JPS59101562A - Air-fuel ratio controller of multi-cylinder engine - Google Patents

Air-fuel ratio controller of multi-cylinder engine

Info

Publication number
JPS59101562A
JPS59101562A JP21032782A JP21032782A JPS59101562A JP S59101562 A JPS59101562 A JP S59101562A JP 21032782 A JP21032782 A JP 21032782A JP 21032782 A JP21032782 A JP 21032782A JP S59101562 A JPS59101562 A JP S59101562A
Authority
JP
Japan
Prior art keywords
cylinder
sensor
air
exhaust
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21032782A
Other languages
Japanese (ja)
Other versions
JPH0337020B2 (en
Inventor
Takayoshi Nishimori
西森 高義
Manabu Arima
学 有馬
Yoshitaka Tawara
田原 良隆
Koji Kawate
川手 幸治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP21032782A priority Critical patent/JPS59101562A/en
Publication of JPS59101562A publication Critical patent/JPS59101562A/en
Publication of JPH0337020B2 publication Critical patent/JPH0337020B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2445Methods of calibrating or learning characterised by the learning conditions characterised by a plurality of learning conditions or ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Abstract

PURPOSE:To control air-fuel ratio without causing any increase of the number of exhaust sensors, by controlling a fuel supply amount to be corrected in the operating range, in which the concentration of exhaust gas can not be detected in each cylinder, on the basis of a fuel supply amount corrective value for every cylinder obtained in the operating range in which the concentration of exhaust gas can be detected in each cylinder. CONSTITUTION:An engine arranges an air flow sensor 4 in a main passage 2e, exhaust sensor 9 in a main pipe 8e in the downstream of a manifold part 8f and a reference timing detector sensor 13 in a gear 12 connected to the crankshaft of an engine 1. The first memory device 14 stores in memory a delay time, after the reference timing till the sensor 9 detects the concentration of exhaust gas in each cylinder 1a-1d, while the delay time is classified by operating ranges A1-A16. The second memory device 15 stores in memory a deviation factor of air-fuel ratio from the target air-fuel ratio for obtaining an injection amount corrective value for each cylinder. A control circuit 17 controls a fuel injection amount to each cylinder to be corrected by a fuel regulator device 16, and in the operating ranges A11-A16 where detection for every cylinder is incapable, the circuit 17 controls the fuel injection amount to be corrected on the basis of the detected concentration of exhaust gas by the exhaust sensor 9 and the injection amount corrective value for every cylinder in the second memory device 15.

Description

【発明の詳細な説明】 本発明は1個の排気センサの出力に基いてエンジンの気
筒毎の空燃比を目標空燃比にフィードバック制御するよ
うにした多気筒エンジンの空燃比制御装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control device for a multi-cylinder engine that performs feedback control of the air-fuel ratio of each cylinder of the engine to a target air-fuel ratio based on the output of one exhaust sensor. .

従来、多気筒エンジンの空燃比制御装置1yは、排気多
岐管の集合部下流に1個の朗気センサを配設し、該排気
センサによる検出排気ガス濃度に基いて各気筒への燃料
噴射1jを一律に制御し、エンジン全体の空燃比を目標
空燃比にフィードバック制御するようにしている。
Conventionally, an air-fuel ratio control device 1y for a multi-cylinder engine includes one air-air sensor disposed downstream of a collecting part of an exhaust manifold, and controls fuel injection 1j to each cylinder based on the exhaust gas concentration detected by the exhaust sensor. is uniformly controlled, and the air-fuel ratio of the entire engine is feedback-controlled to the target air-fuel ratio.

ところが各気筒への吸入空気−市には各気筒間でバラツ
キがあるものであり、このような吸入空気)ji: l
こバラツキを有する各気筒への力、X゛;料噴射社を一
律に制御したのでは各気筒の空燃比を目、媒空燃比に制
御rることはできない。そこでこのような問題を解決す
るため、本件出願人は、エンジンの排気ガスυS排気多
岐惰集含部下流では賀「h方向に層状をなして流れるこ
とに層目して気筒毎の排気ガス濃度を検出し、該検出排
気ガス濃度に基いて気筒毎の荒燃比、Iil制御ができ
るようにした多気間エンジンの空燃比制御装置について
すでに出願している(特願昭57−131659号参照
)。
However, the intake air to each cylinder varies among each cylinder, and such intake air) ji: l
If the force to each cylinder, which has variations, is uniformly controlled, it is not possible to control the air-fuel ratio of each cylinder to a uniform air-fuel ratio. Therefore, in order to solve this problem, the applicant of this application has focused on the fact that the engine exhaust gas υS flows in a layered manner in the υ direction in the downstream of the exhaust gas collection section, and the exhaust gas concentration in each cylinder has been reduced. An application has already been filed for an air-fuel ratio control device for a multi-gas engine which is capable of detecting the concentration of exhaust gas and controlling the rough fuel ratio and Iil for each cylinder based on the detected exhaust gas concentration (see Japanese Patent Application No. 131,659/1983).

しかしながら上記排気ガスは、低負荷時にはその量が少
ないためその流速が低くなってあまり明確な層状をばす
ものではなく、そのためこのような低負荷時には気筒毎
の排気カス(11(度を検出するのは困4:なものであ
る。またエンジンの画速回転域においては、排気ガスの
流速が速くなるため排気センサによる検出の時間遅れに
より、このような高速回転域においてもやはり気筒毎の
排気ガス濃度を検出するのは困難なものである。
However, when the load is low, the amount of the exhaust gas is small, the flow velocity is low, and it does not form a very clear stratified structure. Problem 4: In addition, in the engine speed rotation range, the flow velocity of exhaust gas increases, so there is a time delay in detection by the exhaust sensor, so even in such a high speed rotation range, the exhaust gas from each cylinder increases. Concentrations are difficult to detect.

なお、このような問題を解決するために気筒毎に排気セ
ンサを設けることも考えられるが、このようにすると今
度はコスト高になるという問題が生ずる。
Although it is conceivable to provide an exhaust sensor for each cylinder in order to solve this problem, this would result in a problem of increased costs.

本発明はかかる問題点に鑑みてなされたもので、気筒毎
に排気ガス濃度を検出できる気筒毎検出可能運転領域に
おいては、該検出した排気ガス濃度に基いて当該気筒へ
の燃料供給量を補正制御するとともに、該補正制御僅を
当該気筒の気筒毎燃料供給量補正値として記憶する一方
、上記気筒毎検出のできない気筒毎検出不能運転領域に
おいては、上記排気センサによる検出排気ガス濃度と上
記気筒毎燃料供給量補正値に基いて各気筒への燃料供給
量を補正制御するととIこより、排気センサの数量を増
加することなく気筒毎検出不能運転領域においても気筒
毎の空燃比制御ができる多気筒エンジンの空燃比制御装
置を提供せんとするものである。
The present invention has been made in view of this problem, and in an operating region where exhaust gas concentration can be detected for each cylinder, the amount of fuel supplied to the cylinder is corrected based on the detected exhaust gas concentration. At the same time, the correction control value is stored as the cylinder-by-cylinder fuel supply correction value for the cylinder, while in the cylinder-by-cylinder detection impossible operation region, the exhaust gas concentration detected by the exhaust sensor and the cylinder-by-cylinder fuel supply amount correction value are stored. By correcting and controlling the fuel supply amount to each cylinder based on the fuel supply amount correction value for each cylinder, it is possible to control the air-fuel ratio for each cylinder without increasing the number of exhaust sensors. The present invention aims to provide an air-fuel ratio control device for a cylinder engine.

