JPS59104178A - Semiconductor element - Google Patents

Semiconductor element

Info

Publication number
JPS59104178A
JPS59104178A JP57213302A JP21330282A JPS59104178A JP S59104178 A JPS59104178 A JP S59104178A JP 57213302 A JP57213302 A JP 57213302A JP 21330282 A JP21330282 A JP 21330282A JP S59104178 A JPS59104178 A JP S59104178A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
semiconductor
layers
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57213302A
Other languages
Japanese (ja)
Other versions
JPH0351115B2 (en
Inventor
Kazuo Sakai
堺 和夫
Yuichi Matsushima
松島 裕一
Shigeyuki Akiba
重幸 秋葉
Katsuyuki Uko
宇高 勝之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP57213302A priority Critical patent/JPS59104178A/en
Priority to GB08332597A priority patent/GB2132016B/en
Publication of JPS59104178A publication Critical patent/JPS59104178A/en
Priority to US06/806,746 priority patent/US4682196A/en
Publication of JPH0351115B2 publication Critical patent/JPH0351115B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To perform the reduction in the reverse current by increasing the potential barrier for many carriers. CONSTITUTION:Semiconductor layers 2, 3, 4, 5, 6 having carrier density of 10<17>cm<-3> or higher, 10<16>cm<-3> or less, 10<17>cm<-3> or higher, 10<16>cm<-3> or lower, 10<17>cm<-3> or higher are sequentially laminated. However, the thickness of the layer 4 is 300Angstrom or lower, and the conductive type is different from those of the layers 2, 5. Then, the forbidden band width of the layer 4 is increased larger than those of the layers 3, 5. For example, the layer 4 is formed of Ga0.7Al0.3As and the other layer is formed of GaAs. Then, the potential barrier increases in the amount of the difference Ec of the conduction band energy between the GaAs and the Ga0.7Al0.3As. Accordingly, since the potential barrier is increased, the reverse current becomes small.

Description

【発明の詳細な説明】 本発明はn−1−p−i−n構造(p−j−n−i−p
構造に対しても、同様に適用可能であるが、簡単のため
n−1−p−i−n構造で説明する)に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an n-1-p-i-n structure (p-j-n-i-p
Although the present invention is similarly applicable to the structure, it will be explained using the n-1-p-i-n structure for simplicity.

n−1−p−i−n素子は、n−1−n構造のi層中に
100 X前後の薄いp層を形成したもので、多数キャ
リアが主に伝導に関与する素子であるために高速素子と
して期待されており、又最近ではこの構造を利用しだ3
端子素子も提案されている。
The n-1-p-i-n element has a thin p layer of around 100X formed in the i layer of the n-1-n structure, and because majority carriers are mainly involved in conduction, It is expected to be a high-speed device, and recently, this structure has been used3
Terminal elements have also been proposed.

更に、この素子は過剰雑音のない高感度光検出素子とし
て使用することも可能であり、その応用範囲は広い。
Furthermore, this element can also be used as a highly sensitive photodetector element without excessive noise, and its range of applications is wide.

はじめに、n−i −p−i−n素子の動作を説明する
。第1図はGa Asを用いた従来のn −i −p 
−1−n素子の熱平衡状態及び電圧Vを印加した時のバ
ンド構造を示したものであり、φ80は2つのn層の間
のポテンンヤル障壁の高さを表わす。電圧Vを印加した
時に流ねる電流の密度Jは熱電子放出の式によってあら
れされ、 となる。ここに、A”は実効的なリチャードソン定数、
Tは絶対温度、kはボルツマン定数、qは電子素置であ
り、α1.α2はdl 、 dzを2つのi層の厚さと
した時、α1−dl/(dl+d2)、α2 = dz
 / (dl+d2)で与えられる。d+’Fd2とす
れば、電圧−電流特性に非対称性が現われる。このため
、通常のpn接合ダイオードのように、順方向、逆方向
といった呼び方ができない。
First, the operation of the n-i-p-i-n element will be explained. Figure 1 shows the conventional n-i-p using GaAs.
It shows the thermal equilibrium state of the -1-n element and the band structure when voltage V is applied, and φ80 represents the height of the potential barrier between the two n layers. The density J of the current flowing when voltage V is applied is expressed by the thermionic emission formula, and is expressed as follows. Here, A” is the effective Richardson constant,
T is the absolute temperature, k is the Boltzmann constant, q is the electron configuration, and α1. When α2 is dl and dz is the thickness of the two i layers, α1-dl/(dl+d2), α2 = dz
/ (dl+d2). If d+'Fd2, asymmetry appears in the voltage-current characteristics. For this reason, it cannot be called forward direction or reverse direction like a normal pn junction diode.

