JPS59101556A - Electronically controlled fuel injection device - Google Patents

Electronically controlled fuel injection device

Info

Publication number
JPS59101556A
JPS59101556A JP21106782A JP21106782A JPS59101556A JP S59101556 A JPS59101556 A JP S59101556A JP 21106782 A JP21106782 A JP 21106782A JP 21106782 A JP21106782 A JP 21106782A JP S59101556 A JPS59101556 A JP S59101556A
Authority
JP
Japan
Prior art keywords
injection
acceleration
amount
signal
pulse width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21106782A
Other languages
Japanese (ja)
Inventor
Hatsuo Nagaishi
初雄 永石
Takeshi Kitahara
剛 北原
Yoshiji Shimaoka
嶋岡 義二
Yoshihisa Kawamura
川村 佳久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP21106782A priority Critical patent/JPS59101556A/en
Publication of JPS59101556A publication Critical patent/JPS59101556A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration

Abstract

PURPOSE:To improve responsive performance of acceleration and optimize air-fuel ratio to be maintained, by performing an interruption of injection amount corresponding to the acceleration condition of a vehicle. CONSTITUTION:An injection amount arithmetic circuit 21 calculates an optimum fuel injection amount on the basis of an engine speed N and an intake air amount Qa. An acceleration detector circuit 24, on the basis of a change amount DELTATp of the basic injection pulse width, outputs a basic injection pulse signal Sp to a correction circuit 25 when a vehicle is not in an operating condition of acceleration without requiring interruption injection, while outputs an acceleration signal Salpha having a corresponding pulse width Talpha to an interruption injection circuit 26 when the vehicle is in the operating condition of acceleration with the interruption injection necessary. The interruption injection circuit 26, correcting the pulse width Talpha of the acceleration signal Salpha and calculating an optimum interruption injection amount on the basis of a signal from a water temperature sensor 27, outputs an interruption injection pulse signal Sow corresponding to a pulse width Tow to an injection pulse output circuit 29. An injector 30, being operated by the interruption injection pulse signal Sow or the final injection pulse signal So by the interruption injection pulse width Tow or the final injection pulse width To, injects fuel.

Description

【発明の詳細な説明】 この発明は電子制御燃料噴射装置、詳しくはjK両の加
速時に燃料増量を行う加速増量手段をfボrえた電子制
御燃料噴射装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electronically controlled fuel injection system, and more particularly, to an improvement in an electronically controlled fuel injection system in which acceleration increasing means for increasing the amount of fuel when both J and K cars are accelerated.

従来の電子制御燃料噴射装置としては、日産自動車Il
l昭和54年6月発行1979年技術解説WrE CC
S  L系エンジン」に記載されたものが知られている
。この電子制御P、料噴射装置は、各種センサ類によっ
てエンジンの運転状態を感知し、該センサ類からの検出
信号に)吉づいてコン1−ロールユニットで適正な噴射
量を決定し、該ユニットからの制御信号(噴射パルス信
号)によりインジェクタを作動させるものである。コン
(−ロールユニノ(−は、ff1llff14こ楯略示
ずように、エンジンの回転速度(クランク角センサlに
よる)および吸入空気量(エアフロメータ2による)に
基づいて基本噴射量を決定する噴射量演算回路11と、
冷却水温(水温センサ3による)、排気酸素濃度(0,
センサ4による)等により各種補正増量を決定し、基本
噴射量を修正する補正回路12と、この修正後の噴射量
に対応したパルス幅の噴射パルス信号を、噴射タイミン
グ信号(クランク角センサ1による)に基づいて(エン
ジン1回転毎に)インジェクタ6に出力する噴射パルス
出力回路13と、を備えている。また、このコントロー
ルユニットは割込パルス演算回路14を有しており、こ
の割込ハルス演算回路14はスロソトルハルブスイソチ
7のアイドル接点がOFFになったとき(絞り弁が全開
でなくなったとき)、冷却水温に応して前記基本噴射量
を増量補正した信号を噴射パルス出力回路13に出力し
ている。
As a conventional electronically controlled fuel injection system, Nissan Motor Co., Ltd.
l Published June 1979 Technical Commentary WrE CC
The one described in ``SL series engine'' is known. This electronically controlled fuel injection device detects the operating state of the engine using various sensors, determines an appropriate injection amount using a control unit based on detection signals from the sensors, and The injector is operated by a control signal (injection pulse signal) from the injector. Control (-roll unino (- means ff1llff14) Injection amount calculation that determines the basic injection amount based on the engine rotational speed (based on crank angle sensor 1) and intake air amount (based on air flow meter 2) (not shown) circuit 11;
Cooling water temperature (based on water temperature sensor 3), exhaust oxygen concentration (0,
A correction circuit 12 determines various correction increases using sensors such as sensor 4 and corrects the basic injection amount, and an injection pulse signal with a pulse width corresponding to the corrected injection amount is sent to an injection timing signal (based on crank angle sensor 1). ) based on the injection pulse output circuit 13 that outputs an output to the injector 6 (for each engine rotation). Additionally, this control unit has an interrupt pulse calculation circuit 14, and this interrupt pulse calculation circuit 14 is activated when the idle contact of the throttle valve is turned OFF (when the throttle valve is no longer fully open). ), and outputs to the injection pulse output circuit 13 a signal obtained by increasing and correcting the basic injection amount according to the cooling water temperature.