以下本発明の実施例を図について説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示し、図において1は第1
ないし第4の気筒1a〜1dを有する4気筒エンジンで
、該エンジン1は第1 、第3.14、第2の気筒の順
序で点火されるようになっている。2は主通路2eと第
1ないし第4の分岐通路2a〜2dからなる吸気通路で
あり、上記主通路2Cには、該通路2Cの設入空気量を
制御するスロットル弁3が設けられ、また上記主通路2
eのスロットル弁3上流側には上記吸入空気坂を検出す
るエアフローセンサ4が設りられ、さらに上記主通路2
eの上流端lこはエアクリーナ5が設けられている。ま
た上記第1ないし第4の分岐通路23〜2dは上記第1
ないし第4の気筒1a〜1dに接続されており、この各
分岐通ff?i 2 a〜2dには燃料噴射弁16a〜
16dが設けられている。
FIG. 1 shows an embodiment of the present invention, and in the figure, 1 indicates a first
The engine 1 is a four-cylinder engine having the first to fourth cylinders 1a to 1d, and the engine 1 is ignited in the order of the first, third, fourth, and second cylinders. Reference numeral 2 denotes an intake passage consisting of a main passage 2e and first to fourth branch passages 2a to 2d, and the main passage 2C is provided with a throttle valve 3 for controlling the amount of air introduced into the passage 2C. Main passage 2 above
An air flow sensor 4 for detecting the intake air slope is provided on the upstream side of the throttle valve 3 of
An air cleaner 5 is provided at the upstream end of e. Further, the first to fourth branch passages 23 to 2d are the first to fourth branch passages 23 to 2d.
to the fourth cylinders 1a to 1d, and each branch communication ff? i 2 a to 2d have fuel injection valves 16a to 2d.
16d is provided.

そして8は第1ないし第4の枝管8a〜8dと主管8e
とからなる排気多岐管であり、該排気多岐管8の上記各
枝管8a〜8dは上記第1ないし第4の気筒1a〜1d
に接続されており、該各枝管8a〜8dが集合した集合
部8f下流における上記主管8Cには、該主Qt 8e
を通過する排気ガス濃度を検出するための排気センサ9
が取付けられており、該排気センサ9は、例えばUセン
サからなり、上記排気ガス濃度に対応してリニアな出力
を発生ずるようになっている。なお10は上記主管8e
の排気センサ9下流に配設された排気ガス浄化装置であ
る。
And 8 is the first to fourth branch pipes 8a to 8d and the main pipe 8e.
The branch pipes 8a to 8d of the exhaust manifold 8 are connected to the first to fourth cylinders 1a to 1d.
The main pipe 8C downstream of the collecting part 8f where the branch pipes 8a to 8d are collected includes the main pipe Qt 8e.
Exhaust sensor 9 for detecting the concentration of exhaust gas passing through
The exhaust sensor 9 is, for example, a U sensor, and is designed to generate a linear output corresponding to the exhaust gas concentration. Note that 10 is the main pipe 8e above.
This is an exhaust gas purification device disposed downstream of the exhaust sensor 9.

また上記エンジン1のクランクシャフト(図示せず)に
は第1歯車11が連結され、該第1歯車11にはこれの
2倍の歯数を有する第2歯車12が噛合しており、その
ためこれはエンジン1の172の回転速度で回転し、該
第2歯車12の図示左方には基準タイミング検出センサ
13が配設されている。そして該基準タイミング検出セ
ンサ13はエンジン1の動作の基準となるタイミングを
検出するためのもので、例えば第1の気筒1aのピスト
ンが圧縮上死点にあるタイミングを検出する。
Further, a first gear 11 is connected to the crankshaft (not shown) of the engine 1, and a second gear 12 having twice the number of teeth is meshed with the first gear 11. rotates at a rotation speed of 172 of the engine 1, and a reference timing detection sensor 13 is disposed on the left side of the second gear 12 in the drawing. The reference timing detection sensor 13 is for detecting the reference timing of the operation of the engine 1, and detects, for example, the timing when the piston of the first cylinder 1a is at the compression top dead center.

なお、図示していないが上記第1歯車11付近にはエン
ジン回転数を検出する回転センサが設けられており、該
回転センサ及び上記エアフローセンサ4の出力はエンジ
ン1の運転状態を表わす運転情報とlよっている。
Although not shown, a rotation sensor for detecting the engine rotation speed is provided near the first gear 11, and the outputs of the rotation sensor and the air flow sensor 4 are used as operating information indicating the operating state of the engine 1. I'm leaning on it.

また14は第1記憶装置であり、これには予め実験によ
って求めた各運転状態における各気筒1a〜ldの遅れ
時間tn、m(以下すべてnは運転領域番号でn = 
1〜162mは気筒番号でm = 1〜4である)が記
憶されており、ここで遅れ時1川というのは上記基準タ
イミングから上記排気センサ9が各気筒1a〜1dの排
気ガス濃度を検出rるタイミングまでに経過する時間で
あり、また運転領域は第2図(a)に示すように吸入空
気量qとエンジン回転数Nの値に対応した16の領域A
+ M−Assに区分されている。
Reference numeral 14 is a first storage device, which stores delay times tn and m for each cylinder 1a to ld in each operating state, which are determined in advance through experiments (hereinafter, n is the operating region number and n =
1 to 162m are cylinder numbers (m = 1 to 4) are stored, and here, 1 river at the time of delay means that the exhaust sensor 9 detects the exhaust gas concentration of each cylinder 1a to 1d from the reference timing. It is the time that elapses until the timing of engine rotation, and the operating range is divided into 16 ranges A corresponding to the values of the intake air amount q and the engine speed N, as shown in Fig. 2 (a).
+ M-Ass.

また該第1記憶装置14にはマツプAに示すように吸入
望気量qとエンジン回転数Nとで定まる上記運転領域毎
に各気筒とも等しい値の目標空燃比MAnが記憶されて
いる(第2図(b)参照)。さらに15は第2記憶装置
であり、これはマツプBに示すように各運転領域におけ
る各気筒1a〜1dの噴射遣補正値を求めるための、気
筒毎の実際の空燃比と目標空燃比との空燃比ずれ率EM
n、1が記憶されるようになっている(第2図(c)参
照)。
Further, as shown in map A, the first storage device 14 stores a target air-fuel ratio MAn having the same value for each cylinder for each of the above operating regions determined by the desired intake air amount q and the engine speed N. (See Figure 2(b)). Furthermore, 15 is a second storage device, which stores the actual air-fuel ratio and target air-fuel ratio for each cylinder in order to obtain the injection timing correction values for each cylinder 1a to 1d in each operating region, as shown in map B. Air-fuel ratio deviation rate EM
n, 1 are stored (see FIG. 2(c)).

