855534B (en) Metal powder for powder metallurgy, composite, granulated powder, and sintered body
JP4748915B2 (en) Method for manufacturing aluminum object and aluminum alloy object
JPH06212205A (en) Production of amorphous metallic product and molded material for production of amorphous metallic product
JPH04285102A (en) Production of sintered body
JP2001271101A (en) Method for producing sintered body and sintered body
JPH0254733A (en) Manufacture of ti sintered material
JP2004525264A (en) Manufacture of structural members by metal injection molding
JP2743090B2 (en) How to control the carbon content of metal injection products
JPS59229403A (en) Production of sintered metallic member and binder for injection molding
JPH02107703A (en) Composition for injection molding
JPH11315304A (en) Manufacture of sintered body
JPS63223104A (en) Production of sintered hard alloy product
KR101577328B1 (en) Micro-sized control parts and manufacturing method thereof
JPH04504736A (en) Manufacturing method of electrode material for discharge alloying
CN114086015B (en) Copper-tungsten alloy part and manufacturing method thereof
JPH07242916A (en) Production of sintered body
JPH11131103A (en) Composition for powder injection molding and production of powder injection molded goods
JP2002289418A (en) High-density sintered body granulating powder and sintered body using the same
JPH05171334A (en) Hard sintered part and its manufacture
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JPH02200703A (en) Manufacture of metal powder sintered body
JPH0820848A (en) Metallic sintered body high in mirror face property and its production
JPH02145704A (en) Composition for compacting and manufacture of sintered body using it
JPH0734154A (en) Manufacure of sintered hard alloy by injection molding

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960806