しかしながら、このような従来の電子制御′燃料噴射装
置にあっては、車両加速時の燃料増量は前記アイドル接
点がONからOFFになったとき(絞り弁が全閉でなく
なったとき)のみ、割込パルス演算回路14で冷却水温
に応じて演算したパルス幅の割込噴射パルス信号に基づ
いて割込噴射(追加噴射)を行うようにしていたため、
絞り弁がアイドル位置にあるとき(全閉)からの車両加
速運転以外は、例えばアイドル接点OFF時からさらに
絞り弁を踏込む加速運転時、該コントロールユニットに
よる加速増量補正を行わない場合がありエンジンの加速
応答性能が不十分になる虞れがあり、また、アイドル接
点がON(全閉)からOFFになると必然的に加速増量
補正を行うため、絞り弁をゆっくりと踏込んだ状態(極
めてゆるやかな加速状態)でも加速増量補正が行われる
ことがあり燃料噴射量が過多となり、エンジンの失火を
惹起して運転性能の悪化、C01HC等の排出量が増加
する虞れがあった。
However, in such a conventional electronically controlled fuel injection system, the amount of fuel increases when the vehicle accelerates only when the idle contact changes from ON to OFF (when the throttle valve is no longer fully closed). Since the interrupt injection (additional injection) was performed based on the interrupt injection pulse signal with the pulse width calculated by the injection pulse calculation circuit 14 according to the cooling water temperature,
When the vehicle is not accelerating when the throttle valve is in the idle position (fully closed), for example, when the throttle valve is further depressed after the idle contact is OFF, the control unit may not perform acceleration increase correction. There is a risk that the acceleration response performance of Acceleration increase correction may be performed even in a normal acceleration state), resulting in an excessive amount of fuel injection, which may cause misfire of the engine, resulting in deterioration of driving performance and an increase in emissions such as CO1HC.

この発明はこのような従来の問題点に着目してなされた
もので、噴射パルス信号のパルス幅の急変または吸入空
気量の急増により車両の加速状態を判別し、該加速状態
に対応した噴射量の割込噴射を行うことにより、エンジ
ンの加速運転時全般にわたって該加速状態に最適の加速
増量補正を行い加速応答性能を向上させるとともに、最
適空燃比を維持して運転性能の悪化および排気組成の悪
化を防止することを目的としている。
This invention was made in view of these conventional problems, and it determines the acceleration state of the vehicle based on a sudden change in the pulse width of the injection pulse signal or a sudden increase in the amount of intake air, and determines the injection amount corresponding to the acceleration state. By performing interrupt injection, the optimum acceleration increase correction is made for the acceleration state throughout the engine's acceleration operation, improving acceleration response performance, and maintaining the optimum air-fuel ratio to prevent deterioration of driving performance and reduce exhaust composition. The purpose is to prevent deterioration.

この発明に係る電子制御燃料噴射装置は、エンジンの運
転状態を検出して検出信号を出力するセンサと、該検出
信号に基づいて該運転状態に適応した噴射量を決定し、
該噴射量に対応するパルス幅の噴射パルス信号を出力す
るコントロールユニット 作動して燃料を噴射するインジェクタと、を備えている
。前記コントロールユニットは、エンジンの回転数と吸
入空気量に基づいて噴射量を演算し、該噴射量に対応し
たパルス幅の噴射パルス信号を出力する噴射量演算回路
と、該噴射パルス信号のパルス幅の変化量または前記吸
入空気量の変化量を所定値と比較して車両の加速状態を
判別し、該加速状態に対応した加速信号を出力する加速
検出回路と、該加速信号により加速状態に適応した割込
噴射量を演算し、該割込噴射量に対応したパルス幅の割
込噴射パルス信号を出力する割込噴射回路と、前記噴射
tftffl算回路および割込噴射回路からの出力信号
に基づいて前記インジェクタに噴射パルス信号を出力す
る噴射パルス出力回路と、を有している。
The electronically controlled fuel injection device according to the present invention includes a sensor that detects the operating state of the engine and outputs a detection signal, and determines an injection amount adapted to the operating state based on the detection signal,
The fuel injection device includes an injector that injects fuel by operating a control unit that outputs an injection pulse signal with a pulse width corresponding to the injection amount. The control unit includes an injection amount calculation circuit that calculates an injection amount based on the engine rotation speed and intake air amount, and outputs an injection pulse signal with a pulse width corresponding to the injection amount, and a pulse width of the injection pulse signal. an acceleration detection circuit that determines the acceleration state of the vehicle by comparing the amount of change in the intake air amount or the amount of change in the intake air amount with a predetermined value, and outputs an acceleration signal corresponding to the acceleration state, and adapts to the acceleration state using the acceleration signal. an interrupt injection circuit that calculates the interrupt injection amount and outputs an interrupt injection pulse signal with a pulse width corresponding to the interrupt injection amount, and an output signal from the injection tftffl calculation circuit and the interrupt injection circuit. and an injection pulse output circuit that outputs an injection pulse signal to the injector.