また16eは上記各燃料噴射弁16a〜16dを開閉駆
動する駆動回路であり、該駆動回iW416 eと上記
各燃料噴射弁161〜16dとで各気筒1a〜1dに供
給する燃料量を気筒毎に調整する燃料調整装置16が構
成されている。
Further, 16e is a drive circuit that opens and closes each of the fuel injection valves 16a to 16d, and the drive circuit iW416e and each of the fuel injection valves 161 to 16d control the amount of fuel to be supplied to each cylinder 1a to 1d for each cylinder. A fuel adjustment device 16 for adjustment is configured.

モして17は制御回路であり、これは上記排気センサ9
.ニアフローセンサ41回転センザ及び基準タイミング
検出センサJ3の出力を受けて上記燃料調整装置16に
よる各気筒への燃料噴射量を補正制御するためのもので
ある。そしてより詳細には該制御回n’i’i 17は
、気筒毎検出i[能領域(領域Al−As )において
は、現時点での上記排気センサ9による検出排気ガス濃
度が上記各気筒1a〜1dのいずれの気筒からの排気ガ
スの濃度であるかを判別し、該検出排気ガス濃度に基い
て当該気筒への燃料噴射量を補正制御するとともに、該
補正制御慣を当該気筒の気筒毎噴射片補正値として上記
第2記憶装置15に記憶せしめるようになっている。
17 is a control circuit, which is connected to the exhaust sensor 9.
.. This is for correcting and controlling the fuel injection amount to each cylinder by the fuel adjustment device 16 in response to the outputs of the near flow sensor 41 rotation sensor and reference timing detection sensor J3. More specifically, the control cycle n'i'i 17 determines that the exhaust gas concentration detected by the exhaust sensor 9 at the present time is 1d, the concentration of the exhaust gas is determined from which cylinder, and based on the detected exhaust gas concentration, the amount of fuel injection to the cylinder is corrected and controlled, and the correction control is applied to the cylinder-by-cylinder injection of the cylinder. This is stored in the second storage device 15 as a partial correction value.

一万気筒毎検出不能運転領域(領域All−At5)に
おいては、上記制御回路17は、上記排気センサ9によ
る検出排気ガス濃度と、上記第2記憶装 −1α15内
の気筒毎噴射量補正値とに基いて各気筒への燃料噴射量
を補正制御するようになっている。
In the operation region in which every 10,000 cylinders cannot be detected (area All-At5), the control circuit 17 uses the exhaust gas concentration detected by the exhaust sensor 9 and the injection amount correction value for each cylinder in the second memory device -1α15. Based on this, the fuel injection amount to each cylinder is corrected and controlled.

第3図は上記制御回路17の演算処理のフローチャート
を示し、図において、20は」二足基準タイミング検出
センサ13の出力を読み込むとともに、」二足エアフロ
ーセンサ4及び回転数センサの出力を運転領域を特定す
るための運転情報として読み込むステップ、21はその
運転領域における目標空燃比MAnを上記第1記憶装置
14から読み出し、また、基本燃料噴射量’I’Bnを
、TBn = k X94すにより演算して求めるステ
ップである。ここでkは予め実験により求めた定数であ
るが、運転また22.23はエンジン1の運転状態が上
記気筒毎検出不能運転碩域にあるか否かを判定する判定
ステップであり、判定ステップ22は該領域のうち吸入
空気uQが所定空気量QOより少ない時低負荷領域を判
定rるステップ、判定ステップ23はエンジン回転数N
が所定回転数NOより高い時高回転領域を判定するステ
ップである。
FIG. 3 shows a flowchart of the arithmetic processing of the control circuit 17. In the figure, 20 reads the output of the two-legged reference timing detection sensor 13, and outputs the outputs of the two-legged airflow sensor 4 and rotational speed sensor to the operating range. Step 21 reads the target air-fuel ratio MAn in the operating range from the first storage device 14, and calculates the basic fuel injection amount 'I'Bn by TBn = k X94. This is the step to find out. Here, k is a constant determined in advance through experiments, and 22.23 is a determination step for determining whether the operating state of the engine 1 is in the cylinder-by-cylinder undetectable operation range, and determination step 22 is a step of determining a low load region when the intake air uQ is less than a predetermined air amount QO in the region, and determination step 23 is a step of determining the engine rotation speed N.
This is a step of determining a high rotation region when the rotation speed is higher than a predetermined rotation speed NO.

24はエンジン1の運転状態が気筒毎検出可能運転領域
にある場合に各気筒1a〜1dの現時点での実際空燃比
M A n、 Hlを求めるステップであり、例えば運
転領域AIでの第1の気筒1aの実際空燃比MA r 
、 Iを求める場合は、上記基準タイミング検出センザ
13の出力を受けてから、上記第1記憶装a14に記憶
されている41の気IJ1aの遅れ時間t1,1が経過
すると、この時点における上記排気センサ9の出力を第
1の気筒1λの検出排気ガスM度として読み込み、該濃
度に基いて上記実際空燃比MA+ 、 +を求める。
24 is a step of calculating the current actual air-fuel ratio M A n, Hl of each cylinder 1a to 1d when the operating state of the engine 1 is in the operating region that can be detected for each cylinder. Actual air-fuel ratio MA r of cylinder 1a
, I, when the delay time t1,1 of 41 IJ1a stored in the first storage device a14 has elapsed after receiving the output of the reference timing detection sensor 13, the exhaust gas at this point is determined. The output of the sensor 9 is read as the detected exhaust gas M degrees of the first cylinder 1λ, and the actual air-fuel ratios MA+, + are determined based on the concentration.

また25は現時点における各気(Gi 1 a〜1dの
比ずれ率F、Mr1.■−= MAH,nl/ MAn
  を求めるステップ、26は上記空燃比すれ率Eht
n、mを気筒m及び運転狽域毎に」二足第2記憶装置i
J、’ 15に記憶せしめるステップである。
In addition, 25 represents each energy at the present moment (ratio ratio F of Gi 1 a to 1d, Mr1.■-= MAH, nl/ MAn
Step 26 is to obtain the air-fuel ratio ratio Eht.
"n, m for each cylinder m and operation failure area" second storage device i
This is the step of storing the data in J.'15.

27は気筒)任の、H,(2\料噴射t7 Tl n 
、mを求めるステップであり、こ(tは上記ステップ2
6で記・億した空燃比ずれ率EM+i、mを用いてTl
n 、m−’I’Bri X EMn9mより求める。
27 is cylinder), H, (2\fuel injection t7 Tl n
, m, and this (t is the step 2 above)
Tl using the air-fuel ratio deviation rate EM+i, m recorded in 6.
Determined from n, m-'I'Bri X EMn9m.