光照射が無い場合、この素子にIF孔は注入されないの
で、素子の応答速度は極めて速く、超高速素子として期
待されている。一方、光照射を行なった場合、光励起さ
れた少数キャリアである正孔はp層の部分に集する。こ
れは、ボテン/ヤル障壁φBOの値を小さくするように
働くため、素子を流れる電子電流は増加する。即ち、光
照射により光電流が流れるわけであるが、この時の感度
については約70OA/W、利得にして約1000倍も
の値も報告されている。一方、応答速度についても50
〜500 psの値が報告されており、高利得高速受光
素子として大いに期待される。
When there is no light irradiation, no IF holes are injected into this device, so the response speed of the device is extremely fast, and it is expected to be an ultra-high-speed device. On the other hand, when light irradiation is performed, holes, which are photo-excited minority carriers, collect in the p-layer. This acts to reduce the value of the Boten/Yal barrier φBO, so that the electron current flowing through the device increases. That is, a photocurrent flows due to light irradiation, and it has been reported that the sensitivity at this time is about 70 OA/W, and the gain is about 1000 times as high. On the other hand, the response speed is also 50
A value of ~500 ps has been reported, and it is highly anticipated as a high-gain, high-speed light-receiving device.

しかしながら、従来の構造では、例えばGa Asを用
いたn−1−p−i−n素子の場合、約0.6eV前後
の障壁高さのものが大部分であり、この為、逆方向バイ
アスでの電流値(或は受光素子として用いた時の暗電流
)が比較的大きい傾向にあった。
However, in the conventional structure, for example, in the case of an n-1-p-i-n element using GaAs, most of the barrier heights are around 0.6 eV, and therefore, the reverse bias The current value (or dark current when used as a light receiving element) tended to be relatively large.

ボテンンヤル障壁φBOはボアノン方程式を解くこ−3
−。
The Botenyal barrier φBO is obtained by solving the Boannon equation.
−.

とにより得られ で与えられる。ここで、Nいはp層でのアクセプタ濃度
、XAはp層の厚さ、ε8は誘電率である。φB。
is obtained by and given by. Here, N is the acceptor concentration in the p layer, XA is the thickness of the p layer, and ε8 is the dielectric constant. φB.

を犬とするには、■dl 、 dz (dl<dz )
の差を大きくしかつd、を大きくすること、■塊を大き
くすること、■XAを大きくするなどがあげられる。し
かし、dlを大きくすると正札の寿命時間が長くなり高
速応答に悪影響があること、塊をあ捷り大きくするのは
結晶成長上問題であること、又p層は障壁として働けば
よいわけで、XAを大きくすると高速応答性が失なわれ
ること、などの問題があった。
To make it a dog, ■dl, dz (dl<dz)
Examples include increasing the difference between and increasing d, (2) increasing the mass, and (2) increasing XA. However, if dl is increased, the lifetime of the genuine tag will be increased, which will have a negative effect on high-speed response. Also, it is a problem in terms of crystal growth to increase the size of lumps by twisting them, and the p-layer should just act as a barrier. There were problems such as a loss of high-speed response when XA was increased.

本発明ではこうした問題を引き起さずに、多数キャリア
に対するポテンンヤル障壁を大きくすることにより、逆
方向電流(暗電流)の低減を実現しようとするものであ
る。
The present invention aims to reduce reverse current (dark current) by increasing the potential barrier to majority carriers without causing such problems.

以下に実施例を用いて本発明の詳細な説明する。The present invention will be described in detail below using Examples.