以下、図面により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第2図〜第4図は本発明に係る電子制御燃料噴射装置の
一実施例を示すものである。第2図は電子制御燃料噴射
装置のコントロールユニットをブロックダイヤグラムで
表したものであり、第3図は本発明を、マイクロコンピ
ュータ(コントロールユニット)で信号処理を行う場合
のプログラムのフローチャートである。第2図において
、21は噴射量演算回路であり、この噴射量演算回路2
Iは、回転数センサ(例えばりランク角センサ)22で
検出したエンジンの回転数Nと、吸気量センサ(例えば
エアフロメータ)23で検出した吸入空気量Qaと、に
基づいてエンジンの運転状態に最適の燃料噴射間(基本
噴射量)を演算している。噴射量演算回路21は基本噴
射量に対応した基本噴射パルス幅”r pを有した基本
噴射パルス信号spを加速検出回路24に出力しており
、加速検出回路24は基本噴射パルス’!?W T p
の変化量ΔTpに基づいて車両の運転状態を判別しζい
る。そして、この加速検出回路24は車両が加速運転状
態にないとき、および加速運転状態にあっても割込噴射
を必要としないときには基本噴射パルス信号spを補正
回1?825に出力し、車両が加速運転状態にあり、か
つ割込噴射を必要とするときにはその加速運転状態に対
応したパルス幅Tαを有した加速信号Sαを割込噴射回
路26に出力する。補正回路25は、エンジンの冷却水
温を検出する水温センサ27、排気中の酸素濃度を検出
する。2センサ28等各種センザからの信号に基づいて
枯木噴射パルス信号Spの基本噴射パルス幅Tpを補正
し、最終噴射パルス幅TOを有する最終噴射パルス信号
SOを噴射パルス出力回路2つに出力する。一方、割込
噴射回路26は、水温センサ27からの信号に基づいて
加速信号Sαのパルス幅Tαを補正して当該冷却水温に
おける加速運転状態に最適の割込噴射量を演算し、この
割込噴射fl ニ、tt Ji>したパルス幅Towの
割込噴射パルス信号So−を噴射パルス出力回路29に
出力する。噴射パルス出力回路29は、割込噴射パルス
信号S咋が入力されると、直ちに割込噴射パルス信号S
owをインジェクタ30に出力し、最終噴射パルス信号
SOが入力されると、その入力が正規の噴射タイミング
であるかをクランク角センサからの信号に基づいて判別
し、正規の噴射タイミングでないときには出力せず、正
規の噴射タイミングであるときにのみ最終噴射パルス信
号SOをインジェクタ30に出力する。インジェクタ3
0は割込噴射パルス信号S〇−または最終噴射ノマルス
信号SOが入力されると、割込噴射パルス幅Towまた
は最終噴射パルス幅TOだけ作動して燃料を噴射する。
2 to 4 show an embodiment of an electronically controlled fuel injection device according to the present invention. FIG. 2 is a block diagram showing the control unit of the electronically controlled fuel injection system, and FIG. 3 is a flowchart of a program when signal processing is performed by a microcomputer (control unit) according to the present invention. In FIG. 2, 21 is an injection amount calculation circuit, and this injection amount calculation circuit 2
I determines the operating state of the engine based on the engine rotation speed N detected by a rotation speed sensor (for example, a rank angle sensor) 22 and the intake air amount Qa detected by an intake air amount sensor (for example, an air flow meter) 23. The optimal fuel injection interval (basic injection amount) is calculated. The injection amount calculation circuit 21 outputs a basic injection pulse signal sp having a basic injection pulse width "rp" corresponding to the basic injection amount to the acceleration detection circuit 24, and the acceleration detection circuit 24 outputs the basic injection pulse signal "sp" having a basic injection pulse width "rp" corresponding to the basic injection amount. T p
The driving state of the vehicle is determined based on the amount of change ΔTp in ζ. Then, this acceleration detection circuit 24 outputs the basic injection pulse signal SP to the correction time 1?825 when the vehicle is not in an accelerating driving state, and when interrupt injection is not required even if the vehicle is in an accelerating driving state. When the engine is in an accelerating operating state and requires interrupt injection, an acceleration signal Sα having a pulse width Tα corresponding to the accelerating operating state is output to the interrupt injection circuit 26. The correction circuit 25 includes a water temperature sensor 27 that detects the engine cooling water temperature and detects the oxygen concentration in the exhaust gas. The basic injection pulse width Tp of the dead wood injection pulse signal Sp is corrected based on signals from various sensors such as the second sensor 28, and a final injection pulse signal SO having a final injection pulse width TO is output to two injection pulse output circuits. On the other hand, the interrupt injection circuit 26 corrects the pulse width Tα of the acceleration signal Sα based on the signal from the water temperature sensor 27, calculates the optimal interrupt injection amount for the acceleration operation state at the cooling water temperature, and An interrupt injection pulse signal So- having a pulse width Tow with the injection fl D, tt Ji> is output to the injection pulse output circuit 29. When the injection pulse output circuit 29 receives the interruption injection pulse signal S, the injection pulse output circuit 29 immediately outputs the interruption injection pulse signal S.
OW is output to the injector 30, and when the final injection pulse signal SO is input, it is determined whether the input is a regular injection timing based on the signal from the crank angle sensor, and if it is not the regular injection timing, it is not output. First, the final injection pulse signal SO is output to the injector 30 only at the regular injection timing. Injector 3
0 operates by the interrupt injection pulse width To or the final injection pulse width TO to inject fuel when the interrupt injection pulse signal SO- or the final injection normal signal SO is input.