28は気19石町の燃料噴射lit ’rx、1.I。28 is 19 kokumachi fuel injection lit'rx, 1. I.

を出力rるステップで、これは1・d射タイミング時点
で割り込み処理されるようになっている。
In this step, an interrupt is processed at the timing of the 1.d shot.

29はエンジン1の4転状態が気筒毎検出不能運転i迫
域にある場合において各気筒1a〜1dの現時点での改
定空燃比M A H、Hl をよめるステップであり、
30はト記気筒毎の改定空燃比MA’n、、nを曲玉し
た浦IE空1然比MM!1 mを求めるステップであり
、これは上記ステップ26で記憶した運転鎮域毎、′A
筒心の空1然比ずれ率EMn、mの平均から、即ここで
E r、101はマッグBにおける空燃比ずれ率■棉’
II、I11をバ浦mに領域A1〜A++iこイったっ
て平均して、あるいは市み付は侶均して求めたものであ
り、後者の場合の車み付けは実験によって適宜求めるこ
とができる。
29 is a step of reading the current revised air-fuel ratio M A H, Hl of each cylinder 1a to 1d when the four-wheel rotation state of the engine 1 is in the undetectable operation i region for each cylinder;
30 is the revised air-fuel ratio MA'n for each cylinder,, the Ura IE air-fuel ratio MM with a curved version of n! This is a step to obtain 1 m, and this is for each driving area memorized in step 26 above.
From the average of the air-fuel ratio deviation rate EMn,m of the cylinder core, here E r, 101 is the air-fuel ratio deviation rate in Mag B.
II and I11 are averaged over areas A1 to A++i in Baura m, or the market value is calculated by averaging them, and in the latter case, the vehicle size can be determined as appropriate by experiment. .

また31は補正空燃比ずれ率EMn、m = MMn、
、11/MAnを求めるステップで、該抽料空燃比ずれ
率EM11.nを用いてステップ27により気筒41に
の捕iE燃料噴射iij: −1’In 、 m −’
I″Bn X EMn、toを求め、これをステップ2
8により気筒毎に出力する。
31 is the corrected air-fuel ratio deviation rate EMn, m = MMn,
, 11/MAn, the extracted air-fuel ratio deviation rate EM11. Inject iij into the cylinder 41 in step 27 using n: -1'In, m-'
Find I″Bn
8, the output is output for each cylinder.

次に動作について説明する。Next, the operation will be explained.

エンジン1の作動中、吸気通路2にはスロットル弁3の
開度に応じた晴の空気が吸入され、その吸入空気1辻は
エアフローセンサ4により検出され、また排気多岐Ig
 Bの主管8e内の排気ガス濃度は排気センサ9により
検出され、またエンジン1の基(1βタイミング、即ち
第1の気筒1aのピストンかその圧縮上死点にあるタイ
ミングは基準タイミング検出センサ13により検出され
、さらにエンジン回転数は回転センサにより検出され、
これらの各センサ4,9,13及び回転センサの出力は
上記制御回路17に加えられる。また上記第1記憶装置
14には、マツプAに示す運転領域毎の目標空燃比MA
n及び運転頑域毎、気筒毎の遅れ時間tn、mが記憶さ
れている。
During operation of the engine 1, fresh air is taken into the intake passage 2 according to the opening degree of the throttle valve 3, and the intake air is detected by the air flow sensor 4, and the exhaust passage Ig is detected by the air flow sensor 4.
The exhaust gas concentration in the main pipe 8e of the engine B is detected by the exhaust sensor 9, and the reference timing detection sensor 13 detects the engine 1 base (1β timing, that is, the timing when the piston of the first cylinder 1a is at its compression top dead center). The engine speed is detected by a rotation sensor,
The outputs of these sensors 4, 9, 13 and the rotation sensor are applied to the control circuit 17. The first storage device 14 also stores the target air-fuel ratio MA for each operating region shown in map A.
Delay times tn and m for each cylinder and each operating range are stored.

そしてまずエンジンlの運転状態が気14毎検出+jJ
能運転fitJ域番こ、bる場合について説明する。こ
こで上記気筒毎検出iiJ能運転働域と(J、気筒毎の
排気カス濃1yを検出できる運転領域、即ち第2図(a
)に示4−肩域八1〜Agのように、吸入空気量Qが所
定空気1(4HQoより大きく、かつエンジン回転数N
が所定回転数NOより低い運転領域であり、今エンジン
1が運転1iri域A4(i=1〜9)にあるとすると
、各気筒1a〜1(1からの排気ガスは第4図(a)に
示すようにその点火順序に従って第1.第3.第4゜第
2の気1.?lの排気カスI 、 III 、 IV 
、 Hの順に層をyz Lで−I−記排気多岐管8の主
管8C内を流れている。この場合、制?11v回iIi
’+ 17は第3図に示すように、ステップ20でエア
フローセンサ4及び回転センサの出力、即ち吸入空気量
9及びエンジン回転数Nを運転情報として読み込み、ス
テップ21で:A31記・1(!製置14から一ヒ記読
み込んだ運転情報に基いてその運転状態における目標空
燃比MAiを読み出し、該目標空燃比MAiを用いて演
算してその運転状態における基本燃料噴射(ケ′I’B
iを求める。
First, the operating state of the engine l is detected every 14 times +jJ
The following describes the case where the function operation fit J area number is used. Here, the above-mentioned cylinder-by-cylinder detection iiJ function operating range and (J, each cylinder-by-cylinder exhaust gas concentration 1y can be detected) are defined as
) as shown in 4-Shoulder Area 81 to Ag, when the intake air amount Q is greater than the predetermined air 1 (4HQo and the engine speed N
is an operating range lower than the predetermined rotation speed NO, and the engine 1 is currently in the operating range A4 (i = 1 to 9), the exhaust gas from each cylinder 1a to 1 (1 is as shown in Fig. 4 (a) As shown in the ignition order, the exhaust gas of 1st, 3rd, 4th, 1st, 2nd air, I, III, IV
, H flows through the main pipe 8C of the exhaust manifold 8 in the order of yz L. In this case, the system? 11v times ii
As shown in FIG. 3, in step 20, the outputs of the airflow sensor 4 and rotation sensor, that is, the intake air amount 9 and the engine speed N, are read as operating information, and in step 21: A31-1 (! The target air-fuel ratio MAi in the operating state is read based on the operating information read from the manufacturing unit 14, and the basic fuel injection (K'I'B) is calculated using the target air-fuel ratio MAi in the operating state.
Find i.

またステップ22で吸入空気fit Qが所定吸入空気
量Qoより多いか否かを判定し、この場合QI>QOで
あるのでステップ22からステップ23に進み、該ステ
ップ23でエンジン回転数Nが所定エンジン回転数No
より低いつ)否かを判定し7、このIL″3合N〈IN
Oであるのでステップ23からステップ24゜25.2
6.27の経珀で進む。
Also, in step 22, it is determined whether or not the intake air fit Q is greater than the predetermined intake air amount Qo. Rotation speed No.
7, and determine whether this IL″3 is N〈IN
O, so step 23 to step 24゜25.2
6. Proceed at Keiwa on 27th.