〔実施例1〕 第2図は本発明によるメサ型n−1−p−i−n= 4
− 素子の断面図を示したものであり、1はn” −GaA
s基板、2はn −GaAs層(1=lQ” ts ”
 、厚さ約1pm)、3は1−GaAs層(p<1.0
” cm−3+厚さ約2μm)、4はp Ga□、7A
43As層(pThlQ”’ tyn a、厚さ= t
oo X )、5は1−GaAs層(p<1.0” c
m−3,厚さ約1oooX)、6はn−GaAs層(n
=1018cm−3゜厚さ約1μm)、7,8は電極で
ある。この素子の熱平衡状態におけるバンド構造を第3
図に示す。
[Example 1] Figure 2 shows a mesa type n-1-p-i-n=4 according to the present invention.
- shows a cross-sectional view of the element, 1 is n''-GaA
s substrate, 2 is an n-GaAs layer (1=lQ"ts"
, thickness approximately 1 pm), 3 is a 1-GaAs layer (p<1.0
” cm-3 + thickness approximately 2 μm), 4 is p Ga□, 7A
43As layer (pThlQ"' tyna, thickness = t
oo X ), 5 is a 1-GaAs layer (p<1.0" c
m-3, thickness approximately 1oooX), 6 is an n-GaAs layer (n
=1018 cm-3° thickness approximately 1 μm), and 7 and 8 are electrodes. The band structure of this element in the thermal equilibrium state is expressed as
As shown in the figure.

1層6から見たポテンシャル障壁の高さは、GaAsの
みでn−1−p−i−n構造を形成した場合に比べてほ
ぼGa AsとGao7Ato3Asとの間の伝導帯エ
ネルギー準位の差分ΔEcだけ大きくなる。禁制帯幅の
差ΔEgはこの場合〜0.4eVであり、ΔEc=0.
85ΔEgとすると、ΔEc :0.34 eVとなる
。他の条件が同じならば、電流密度は(1)式でφBO
をφBo十ΔEcとした値になるわけで、ΔEc = 
0.34 eVの時室温では約1O−6倍となり、大幅
な逆方向電流(暗電流)の低減が実現できる。
The height of the potential barrier seen from the first layer 6 is approximately equal to the difference ΔEc in the conduction band energy level between GaAs and Gao7Ato3As compared to the case where an n-1-p-i-n structure is formed only with GaAs. only becomes larger. The difference in forbidden band width ΔEg is in this case ~0.4 eV, and ΔEc=0.
If it is 85ΔEg, then ΔEc is 0.34 eV. If other conditions are the same, the current density is φBO in equation (1)
The value is φBo plus ΔEc, so ΔEc =
At 0.34 eV, it is approximately 10-6 times as high at room temperature, and a significant reduction in reverse current (dark current) can be achieved.

〔実施例2〕 実施例1では、p層以外は全て同一組成の半導体という
構成とした。この構造では電子による電流は減少するが
、正孔による電流にはほとんど影響を与えない。しかし
、受光素子として用いる時には電子暗電流と正孔暗電流
の比が利得に関係するため、正孔暗電流の減少も必要と
なる。実施例2では正孔による電流も低減する構造を示
す。第4図はこの実施例の半導体素子の断面図を示した
もので、この素子は波長09〜17μm帯の受光素子と
して設計されたものである。10はn層−InP基板、
11はn −InP層(nn=1018t ” 、厚さ
約2μm)、12はn−AIAso4Sbo6層(n=
1018tyn ” 、厚さ約100X)、13は] 
−InO,53caO,47As層(n<1015cm
−3゜厚さ約1000 X )、14はp AtAs6
.45bo6層(p=1018cm−3,厚さ約100
 X )、15はi −In0.53GaO,4゜As
層(n<1.015cm−3,厚さ約1000X)、1
6はn−InP層(n=1018cm ” 、厚さ約1
μm)、17 、18は電極である。ここでAlASo
4Sbo6の禁制帯幅は約]、9eVであり、InO,
53GaO,47” 、 InPのそれよりも大きい。
[Example 2] In Example 1, all semiconductors except the p layer were made of semiconductors having the same composition. In this structure, the current due to electrons is reduced, but the current due to holes is hardly affected. However, when used as a light-receiving element, the ratio of electron dark current to hole dark current is related to gain, so it is also necessary to reduce the hole dark current. Example 2 shows a structure in which the current due to holes is also reduced. FIG. 4 shows a cross-sectional view of the semiconductor device of this embodiment, which is designed as a light receiving device for a wavelength band of 09 to 17 μm. 10 is an n-layer InP substrate;
11 is an n-InP layer (nn=1018t'', thickness about 2 μm), 12 is an n-AIAso4Sbo6 layer (n=
1018tyn”, thickness approx. 100X), 13]
-InO, 53caO, 47As layer (n<1015cm
-3゜thickness approx. 1000×), 14 is p AtAs6
.. 45bo6 layers (p=1018cm-3, thickness approx. 100
X), 15 is i-In0.53GaO, 4°As
layer (n<1.015cm-3, thickness about 1000X), 1
6 is an n-InP layer (n=1018 cm", thickness approximately 1
μm), 17 and 18 are electrodes. Here, AlASo
The forbidden band width of 4Sbo6 is approximately ], 9 eV, and InO,
53GaO, 47'', which is larger than that of InP.