第3図はこの電子制御燃料噴射装置の制御J11プログ
ラムを示すフローチャートであり、このフローは例えば
所定時間(10m!I)に−庶流れる。
FIG. 3 is a flow chart showing the control J11 program of this electronically controlled fuel injection system, and this flow is executed, for example, at a predetermined time (10 m!I).

まず、噴射量演算回路21において、吸入空気量Qaお
よびエンジン回転数Nに基づいて基本噴射パルス幅1’
 I)が次式で示すように演算される。
First, in the injection amount calculation circuit 21, the basic injection pulse width 1' is calculated based on the intake air amount Qa and the engine speed N.
I) is calculated as shown in the following equation.

ルス信号Spが]Qms毎に加速検出回路24に入力さ
れており、加速検出回路24は、まず基本噴射パルス信
号spが入力される毎に、前回の基本噴射パルス信号S
poの基本噴射パルス幅Tpoが所定値(5ms)より
大きいか否かを判別する。
The pulse signal Sp is input to the acceleration detection circuit 24 every Qms, and the acceleration detection circuit 24 first detects the previous basic injection pulse signal S every time the basic injection pulse signal sp is input.
It is determined whether the basic injection pulse width Tpo of po is larger than a predetermined value (5 ms).

そしてT po> 5 msのときには割込噴射は不磨
す互であると判断しζ、今回の基本噴射パルス信lSp
を補正回路25に出力し、補正回路25におもて、この
基本噴射パルス信号Spの基本噴射ノクルス幅Tpに各
種センサ(水温センサ27.0□センザ28等)からの
検出信号に基づく補正係数を乗じてエンジンに最適の最
終噴射パルス幅TOが演算される。すなわち、最終噴射
パルス幅TOは次式に従って演算される。
Then, when T po > 5 ms, it is determined that the interrupt injection is not possible, and the current basic injection pulse signal lSp
is outputted to the correction circuit 25, and the correction circuit 25 applies a correction coefficient based on detection signals from various sensors (water temperature sensor 27.0□ sensor 28, etc.) to the basic injection Noculus width Tp of this basic injection pulse signal Sp. The optimum final injection pulse width TO for the engine is calculated by multiplying by . That is, the final injection pulse width TO is calculated according to the following equation.

To=Tp X (COEF) X (^LPII^)
+Tsここで、C0EFは水温増量補正、全開増量その
他の補正係数、ALI’)IA ハo□センサ2B (
D フィードバンク用補正係数、Tsはインジェクタ3
0の不感パルス幅である。
To=Tp X (COEF) X (^LPII^)
+Ts Here, C0EF is water temperature increase correction, full-open increase and other correction coefficients, ALI')IA Hao□Sensor 2B (
D Correction coefficient for feed bank, Ts is injector 3
This is an insensitive pulse width of 0.

この最終噴射パルス幅TOを有した最終噴射パルス信号
SOが噴射パルス出力回路29に人力され、噴射パルス
出力回路29はエンジンが1回転して正規の噴射時期で
あるか否かをクランク角センサからの信号により判別す
る。正規の噴射時期であれば、最終噴射パルス信号SO
をインジェクタ30に出力してインジェクタ30を作ル
ヌ信号SOを出力せず、フローはスタートに戻る。
The final injection pulse signal SO having the final injection pulse width TO is manually inputted to the injection pulse output circuit 29, and the injection pulse output circuit 29 detects whether or not it is the normal injection timing after the engine has made one revolution from the crank angle sensor. Distinguish by the signal. If the injection timing is normal, the final injection pulse signal SO
is output to the injector 30 to generate the injector 30.The flow returns to the start without outputting the lune signal SO.