そして上把制御回1(、17はステップ24で、上記基
準タイミング検出センサ13の出力が入力されてから第
1記憶装匝14からその運転状態に応じて読み出した気
筒毎の遅れ時間’ I + ’ + ’ 1 、8 +
【1 r 4 + ’ 1 r 2が各々経過すると(
第4図参照)、この時点における上記排気センサ9の出
力を各々第1.第3.第4.第2の気筒の検出排気カス
濃度として読み込め、該谷検出排気カス濃度から容気1
i−,j l a 〜l dの実際空燃比へ1A i、
+ x MA i、4を求め、ステップ25で上記実際
空燃比MAi−〜MA i 、4と上記ステップ21で
読み込んだ目標空燃比MAfとの空燃比ずれ率EMi、
1−EMi、4を求め、ステップ26で上記空燃比ずれ
率EMi、l、 EMi、4を上記第2記憶装置15に
マツプBに示すように運転領域毎かつ気筒毎に記1、ζ
デせしめ、ステ・ンプ27で気1六〕毎ノ燃料噴4.I
”qt’l’Ii、t 〜”Ii、4 ヲ求メル。’(
L/てに記制御回1)i417はステップ28で」−記
気筒毎の燃料噴#’J”rti: ’I i 、mをv
4++ut回IFij 16 eおよび燃料噴射弁t6
a〜l 6 dをして気筒毎の噴射タイミンクで噴射せ
しめ、ステップ20に戻りステップ20〜28の経路を
循環する。
Then, in the upper grip control cycle 1 (, 17 is step 24, the delay time for each cylinder ' I ' + ' 1, 8 +
[1 r 4 + ' 1 r 2 elapses (
(see FIG. 4), the outputs of the exhaust sensor 9 at this point are respectively the first and second outputs. Third. 4th. It can be read as the detected exhaust gas concentration of the second cylinder, and from the valley detected exhaust gas concentration, the volume 1
i-, j to the actual air-fuel ratio of l a to l d 1A i,
+ x MA i,4 is determined, and in step 25, the air-fuel ratio deviation rate EMi,
1-EMi,4 is determined, and in step 26, the air-fuel ratio deviation ratios EMi,l, EMi,4 are recorded in the second storage device 15 for each operating region and cylinder as shown in map B.
4. Fuel injection every time. I
``qt'l'Ii, t~''Ii, 4. '(
L/Ni control cycle 1) i417 is in step 28 '-fuel injection #'J'rti for each cylinder: 'Ii, m to v
4++ut times IFij 16 e and fuel injector t6
After doing steps a to l6d, the fuel is injected at the injection timing for each cylinder, and the process returns to step 20 and circulates through steps 20 to 28.

次にエンジン1の運転状態が気筒語検出不能運転fu’
i域にある場合について説明する。ここで」―記気筒毎
検出不能運転領域とは、気筒毎の排気ガス濃度を検出で
きない1・↑工転領域、即ち第21.′η(3口こ示す
領域A10〜A+r+゛Cあり、これは吸入空気Rj)
Qが所定空気計QOより少/Sい低負荷領域A10〜A
I2及びエンジン回転数Nが所定回転数NOより高い高
回転領域AI8〜A16からなり、今エンジン1が運転
領域AJ(j=10〜12)にあるとすると、各気筒1
3〜1dからの排気ガスは弗5図(a)にXで示すよう
に混じり合っており、この場合、F記制御回蹟17はス
テップ22でこの場合の運転状態は低負荷頭載、即ち気
箇毎検出不能運転III域にあると判定し、このステッ
プ22からステップ29,30゜31の経路で進み、ス
テップ29で屑C店タイミングから遅れ時間’J+’ 
+ ’J+8+ ” 4 + Ej、2が経過J! すると、その時点における上記排気センサ9の出力を谷
々第1.第3.第4.第2の気筒の検出暫定排気ガス濃
度として読み込み、該各排気ガス濃度から暫定空燃比M
Aj、l 、 MA’j、8. MA’j、41ΔIA
’j、2を求める。ここで各気筒1a〜1dからのnr
気ガスが混じっているためこの暫定空燃比M、A’J 
、 1〜MA’j、4は相互に同様の値となる場合が多
く、本実施例では第5図(1))に示すように一定値と
1.にっている。そしてステップ30で上記第2記憶装
置d15に記’1.ttされている気筒毎の領域A1〜
A9の空燃比すれ率EN1n、mを読み出し、これを気
筒毎に平均した平均空ノ然比ずれ率EMmを用いてL記
“所定空燃比MA°  〜MA j、 4を補正して補
正空燃比MM3.〜J、1 MMj、4を求め、ステップ31て気筒毎の補正空燃比
すれ率EMj、1〜EMj、<を求める。
Next, the operating state of engine 1 is cylinder word undetectable operation fu'.
The case where it is in the i area will be explained. Here, the cylinder-by-cylinder undetectable operation region is the 1. 'η (There are three areas A10 to A+r+゛C, which is intake air Rj)
Low load area A10 to A where Q is less than/S the specified air meter QO
Assuming that I2 and the engine speed N are comprised of high speed ranges AI8 to A16 where the engine speed is higher than the predetermined speed NO, and the engine 1 is currently in the operating range AJ (j=10 to 12), each cylinder 1
The exhaust gases from 3 to 1d are mixed as shown by X in Figure 5(a), and in this case, the control circuit 17 in F is at step 22, and the operating state in this case is low load overhead, i.e. It is determined that the operation is in the undetectable operation III region, and the process proceeds from step 22 to steps 29, 30 and 31, and in step 29, the delay time 'J+' is determined from the waste C store timing.
+ 'J+8+ '' 4 + Ej, 2 has passed J! Then, the output of the exhaust sensor 9 at that point is read as the detected provisional exhaust gas concentration of the 1st, 3rd, 4th, and 2nd cylinders. Temporary air-fuel ratio M from each exhaust gas concentration
Aj, l, MA'j, 8. MA'j, 41ΔIA
Find 'j, 2. Here, nr from each cylinder 1a to 1d
This provisional air-fuel ratio M, A'J
, 1 to MA'j, and 4 are often the same values, and in this embodiment, as shown in FIG. 5(1)), they are a constant value and 1. It's on. Then, in step 30, '1.' is written in the second storage device d15. Area A1 for each cylinder that is tt
Read the air-fuel ratio deviation ratio EN1n,m of A9, and use the average air-fuel ratio deviation ratio EMm averaged for each cylinder to correct the "predetermined air-fuel ratio MA° ~ MA j, 4" to obtain the corrected air-fuel ratio. MM3.~J,1 MMj,4 is determined, and in step 31, the corrected air-fuel ratio ratio EMj,1~EMj,< for each cylinder is determined.