第5図に、この素子の熱平衡状態におけるバンド構造を
示す。p  AIAS 6.4 S b o、6層14
により、実施例1と同様にポテン7ヤル障壁が高くなり
、電子による電流は大幅に低減される。一方、n−A/
!、As層、45bo6層12を形成することにより、
n−InP層11で少数発生した正孔が拡散して、1I
nO,53Ga0.47 As層13に注入されるのを
防止し、よって正孔による暗電流を低減している。即ち
、2つのAtAso4Sbo6層をn−1−p−i−n
構造の中に形成することにより、電子:正孔両方による
暗電流を減少できる。更に、この構造に0.9〜1.7
μmの光を照射すると、光は2つの1層でのみ吸収され
、両側のn層ではほとんど吸収されないため、応答が高
速である。即ち、第4図のような構造により、低暗電流
で高速高利得の受光素子が実現できる。
FIG. 5 shows the band structure of this element in a thermal equilibrium state. p AIAS 6.4 S b o, 6 layers 14
As a result, as in Example 1, the potentiometer barrier becomes high, and the current due to electrons is significantly reduced. On the other hand, n-A/
! , As layer, and 45bo6 layer 12,
A small number of holes generated in the n-InP layer 11 diffuses and becomes 1I
This prevents nO, 53Ga0.47 from being injected into the As layer 13, thereby reducing dark current due to holes. That is, two AtAso4Sbo6 layers are n-1-p-i-n
By forming it in the structure, dark current due to both electrons and holes can be reduced. Furthermore, this structure has 0.9 to 1.7
When irradiated with μm light, the light is absorbed only by one of the two layers, and is hardly absorbed by the n-layers on both sides, so the response is fast. That is, with the structure shown in FIG. 4, a light receiving element with low dark current and high speed and high gain can be realized.

以」二の実施例の説明では、材料としてGaAs /G
aAtAs系とInP / In Ga As / A
tAs Sb系の2つの組合わせを用いたが、勿論側の
半導体の組合せ、例えば、GaPSb 、 AtGaA
sSb 、 AtTnAsP 。
In the description of the second embodiment below, GaAs/G is used as the material.
aAtAs system and InP/InGaAs/A
Two combinations of tAs and Sb systems were used, but of course other semiconductor combinations such as GaPSb, AtGaA
sSb, AtTnAsP.

AtPSb等々の半導体を組み合わせてもか捷わない。It is also possible to combine semiconductors such as AtPSb.

又、メサ型に限ることなく、プレーナ型の素子にも適用
可能であるし、更に、p−i −n−j−p素子に用い
ても勿論か1わない。
Moreover, it is not limited to mesa type elements, but can also be applied to planar type elements, and it goes without saying that it can also be used for p-i-n-j-p elements.

こうした構造は、結晶成長については分子線エピタキ7
ヤル成長法にて、他のプロセスについては従来技術にて
十分作製可能である。
Such a structure is suitable for crystal growth using molecular beam epitaxy7.
For other processes, it can be sufficiently manufactured using conventional techniques.