一方、加速検出回路24は、Tpo<5+++!Iのと
きには、前回基本噴射パルス信号Spoのパルス幅’T
’ poと今回基本噴射パルス信号Spのパルス幅”r
 pとの差(ΔT p −1’ p −T po)が正
であるか否かを判別する。そして、ΔTp<Oのときに
は、加速運転状態にないと判断して、基本噴射パルス信
号]゛pを補正回路25に出力して前述同様のプログラ
ムが行われ、Δ]” p > Qのときには、さらに差
ΔTpが所定値(1ms)より大きいか否かを判別する
。ΔTp≦l msのときには、加速運転状態にあるが
その加速が緩やかなもので割込噴射を行う必要がないと
判断して基本噴射パルス信号Spを補正回路25に出力
し、ΔT p > l msのときには、差Δ1゛p、
ずなわち加速運転状態に対応した加速パルス幅Tαを設
定する。ずなわち、ΔTp≦2+n5(ln+s<ΔT
p≦2m5)のときにはTα−3ms、ΔTp≦3ms
(2ms<ΔTp≦3m5)のときには′rα−611
13、Δ1’ p > 3 msのときにはT α−6
msを設定し、このパルス幅Tαを有した加速信号Sα
を割込噴射回路26に出力する。割込噴射回路26はこ
の加速信号Sαおよび冷却水温信号に基づいて当該冷却
水温における加速状態に適応した割込噴射パルス幅To
wを次式に従って演算するつT ow= T rx x
 TWKF ここで、TwKFは冷却水温による補正係数である。そ
して、この割込噴射パルス幅Towを有した割込噴射パ
ルス信号So−が噴射パルス出力回路29に入力され、
噴射パルス出力回路29は割込噴射パルス信号Sowが
入力されると、直ちに割込噴射パルス信号5oiyをイ
ンジェクタ30に出力する。インジェクタ30は割込噴
射パルス幅Towの期間だけ作動して、割込噴射を行う
On the other hand, the acceleration detection circuit 24 detects that Tpo<5+++! When I, the pulse width 'T of the previous basic injection pulse signal Spo
'po and the pulse width of the current basic injection pulse signal Sp"r
It is determined whether the difference from p (ΔT p −1′ p −T po) is positive. Then, when ΔTp<O, it is determined that the engine is not in an accelerating operation state, and the basic injection pulse signal ゛p is output to the correction circuit 25, and the same program as described above is performed, and when Δ]''p>Q, Furthermore, it is determined whether the difference ΔTp is larger than a predetermined value (1 ms).When ΔTp≦1 ms, it is determined that although the acceleration operation is in progress, the acceleration is gradual and there is no need to perform interrupt injection. The basic injection pulse signal Sp is output to the correction circuit 25, and when ΔT p > l ms, the difference Δ1゛p,
That is, the acceleration pulse width Tα corresponding to the acceleration driving state is set. That is, ΔTp≦2+n5(ln+s<ΔT
p≦2m5), Tα-3ms, ΔTp≦3ms
When (2ms<ΔTp≦3m5), 'rα-611
13, T α-6 when Δ1' p > 3 ms
ms is set, and an acceleration signal Sα having this pulse width Tα
is output to the interrupt injection circuit 26. Based on the acceleration signal Sα and the cooling water temperature signal, the interruption injection circuit 26 generates an interruption injection pulse width To adapted to the acceleration state at the cooling water temperature.
Calculate w according to the following formula: T ow = T rx x
TWKF Here, TwKF is a correction coefficient based on the cooling water temperature. Then, the interrupt injection pulse signal So- having this interrupt injection pulse width Tow is input to the injection pulse output circuit 29,
When the injection pulse output circuit 29 receives the interruption injection pulse signal Sow, it immediately outputs an interruption injection pulse signal 5oiy to the injector 30. The injector 30 operates only during the period of the interrupt injection pulse width Tow to perform the interrupt injection.

この正規の噴射と割込噴射とを従来の割込噴射と対比し
て示したのが第4図A−Gである。
FIGS. 4A to 4G show the regular injection and the interrupt injection in comparison with the conventional interrupt injection.

今、スロットルバルブの全閉状態からアクセルを踏込ん
で加速した状態を考えると、従来例のスロットルバルブ
スイッチ7からの信号は第4図AのようにONからOF
Fに変わる。このときの吸入空気量Qaの変化を第4図
Bのように考えると、基本噴射パルス幅TI)は第4図
りのように変化する。しかし、従来の割込噴射を行わな
い場合の噴射パルス信号は、第4図Eに示すように、加
速後パルス幅の大きい噴射パルス信号を出力するまで最
大エンジ回転量転遅れる事となり、トルクは吸入・圧縮
行程と合わせて最大エンジン2回転遅れる。また、従来
のスロットルバルブスイッチ7の信号により割込噴射を
行う場合の噴射パルス信号は、第4図Fに示すようにな
り、その割込噴射パルス信号のパルス幅は加速前の正規
の噴射パルス信号のパルス幅と同じパルス幅である。し
たがって、加速状態に夕1応した■の割込噴射量を得る
ことができず、十分なトルクを得ることができなかった
り、失火あるいは排ガス性能の■(化を招く。しかしな
がら、本実施例にあっては、前述のように、吸入空気量
Qaの変化に対応して変化する基本噴射パルス幅1゛p
の差(変化量)Δ1゛pに基づいて割込噴射パルス信号
Sowのパルス幅]゛0凶を演算しており、その割込噴
射パルス信号3owおよび正規の噴射パルス信号SOは
、第4図Gに示すようになる。すなわち、基本噴射パル
ス幅’rpの変化量Δ’rpが1.4msおよび2.6
msであるのに対応して、パルス幅Towが3msおよ
び6msである割込噴射パルス信号S oyh<出力さ
れている。したがって、加速状態に対応した量の割込噴
射燃料を供給することができ、加速時の空燃比を最適な
ものとすることができる。その結果、十分なトルクを得
ることができるとともに排ガス性能を改善することがで
きる。なお、第4図Cはエンジンのクランク角信号(1
80’信号)を示している。
Now, considering the state where the throttle valve is fully closed and the accelerator is pressed to accelerate, the signal from the conventional throttle valve switch 7 changes from ON to OFF as shown in Fig. 4A.
Changes to F. If the change in the intake air amount Qa at this time is considered as shown in FIG. 4B, the basic injection pulse width TI) changes as shown in FIG. However, as shown in Fig. 4E, when conventional interrupt injection is not performed, the injection pulse signal is delayed by the maximum engine rotation amount until the injection pulse signal with a large pulse width is output after acceleration, and the torque is Including the intake and compression strokes, the maximum engine speed is delayed by 2 revolutions. Furthermore, the injection pulse signal when interrupt injection is performed by the signal of the conventional throttle valve switch 7 is as shown in FIG. The pulse width is the same as that of the signal. Therefore, it is not possible to obtain the interrupt injection amount corresponding to the acceleration state, resulting in failure to obtain sufficient torque, misfire, or deterioration of exhaust gas performance.However, in this embodiment, If so, as described above, the basic injection pulse width 1゛p changes in response to changes in the intake air amount Qa.
The pulse width of the interrupt injection pulse signal Sow is calculated based on the difference (change amount) Δ1゛p, and the interrupt injection pulse signal 3ow and the normal injection pulse signal SO are shown in FIG. It becomes as shown in G. That is, the amount of change Δ'rp in the basic injection pulse width 'rp is 1.4 ms and 2.6 ms.
ms, interrupt injection pulse signals Soyh<with pulse widths Tow of 3 ms and 6 ms are output. Therefore, it is possible to supply an amount of interrupt injection fuel corresponding to the acceleration state, and it is possible to optimize the air-fuel ratio during acceleration. As a result, sufficient torque can be obtained and exhaust gas performance can be improved. In addition, Fig. 4C shows the engine crank angle signal (1
80' signal).