そしてこの後、−F、、i12制御回蹟17はステ・ン
プ31からステップ27.28の経路で進み、ステ・ノ
ブ27で補正燃料噴射hl T1 j 、 1−TI 
J 、 4を求め、ステップ28で−に記抽iE燃料噴
射量”In、mを所定の噴射タイミングで燃料噴射弁1
61〜16dをして噴射せしめ、その後ステップ20に
戻り、さらにステップ20,21,22,29,30,
31,27.28の経路で循環することとなる。
After this, the -F,,i12 control cycle 17 proceeds from the step knob 31 through the path of steps 27 and 28, and the step knob 27 injects the corrected fuel injection hl T1 j , 1-TI
J, 4 is determined, and in step 28, the iE fuel injection amount ``In, m'' is determined by the fuel injection valve 1 at a predetermined injection timing.
61 to 16d to inject, then return to step 20, and further step 20, 21, 22, 29, 30,
It will circulate along the routes 31, 27, and 28.

またエンジン1が運転領域A4 s y A46にアル
場合は各気筒1a〜1dからの排気ガスは層状を/、(
しているが、その流速が速いため排気センサ9の部分を
排気ガスが通過するに要する時間が短かくなり、排気セ
ンサ9はその検出の時間遅れのため、気筒毎の排気ガス
濃度の検出ができないものである。そしてこの場合は上
記制御口d(i 17はステ、ンプ23からステップ2
9に進み、その後は上記iul域AIO〜AI2の場合
と同様に進むこととlSる。
Also, when the engine 1 is in the operating range A4 sy A46, the exhaust gas from each cylinder 1a to 1d is in a stratified manner.
However, because the flow rate is fast, the time required for the exhaust gas to pass through the exhaust sensor 9 is shortened, and the exhaust sensor 9 has a time delay in its detection, making it difficult to detect the exhaust gas concentration for each cylinder. It is something that cannot be done. In this case, the control port d (i 17 is the step
9, and thereafter proceed in the same manner as in the case of the iul area AIO to AI2.

このように本実力1巨例装置では、気筒毎検出可能運転
領域においては、気筒毎に検出した排気ガス濃度に基い
て当該気筒への燃料噴射[11を補正制御し、気筒毎検
出不能運転領域においては4jl気センサによる検出排
気ガス濃度と」−記?n! 、iE ib’l @l 
、ii’rとに基いて当該気筒への燃料噴射射を補正側
7+llするようにしたので、上記気筒毎検出不能運転
firi城においても燃料噴射にの気筒毎の補正制御が
できる。
In this way, in the cylinder-by-cylinder detectable operating region, this performance 1 giant example device corrects and controls the fuel injection [11] to the cylinder based on the exhaust gas concentration detected for each cylinder. In this case, the exhaust gas concentration detected by the 4JL air sensor and "-"? n! , iE ib'l @l
.

なお上記実施例では目標空イ熱比MA、nは各運転領域
毎に各気筒とも同じ値にしたが、これは気筒毎に異なる
植を用いてもよい。また低負荷60域における暫定空燃
比MA′j1m は第5図(b)に示すように一定値で
あるとして説明したが、これは必ずしも一定になるもの
ではなく、バラツキが生じる場合があり、この場合は平
均を求めて使用しても良い。
In the above embodiment, the target air-to-air heat ratio MA,n is set to the same value for each cylinder in each operating region, but a different value may be used for each cylinder. Furthermore, although the provisional air-fuel ratio MA'j1m in the low load range of 60 was explained as being a constant value as shown in Fig. 5(b), this is not necessarily constant and variations may occur. In this case, you can calculate the average and use it.

さらにまた、上記空燃比ずれ率EM口2mを気筒毎にか
つ運転頭載A+ −Ao毎に求めてこれを記憶するよう
にしたが、これは必すしもこのようf、K I:f1域
毎に記憶しlI <でも良く、例えば気筒毎に運転頭載
へ1〜A9にわたって平均あるいは重み付り平均して記
憶するようにしても良い。また排気ガスセンサ9は理論
空燃比付近で急激な出力変化を示すものであっても良い
Furthermore, the above-mentioned air-fuel ratio deviation rate EM port 2m is determined and stored for each cylinder and for each operating head A+ -Ao, but this is not necessarily necessary for each f, K I:f1 region. For example, it may be stored as an average or a weighted average over 1 to A9 in the driver's head for each cylinder. Further, the exhaust gas sensor 9 may be one that shows a sudden change in output near the stoichiometric air-fuel ratio.

以上のように本発明に係る多気筒エンジンの空燃比側?
dtl装置によれば、気筒毎に排気ガス濃度を検出でき
る気筒4fi検出可能運転領域においては、該検出した
排気ガス濃度に基いて当該気筒への燃料供給171を補
正制御するとともに、該補正制御量を当該気筒の気筒毎
燈料供給ii補正倣として記憶する一方、」−記気筒毎
検出のできない気筒毎検出不能運転領域においては、上
記排気センサによる検υロノ1気ガス4”91グと上記
気筒毎燃料供給氾袖正値とに基いて各気筒への燃料供給
(Aを補正側Qlするようにしたので排気センサの数り
七を増すことr’l (気t’j 4ri検出不能運転
領域においても4A16”」毎の空燃比制御を精度よ(
行なえる効果がある。
The air-fuel ratio side of the multi-cylinder engine according to the present invention as described above?
According to the dtl device, in the cylinder 4fi detectable operating region where the exhaust gas concentration can be detected for each cylinder, the fuel supply 171 to the cylinder is corrected based on the detected exhaust gas concentration, and the correction control amount is is stored as the cylinder-by-cylinder lighting supply ii correction copy of the relevant cylinder, while in the operation region where cylinder-by-cylinder detection cannot be performed, the above-mentioned exhaust sensor detects the The fuel supply to each cylinder is based on the positive value of the fuel supply for each cylinder (A is set to the correction side Ql, so the number of exhaust sensors is increased by 7). Accuracy of air-fuel ratio control every 4A16'' even in the range (
There are effects that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による多気筒エンジンの空燃
比!l+’制御装雌のへ)連絡構成図、第2図(a)は
その運転頭載を説明するための特性図、第2図(b)。 fc)はそのマツプを示す図、第3図はその制御回路の
処理手順のフローチャートを示す図、WS 4 #!7
.1 (Xl)。 (b)、第5図(a) 、 (b)はその作用を説明す
るための図である。 1・・・エンジン、4・・・運転状態検出センサ(エア
フローセンサ)、8・・・排気多岐肯、8f・・・集合
部、9・・・排気センサ、13・・・基準タイミング検
出センサ、14・・・第1記憶装置α、15・・・5′
棒2記憶装岨、16・・・燃料調整装置6(駆動回路、
燃料噴射弁)、17・・・制御回路。 特許出願人  東洋工業株式会社 代理人 弁理士    早   瀬   ψ  −第1
図 エンしン回中即17N− N。 工υ5:/日転t■−
Figure 1 shows the air-fuel ratio of a multi-cylinder engine according to an embodiment of the present invention! FIG. 2(a) is a characteristic diagram for explaining the driver's head installation, and FIG. 2(b) is a diagram showing the connection configuration of the l+' control system. fc) is a diagram showing the map, FIG. 3 is a diagram showing a flowchart of the processing procedure of the control circuit, and WS 4 #! 7
.. 1 (Xl). 5(b), FIGS. 5(a) and 5(b) are diagrams for explaining the effect. DESCRIPTION OF SYMBOLS 1...Engine, 4...Operating state detection sensor (air flow sensor), 8...Exhaust manifold, 8f...Collection part, 9...Exhaust sensor, 13...Reference timing detection sensor, 14...first storage device α, 15...5'
Rod 2 memory device, 16...Fuel adjustment device 6 (drive circuit,
fuel injection valve), 17... control circuit. Patent applicant Toyo Kogyo Co., Ltd. Agent Patent attorney Hayase ψ −1
Figure 17N-N during the engine cycle. Engineering υ5:/Nippon t■-