以上詳細に説明したように、本発明によれば電流の少な
い換言すれば立ト妙電圧の大きなn−1−p−i−n素
子が作製可能であり、超高速素子及び高感度受光素子へ
広く応用が可能である。
As explained in detail above, according to the present invention, it is possible to fabricate an n-1-p-i-n device with a small current, in other words, a large vertical voltage, and it is possible to produce an n-1-p-i-n device with a small current and a large vertical voltage, and it is possible to produce an n-1-p-i-n device with a small current and a high vertical voltage. It can be widely applied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のn−1−p−i−n素子の(a)熱平衡
時及び(b)電圧Vを印加した時のバンド構造図、第2
図は本発明による実施例の断面図、第3図は第2図の実
施例の熱平衡時におけるバンド構造図、第4図は本発明
による他の実施例の断面図、第5図は第4図の実施例の
熱平衡時におけるバンド構造図をそれぞれ示す。 1−n” −GaAs基板、2 ・n −GaAs層、
3 ・・−i −GaAs層、4−p−Gao7 At
o3 As層、5−−1−GaAs層、6・−・n −
Ga As層、7. s −・・電極、10−・−n層
−InP基板、11−n −InP層、12−n−At
As6,45bo6層、13 ・= i −rnO,l
i3 caO,47As層、14 ・・・p  AtA
S。、4 Sbg、6層、15− ]  Ino、53
Gao47A8層、16・・・n−InP層、17 、
18.・、電極。 特許出願人  国際電信電話株式会社 代理人 犬塚 学 外1名 第  1   図 穎 2 凶 第 3 ■
Figure 1 shows the band structure diagram of a conventional n-1-p-i-n element (a) at thermal equilibrium and (b) when a voltage V is applied.
The figure is a sectional view of an embodiment according to the present invention, FIG. 3 is a band structure diagram of the embodiment of FIG. 2 at thermal equilibrium, FIG. 3A and 3B show band structure diagrams of the embodiments shown in the figures at thermal equilibrium, respectively. 1-n''-GaAs substrate, 2.n-GaAs layer,
3...-i-GaAs layer, 4-p-Gao7 At
o3 As layer, 5--1-GaAs layer, 6...n-
GaAs layer, 7. s--electrode, 10--n layer-InP substrate, 11-n-InP layer, 12-n-At
As6,45bo6 layer, 13 ・= i −rnO,l
i3 caO, 47As layer, 14...p AtA
S. , 4 Sbg, 6 layers, 15- ] Ino, 53
Gao47A8 layer, 16...n-InP layer, 17,
18. ·,electrode. Patent Applicant International Telegraph and Telephone Co., Ltd. Agent Inuzuka 1 person from outside the university 1st 2nd 3rd ■

Claims (3)

【特許請求の範囲】[Claims] (1)キャリア濃度1017cm ”以上の第1の半導
体層とキャリア濃度1016crn”以下の第2の半導
体層とキャリア濃度1017crn−3以上で厚さ30
0 X以下の第3の半導体層とキャリア濃度1016t
yn ”以下の第4の半導体層とキャリア濃度10” 
1yn−3以−トの第5の半導体層とが順次積層され、
前記第1の半導体層と前記第5の半導体層の伝導型は等
しくかつ前記第3の半導体層の伝導型は前記第5の半導
体の伝導型とは異なるように形成された半導体素子にお
いて、第3の半導体層の禁制帯幅は前記第2の半導体層
及び前記第4の半導体層の禁制帯幅よりも犬なることを
特徴とする半導体素子。
(1) A first semiconductor layer with a carrier concentration of 1017 cm or more, a second semiconductor layer with a carrier concentration of 1016 crn-3 or more, and a thickness of 30 cm with a carrier concentration of 1017 crn-3 or more.
Third semiconductor layer below 0X and carrier concentration 1016t
yn "Fourth semiconductor layer and carrier concentration 10"
A fifth semiconductor layer of 1yn-3 and above is sequentially laminated,
In the semiconductor element, the first semiconductor layer and the fifth semiconductor layer are formed to have the same conductivity type, and the third semiconductor layer has a conductivity type different from that of the fifth semiconductor. 3. A semiconductor device, wherein the forbidden band width of the third semiconductor layer is larger than the forbidden band widths of the second semiconductor layer and the fourth semiconductor layer.
(2)前記第1の半導体層及び前記第5の半導体層の禁
制帯幅は前記第2の半導体層及び前記第4の半導体層の
禁制帯幅よりも大なることを特徴とする特許請求の範囲
第1項記載の半導体素子。
(2) The forbidden band width of the first semiconductor layer and the fifth semiconductor layer is larger than the forbidden band width of the second semiconductor layer and the fourth semiconductor layer. A semiconductor device according to scope 1.
(3)前記第1の半導体層は禁制帯幅の異なる2層の半
導体層で構成され、その2層の半導体層のうち禁制帯幅
が大きくかつ厚さ1000 A以下の半導体層が前記第
2の半導体層に接していることを特徴とする特許請求の
範囲第1項又は第2項記載の半導体素子。
(3) The first semiconductor layer is composed of two semiconductor layers having different forbidden band widths, and of the two semiconductor layers, the semiconductor layer having a larger forbidden band width and a thickness of 1000 A or less is the second semiconductor layer. 3. The semiconductor device according to claim 1 or 2, wherein the semiconductor device is in contact with a semiconductor layer.
JP57213302A 1982-12-07 1982-12-07 Semiconductor element Granted JPS59104178A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57213302A JPS59104178A (en) 1982-12-07 1982-12-07 Semiconductor element
GB08332597A GB2132016B (en) 1982-12-07 1983-12-07 A semiconductor device
US06/806,746 US4682196A (en) 1982-12-07 1985-12-09 Multi-layered semi-conductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57213302A JPS59104178A (en) 1982-12-07 1982-12-07 Semiconductor element