第5図には本発明の他の実施例を示す。FIG. 5 shows another embodiment of the invention.

本実施例は加速運転状態を吸入空気量の変化量るこ基づ
いて検出するものであり、第5図はその制御プログラム
のフローチャートを示したものである。第5図の説明に
あたり第2図〜第4図に示した実施例の符号と同一符号
Gこつ5zでは説明を省略して使用する。
In this embodiment, the acceleration driving state is detected based on the amount of change in the amount of intake air, and FIG. 5 shows a flowchart of the control program. In the description of FIG. 5, the same reference numerals Gkotsu 5z as those of the embodiment shown in FIGS. 2 to 4 will be used without explanation.

このプログラムは所定時間毎(例えば10m5毎)に実
行されるが、まず、吸入空気量を読み込み吸入空気量信
号Q1が入力される。この吸入空気量信号Qaは吸入空
気量に反比例した信号であり、この吸入空気量信号Q5
が入力されると前回の吸入空気量信号Q5oと比較して
加速運転状態にあるか否か、また加速の程度を判別する
。ずなわら、まず、今回吸入空気量信号Q5を前回吸入
空気量信号Q5oのに倍と比較し、Q m > %−Q
 、10のときには、今回吸入空気流星が前回吸入空気
流量のR借り下であるので、加速運転状態にないか、加
速運転状態であっても緩やかな加速であり、割込噴射の
必要がないと′+II断する。このとき、基本噴射パル
ス幅′Fpおよび最終噴射パルス幅TOは次式で演算さ
れる。
This program is executed at predetermined intervals (for example, every 10 m5), but first the intake air amount is read and the intake air amount signal Q1 is input. This intake air amount signal Qa is a signal inversely proportional to the intake air amount, and this intake air amount signal Q5
When inputted, it is compared with the previous intake air amount signal Q5o to determine whether the engine is in an accelerated driving state and the degree of acceleration. First, compare the current intake air amount signal Q5 with the previous intake air amount signal Q5o, and find that Q m > % - Q
, 10, the intake air meteor this time is R borrowed from the previous intake air flow rate, so there is no acceleration operation, or even if it is acceleration operation, it is a gradual acceleration and there is no need for interrupt injection. '+II cut. At this time, the basic injection pulse width 'Fp and the final injection pulse width TO are calculated by the following equation.

工 T p=      、 1”o= ′rpX(:0E
Fx 八LPHA+T  !a8 そして以後のプログラムは前述の実施例と同様である。
T p= , 1”o= ’rpX(:0E
Fx 8LPHA+T! a8 The subsequent program is the same as in the previous embodiment.

一方、Q :x <%Qioのときには、吸入空気量の
変化量、すなわち加速の程度に応じて割込噴射パルス幅
′Fαを設定する。ずなわち、Qa>!4Qaoのとき
には、Tcx= L ms、 Qa >%Q5oのとき
にばTtx−2111!l、 Q 5 < ’i4 Q
’aoのときにはTα−3m5を設定する。そして、こ
の割込噴射パルス幅Tαを冷却水温に基づいて補正を行
い前述した実施例と同様に割込噴射を行う。
On the other hand, when Q:x<%Qio, the interrupt injection pulse width 'Fα is set according to the amount of change in the amount of intake air, that is, the degree of acceleration. Qa>! When 4Qao, Tcx=L ms, when Qa>%Q5o, Ttx-2111! l, Q 5 <'i4 Q
When 'ao', Tα-3m5 is set. Then, this interrupt injection pulse width Tα is corrected based on the cooling water temperature, and interrupt injection is performed in the same manner as in the embodiment described above.