Claims (1)

【特許請求の範囲】[Claims] (1)排気多岐管の集合部下流に配設された排気センサ
と、エンジンの運転状態を検出する運転状態検出センサ
と、エンジンの基7Fタイミングを検出する基準タイミ
ング検出センサと、上記基姑タイミングから上記排気セ
ンサによる各気筒の排気ガス61 度を検出するタイミ
ングまでの遅れ時11を予めエンジンの各運転状態に対
応して記憶している第1記憶装置と、各気筒の目標空燃
比からのバラツキに関rる気筒可燃1斗供給量補正値が
記憶される第2記憶装置と、各気筒に供給rる燃料敏を
気筒毎にθM整する1、々料調整装置と、上記排気セン
サ、運転状!塵検出センサ及び基準タイミング検出セン
サの各出力を受け、気筒毎検出可能4:1伝領域におい
ては上記基桑タイミングと上記ジ151記憶装置に記憶
している現時点の運転状態に対応rる各気筒の遅れ時間
データとから現時点での排気センサの検出排気ガス濃度
がどの気筒からのものかを判別し該検出排気ガス濃度に
基いて上記燃料調整装置による当該気筒への燃料供給量
を補正制御するとともに、該補正制御量を当該気筒の1
」標空燃比からのバラツキに関する気筒付燃料供給量補
正値として上記第2記憶装置に記憶さぜる一方、気筒毎
検出不能運転領域では上記排気センサによる検出排気ガ
ス濃度と上記第2記憶装置内の気筒付燃料供給量補正値
とに基いて上記燃料調整装置による各気筒への燃料供給
量を補正制御する制御回路とを備えたことを特徴とする
多気筒エンジンの空燃比制御装置。
(1) An exhaust sensor disposed downstream of the collecting part of the exhaust manifold, an operating state detection sensor that detects the operating state of the engine, a reference timing detection sensor that detects the base 7F timing of the engine, and the above base timing. A first memory device stores in advance the delay time 11 from 11 to the timing at which the exhaust sensor detects 61 degrees of exhaust gas in each cylinder in correspondence with each operating state of the engine; a second storage device in which a cylinder combustible supply amount correction value related to variation is stored; a fuel adjustment device that adjusts the amount of fuel supplied to each cylinder by θM for each cylinder; and the exhaust sensor; Driving letter! Receives each output of the dust detection sensor and the reference timing detection sensor, and in the 4:1 transmission range where each cylinder can be detected, each cylinder corresponds to the above basic timing and the current operating state stored in the above J151 storage device. It is determined from which cylinder the exhaust gas concentration currently detected by the exhaust sensor is coming from from the delay time data of At the same time, the correction control amount is adjusted to 1 of the cylinder.
'' is stored in the second storage device as a cylinder fuel supply amount correction value regarding variations from the standard air-fuel ratio, while in the cylinder-by-cylinder undetectable operating region, the exhaust gas concentration detected by the exhaust sensor and the exhaust gas concentration in the second storage device are and a control circuit that corrects and controls the amount of fuel supplied to each cylinder by the fuel adjustment device based on the cylinder fuel supply amount correction value.
JP21032782A 1982-11-30 1982-11-30 Air-fuel ratio controller of multi-cylinder engine Granted JPS59101562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21032782A JPS59101562A (en) 1982-11-30 1982-11-30 Air-fuel ratio controller of multi-cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21032782A JPS59101562A (en) 1982-11-30 1982-11-30 Air-fuel ratio controller of multi-cylinder engine

Publications (2)

Publication Number Publication Date
JPS59101562A true JPS59101562A (en) 1984-06-12
JPH0337020B2 JPH0337020B2 (en) 1991-06-04

Family

ID=16587581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21032782A Granted JPS59101562A (en) 1982-11-30 1982-11-30 Air-fuel ratio controller of multi-cylinder engine

Country Status (1)

Country Link
JP (1) JPS59101562A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141340U (en) * 1988-03-22 1989-09-28
JPH02181043A (en) * 1989-01-06 1990-07-13 Hitachi Ltd Air-fuel ratio control device for electronic control fuel injection type engine
JPH03194144A (en) * 1989-12-22 1991-08-23 Mitsubishi Electric Corp Air-fuel ratio control device for internal combustion engine
WO1992017696A1 (en) * 1991-03-28 1992-10-15 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Controller of internal combustion engine
US5462037A (en) * 1992-12-02 1995-10-31 Honda Giken Kogyo Kabushiki Kaisha A/F ratio estimator for multicylinder internal combustion engine
EP0688945A2 (en) * 1994-06-20 1995-12-27 Honda Giken Kogyo Kabushiki Kaisha Air/fuel ratio detection system for multicylinder internal combustion engine
US5524598A (en) * 1991-12-27 1996-06-11 Honda Giken Kogyo Kabushiki Kaisha Method for detecting and controlling air-fuel ratio in internal combustion engine
US5531208A (en) * 1993-09-13 1996-07-02 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio feedback control system for internal combustion engine
US5540209A (en) * 1993-09-13 1996-07-30 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio detection system for internal combustion engine
US5548514A (en) * 1994-02-04 1996-08-20 Honda Giken Kogyo Kabushiki Kaisha Air/fuel ratio estimation system for internal combustion engine
US5566071A (en) * 1994-02-04 1996-10-15 Honda Giken Kogyo Kabushiki Kaisha Air/fuel ratio estimation system for internal combustion engine
US5569847A (en) * 1993-09-13 1996-10-29 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio estimator for internal combustion engine
US5623913A (en) * 1995-02-27 1997-04-29 Honda Giken Kogyo Kabushiki Kaisha Fuel injection control apparatus
EP0805268A2 (en) * 1996-05-03 1997-11-05 General Motors Corporation Internal combustion engine control
US5715796A (en) * 1995-02-24 1998-02-10 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system having function of after-start lean-burn control for internal combustion engines
US5732689A (en) * 1995-02-24 1998-03-31 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system for internal combustion engines
EP0959236A2 (en) * 1992-07-03 1999-11-24 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system and cylinder air flow estimation method in internal combustion engine
US7073493B2 (en) 2001-02-05 2006-07-11 Toyota Jidosha Kabushiki Kaisha Control apparatus for multi-cylinder internal combustion engine and control method
DE102006000347B4 (en) * 2005-07-19 2008-06-12 Denso Corp., Kariya Air-fuel ratio control for an internal combustion engine
DE102004017868B4 (en) * 2003-04-14 2017-04-06 Denso Corporation System for calculating an air-fuel ratio of each cylinder of a multi-cylinder internal combustion engine
DE102004036739B4 (en) * 2003-07-30 2017-04-06 Denso Corporation Apparatus for calculating an air-fuel ratio for individual cylinders for a multi-cylinder internal combustion engine