Publications (2)

Publication Number Publication Date
JPS59104178A true JPS59104178A (en) 1984-06-15
JPH0351115B2 JPH0351115B2 (en) 1991-08-05

Family

ID=16636873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57213302A Granted JPS59104178A (en) 1982-12-07 1982-12-07 Semiconductor element

Country Status (1)

Country Link
JP (1) JPS59104178A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566482A (en) * 1979-06-27 1981-01-23 Fujitsu Ltd Light controled semiconductor light emitting element
JPS5610981A (en) * 1979-07-06 1981-02-03 Nec Corp Photodetector
JPS57183077A (en) * 1981-04-24 1982-11-11 Western Electric Co Photodetector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566482A (en) * 1979-06-27 1981-01-23 Fujitsu Ltd Light controled semiconductor light emitting element
JPS5610981A (en) * 1979-07-06 1981-02-03 Nec Corp Photodetector
JPS57183077A (en) * 1981-04-24 1982-11-11 Western Electric Co Photodetector

Also Published As

Publication number Publication date
JPH0351115B2 (en) 1991-08-05

Similar Documents

Publication Publication Date Title
US4731641A (en) Avalanche photo diode with quantum well layer
US4682196A (en) Multi-layered semi-conductor photodetector
JPS6016474A (en) Hetero multiple junction type photo detector
CA2050435C (en) Photo-sensing device
US4608586A (en) Back-illuminated photodiode with a wide bandgap cap layer
CA1125423A (en) Light-emitting and light-receiving diode, particularly for optical telecommunications
KR950004550B1 (en) Light-receiving element
JP2002231992A (en) Semiconductor light receiving element
US4816890A (en) Optoelectronic device
JPH0513798A (en) Semiconductor photodetection device
Osaka et al. Electron and hole ionization coefficients in (100) oriented Ga0. 33In0. 67As0. 70P0. 30
JPS59104178A (en) Semiconductor element
JP2854634B2 (en) Light receiving device
US4918508A (en) Vertical photoconductive detector
JP2754652B2 (en) Avalanche photodiode
USRE38582E1 (en) Semiconductor diode with suppression of auger generation processes
JPH0494579A (en) Semiconductor photodetector
JPH01149486A (en) Semiconductor photodetector
JP2001237453A (en) Semiconductor light-receiving device
JP2995751B2 (en) Semiconductor light receiving element
JPS63142683A (en) Avalanche photodiode
JPS60173880A (en) Semiconductor photodetector and manufacture thereof
JPS59136980A (en) Semiconductor photo detector
JPH02214171A (en) Semiconductor light-receiving device
JPH05183182A (en) Semiconductor element