したがって、この実施例にあっては、基本噴射パルス幅
Tpを演算する前に割込噴射の必要性とそのパルス幅T
αを演算するため、割込噴射を行うまでに要する時間を
基本噴射パルス幅Tpの演算に要する時間(例えばM 
C6802で約2〜3m5)だけ短縮できる。
Therefore, in this embodiment, the necessity of interrupt injection and its pulse width T are determined before calculating the basic injection pulse width Tp.
In order to calculate α, the time required to perform interrupt injection is the time required to calculate the basic injection pulse width Tp (for example, M
With C6802, it can be shortened by about 2 to 3 m5).

以上説明してきたように、この発明によれば、エンジン
のあらゆる加速運転状態にあっても該状態に最適の空燃
比が得られる結果、加速応答性能を含んで運転性能全般
に渡って向上させることができるとともに、排気組成の
悪化(COlHC等の増加)を防止することができる。
As explained above, according to the present invention, even if the engine is in any acceleration operating state, the optimum air-fuel ratio can be obtained for that state, and as a result, overall driving performance including acceleration response performance can be improved. At the same time, deterioration of the exhaust gas composition (increase in COlHC, etc.) can be prevented.

また、吸入空気量の変化量により加速状態を↑り別する
実施例にあっては、基本噴射量を演算する簡に割込噴射
量を演算するため、さら(こ加速応答性能を向上させる
ことができる。
In addition, in the embodiment in which the acceleration state is classified according to the amount of change in the intake air amount, since the interrupt injection amount can be calculated simply by calculating the basic injection amount, it is possible to further improve the acceleration response performance. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電子制御燃料噴射装置のコン1〜ロ−ユ
ニッ1−をブ(+・ツクダイヤグラムで表したもの、第
2図はこの発明の電子制御燃料噴射装置の一実施例を示
すそのコントロールユニットをブロックダイヤグラムで
表したもの、第3図は該コントロールユニットで信号処
理を行う場合のフローチャ−+−1第4図Δ〜Gはこの
発明による正規の噴射と割込噴射を従来のそれと比較し
て示すグラフ、第5図はこの発明の他の実施例を示す第
3図と同様のフローチャートである。 21−−一噴射量演算回路、 24− 加速検出回路、 26−−−割込噴射回路、 29−  噴射パルス出力回路、 22.23.27.28、−−−−−−センサ、30−
一 −インジェクタ。
Fig. 1 shows a conventional electronically controlled fuel injection system in which the controller 1 to low unit 1 are shown in a block diagram, and Fig. 2 shows an embodiment of the electronically controlled fuel injection system of the present invention. The control unit is represented by a block diagram, and FIG. 3 shows a flowchart when signal processing is performed by the control unit. A graph shown in comparison thereto, FIG. 5, is a flowchart similar to FIG. 3 showing another embodiment of the present invention. 21--Injection amount calculation circuit, 24-Acceleration detection circuit, 26--Division injection circuit, 29- injection pulse output circuit, 22.23.27.28, ------- sensor, 30-
1 - Injector.

Claims (1)

【特許請求の範囲】[Claims] エンジンの運転状態をセン4ノ”により検出して該セン
サからの検出信号に21(ついてコントロ−ルユニソ1
−が、該運転状態に適応した噴射量を決定し該噴射量に
対応したパルス幅の噴射パルス信号によりインジェクタ
を作動さ−ける電子制御燃料噴射装置において、前記コ
ントロールユニットが、エンジンの回転数と吸入空気量
に基ついて噴射量を演算し、該噴射量に対応したパルス
幅をイjする噴射パルス信号を出力する噴射量演算回路
と、該噴射パルス信号のパルス幅の変化量または前記吸
入空気量の変化量を所定値と比較して車両の加速状態を
判別し、該加速状態にり1応した加速信号を出力する加
速検出回路と、該加速信号により加速状態に適応した割
込噴射量を演算し、該割込噴射量に対応したパルス幅の
割込噴射パルス信号を出力する割込噴射回路と、前記噴
射量演算回路、13よび割込噴射回路からの信号に基づ
いて前記インジェクタに噴射パルス信号を出力する噴射
パルス出力回路と、を有することを特徴とする電子制御
燃料噴射装置。
The operating condition of the engine is detected by the sensor 4", and the detection signal from the sensor is sent to the control unit 1.
- an electronically controlled fuel injection device in which the control unit determines an injection amount adapted to the operating condition and operates the injector with an injection pulse signal having a pulse width corresponding to the injection amount; an injection amount calculation circuit that calculates an injection amount based on the amount of intake air and outputs an injection pulse signal having a pulse width corresponding to the injection amount; and an amount of change in the pulse width of the injection pulse signal or the intake air. An acceleration detection circuit that determines the acceleration state of the vehicle by comparing the amount of change in the amount with a predetermined value and outputs an acceleration signal corresponding to the acceleration state, and an interrupt injection amount adapted to the acceleration state based on the acceleration signal. an interrupt injection circuit that calculates and outputs an interrupt injection pulse signal with a pulse width corresponding to the interrupt injection amount; An electronically controlled fuel injection device comprising: an injection pulse output circuit that outputs an injection pulse signal.
JP21106782A 1982-11-30 1982-11-30 Electronically controlled fuel injection device Pending JPS59101556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21106782A JPS59101556A (en) 1982-11-30 1982-11-30 Electronically controlled fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21106782A JPS59101556A (en) 1982-11-30 1982-11-30 Electronically controlled fuel injection device

Publications (1)

Publication Number Publication Date
JPS59101556A true JPS59101556A (en) 1984-06-12

Family

ID=16599851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21106782A Pending JPS59101556A (en) 1982-11-30 1982-11-30 Electronically controlled fuel injection device

Country Status (1)

Country Link
JP (1) JPS59101556A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038145U (en) * 1983-08-24 1985-03-16 日本電子機器株式会社 Electronically controlled fuel injection system for internal combustion engines
EP0316772A2 (en) * 1987-11-10 1989-05-24 Japan Electronic Control Systems Co., Ltd. Control system for internal combustion engine with improved transition characteristcs
EP0345814A2 (en) * 1988-06-10 1989-12-13 Hitachi, Ltd. Electric control apparatus for automobile and method of compensating for time delay of measured data
US4922877A (en) * 1988-06-03 1990-05-08 Nissan Motor Company, Limited System and method for controlling fuel injection quantity for internal combustion engine
JPH03242440A (en) * 1990-02-16 1991-10-29 Mitsubishi Electric Corp Fuel injection device of internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55131536A (en) * 1979-04-02 1980-10-13 Nissan Motor Co Ltd Fuel injector
JPS575524A (en) * 1980-06-11 1982-01-12 Honda Motor Co Ltd Fuel correcting device in acceleration of efi engine
JPS57188738A (en) * 1981-05-18 1982-11-19 Nippon Denso Co Ltd Fuel control method for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55131536A (en) * 1979-04-02 1980-10-13 Nissan Motor Co Ltd Fuel injector
JPS575524A (en) * 1980-06-11 1982-01-12 Honda Motor Co Ltd Fuel correcting device in acceleration of efi engine
JPS57188738A (en) * 1981-05-18 1982-11-19 Nippon Denso Co Ltd Fuel control method for internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038145U (en) * 1983-08-24 1985-03-16 日本電子機器株式会社 Electronically controlled fuel injection system for internal combustion engines
EP0316772A2 (en) * 1987-11-10 1989-05-24 Japan Electronic Control Systems Co., Ltd. Control system for internal combustion engine with improved transition characteristcs
US4986245A (en) * 1987-11-10 1991-01-22 Japan Electronic Control Systems Company, Limited Control system for internal combustion engine with improved transition characteristics
US4922877A (en) * 1988-06-03 1990-05-08 Nissan Motor Company, Limited System and method for controlling fuel injection quantity for internal combustion engine
EP0345814A2 (en) * 1988-06-10 1989-12-13 Hitachi, Ltd. Electric control apparatus for automobile and method of compensating for time delay of measured data
US5041981A (en) * 1988-06-10 1991-08-20 Hitachi, Ltd. Electric control apparatus for automobile and method of compensating for time delay of measured data
JPH03242440A (en) * 1990-02-16 1991-10-29 Mitsubishi Electric Corp Fuel injection device of internal combustion engine

Similar Documents

Publication Publication Date Title
US6751950B2 (en) Emission control apparatus for engine
JP2000314342A (en) Air-fuel ratio control device for internal combustion engine
JPS6155607B2 (en)
JPH0251052B2 (en)
JPS58214629A (en) Electronically controlled fuel injection device in internal-combustion engine
JPS59101556A (en) Electronically controlled fuel injection device
JP2583662B2 (en) Engine air-fuel ratio control device
JPH0119057B2 (en)
JP2000310140A (en) Air-fuel ratio control device for internal combustion engine
WO2019135276A1 (en) Method for controlling air-fuel ratio of internal combustion engine, and air-fuel ratio control device
JPH0689686B2 (en) Air-fuel ratio controller for engine
JP2976563B2 (en) Air-fuel ratio control device for internal combustion engine
JPH057546B2 (en)
JPH05141294A (en) Air/fuel ratio control method
JPS58217745A (en) Air-fuel ratio control method for internal-combustion engine
JPH0372824B2 (en)
JPH05202782A (en) Control device of internal combustion engine
JP3966177B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0475382B2 (en)
JPS59183038A (en) Electronic engine control apparatus
JPH0510490B2 (en)
JPH0646013B2 (en) Air-fuel ratio control method for fuel supply device for internal combustion engine
JP2881968B2 (en) Engine air-fuel ratio control device
JP2712837B2 (en) Control device for internal combustion engine
JPS5996452A (en) Partial lean control method for air-fuel ratio of internal-combustion engine