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141340U (en) * 1988-03-22 1989-09-28
JPH02181043A (en) * 1989-01-06 1990-07-13 Hitachi Ltd Air-fuel ratio control device for electronic control fuel injection type engine
JPH03194144A (en) * 1989-12-22 1991-08-23 Mitsubishi Electric Corp Air-fuel ratio control device for internal combustion engine
WO1992017696A1 (en) * 1991-03-28 1992-10-15 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Controller of internal combustion engine
US5329914A (en) * 1991-03-28 1994-07-19 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control device for internal combustion engine
US5524598A (en) * 1991-12-27 1996-06-11 Honda Giken Kogyo Kabushiki Kaisha Method for detecting and controlling air-fuel ratio in internal combustion engine
EP0959236A3 (en) * 1992-07-03 2000-10-04 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system and cylinder air flow estimation method in internal combustion engine
EP0959236A2 (en) * 1992-07-03 1999-11-24 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system and cylinder air flow estimation method in internal combustion engine
US5462037A (en) * 1992-12-02 1995-10-31 Honda Giken Kogyo Kabushiki Kaisha A/F ratio estimator for multicylinder internal combustion engine
US5531208A (en) * 1993-09-13 1996-07-02 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio feedback control system for internal combustion engine
US5540209A (en) * 1993-09-13 1996-07-30 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio detection system for internal combustion engine
US5569847A (en) * 1993-09-13 1996-10-29 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio estimator for internal combustion engine
US5548514A (en) * 1994-02-04 1996-08-20 Honda Giken Kogyo Kabushiki Kaisha Air/fuel ratio estimation system for internal combustion engine
US5566071A (en) * 1994-02-04 1996-10-15 Honda Giken Kogyo Kabushiki Kaisha Air/fuel ratio estimation system for internal combustion engine
US5600056A (en) * 1994-06-20 1997-02-04 Honda Giken Kogyo Kabushiki Kaisha Air/fuel ratio detection system for multicylinder internal combustion engine
EP0688945A2 (en) * 1994-06-20 1995-12-27 Honda Giken Kogyo Kabushiki Kaisha Air/fuel ratio detection system for multicylinder internal combustion engine
EP0688945A3 (en) * 1994-06-20 1996-11-27 Honda Motor Co Ltd Air/fuel ratio detection system for multicylinder internal combustion engine
US5715796A (en) * 1995-02-24 1998-02-10 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system having function of after-start lean-burn control for internal combustion engines
US5732689A (en) * 1995-02-24 1998-03-31 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system for internal combustion engines
US5794604A (en) * 1995-02-24 1998-08-18 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system having function of after-start lean-burn control for internal combustion engines
US5797369A (en) * 1995-02-24 1998-08-25 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system having function of after-start lean-burn control for internal combustion engines
US5839415A (en) * 1995-02-24 1998-11-24 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system having function of after-start lean-burn control for internal combustion engines
US5623913A (en) * 1995-02-27 1997-04-29 Honda Giken Kogyo Kabushiki Kaisha Fuel injection control apparatus
EP0805268A3 (en) * 1996-05-03 2000-03-01 General Motors Corporation Internal combustion engine control
EP0805268A2 (en) * 1996-05-03 1997-11-05 General Motors Corporation Internal combustion engine control
US7073493B2 (en) 2001-02-05 2006-07-11 Toyota Jidosha Kabushiki Kaisha Control apparatus for multi-cylinder internal combustion engine and control method
US7159547B2 (en) 2001-02-05 2007-01-09 Toyota Jidosha Kabushiki Kaisha Control apparatus for multi-cylinder internal combustion engine and control method
US7398772B2 (en) 2001-02-05 2008-07-15 Toyota Jidosha Kabushiki Kaisha Control apparatus for multi-cylinder internal combustion engine and control method
DE102004017868B4 (en) * 2003-04-14 2017-04-06 Denso Corporation System for calculating an air-fuel ratio of each cylinder of a multi-cylinder internal combustion engine
DE102004036739B4 (en) * 2003-07-30 2017-04-06 Denso Corporation Apparatus for calculating an air-fuel ratio for individual cylinders for a multi-cylinder internal combustion engine
DE102006000347B4 (en) * 2005-07-19 2008-06-12 Denso Corp., Kariya Air-fuel ratio control for an internal combustion engine

Also Published As

Publication number Publication date
JPH0337020B2 (en) 1991-06-04

Similar Documents

Publication Publication Date Title
JPS59101562A (en) Air-fuel ratio controller of multi-cylinder engine
US7200988B2 (en) Air-fuel ratio control system and method
US20060207579A1 (en) Control system for internal combustion engine
US4530333A (en) Automobile fuel control system
JPH0833127B2 (en) Air-fuel ratio control device for internal combustion engine
US7162865B2 (en) Method and arrangement for controlling a drive unit having an internal combustion engine
KR100306186B1 (en) Gasoline vapor purging system of interal combustion engine
GB2300278A (en) Controlling evaporated fuel purge device for engine.
JPH0531649B2 (en)
JP3061277B2 (en) Air-fuel ratio learning control method and device
JPS61247839A (en) Fuel ratio control system
JP2002364427A (en) Air-fuel ratio controller for engine
JP3725713B2 (en) Engine air-fuel ratio control device
JPH03275954A (en) Control device for air-fuel ratio of internal combustion engine using fuel of different kind
JPH09287510A (en) Air-fuel ratio controller for internal combustion engine
JPH041439A (en) Air-fuel ratio controller of internal combustion engine
JPH0777145A (en) Engine control device
JP2767345B2 (en) Fuel supply control device for internal combustion engine
JP3601080B2 (en) Air-fuel ratio control device for internal combustion engine
JP2856062B2 (en) Air-fuel ratio control device for internal combustion engine
JP2808214B2 (en) Air-fuel ratio control device for internal combustion engine with evaporative fuel control device
JPH0281937A (en) Air-fuel ratio control device
JPS59224433A (en) Air-fuel ratio controller for gas engine
JPH07139398A (en) Air-fuel ratio control device for internal combustion engine having evaporated fuel treating device
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine