JPS59100273A - Prevention of electrolytic corrosion and contamination in sea water environment - Google Patents
Prevention of electrolytic corrosion and contamination in sea water environmentInfo
- Publication number
- JPS59100273A JPS59100273A JP57207858A JP20785882A JPS59100273A JP S59100273 A JPS59100273 A JP S59100273A JP 57207858 A JP57207858 A JP 57207858A JP 20785882 A JP20785882 A JP 20785882A JP S59100273 A JPS59100273 A JP S59100273A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion
- electrode
- lead
- copper
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Prevention Of Electric Corrosion (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は海水環境下にある海水送排用鋼管などの被防食
防汚体に対して海洋生物が付着するのを防止すると共に
その腐食をも防止することのできる方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for preventing marine organisms from adhering to anti-corrosion and anti-fouling objects such as steel pipes for conveying and discharging seawater in a seawater environment, and also for preventing corrosion thereof. Regarding.
船舶をはじめ、火力、原子力、波力および温度差の発電
プラントなどの海水を利用する装置では、海水によつて
海水送排用鋼管などが腐食されやすいものである。また
海洋生物が海水送排用鋼管などに付着して繁殖し、流量
低下、閉塞などの障害を生じさせている。この問題を解
決するため、従来、防食方法としては、耐食材料を用い
たり、塗料やめつきなどによる被覆防食法および電気防
食法が採用されている。しかし耐食材料は高価であり、
被覆防食法では、1、2年おきに被覆しなおさなくては
ならないので、手間がかかり、コストアツプになる。ま
た電気防食法では、陽極に銅電極だけを用いる場合には
、過剰の銅が溶解して公害問題を生じさせ、塩化銅の生
成により海水送排用銅管の腐食を促進するものである。In equipment that utilizes seawater, such as ships, thermal power plants, nuclear power plants, wave power plants, and temperature difference power plants, steel pipes for transmitting and discharging seawater are likely to be corroded by seawater. In addition, marine organisms adhere to and breed on steel pipes for conveying and discharging seawater, causing problems such as reduced flow rates and blockages. In order to solve this problem, conventional anti-corrosion methods include the use of anti-corrosion materials, coating anti-corrosion methods using paints or adhesion, and electrolytic anti-corrosion methods. However, corrosion-resistant materials are expensive;
In the anticorrosion coating method, the coating must be recoated every one or two years, which is time consuming and increases costs. Furthermore, in the cathodic protection method, when only a copper electrode is used as an anode, excessive copper dissolves, causing pollution problems, and the formation of copper chloride accelerates corrosion of copper pipes for conveying and discharging seawater.
一方、陽極に鉛−銀合金電極だけを用いる場合には、そ
の電極表面に不溶性の酸化皮膜が生成され、殺菌作用に
必要な鉛イオンの溶解が少なくなるものである。On the other hand, when only a lead-silver alloy electrode is used as the anode, an insoluble oxide film is formed on the electrode surface, which reduces the dissolution of lead ions necessary for sterilizing action.
また従来、防汚方法としては、海水を電気分解して生成
された次亜塩素酸ソ−ダを注入する方法亜酸化銅や有機
錫系の毒物を含有させた塗料を塗布する方法などが採用
されている。次亜塩素酸ソーダを注入する方法では、過
剰に用いると海水送排用鋼管の腐食を促進するものであ
る。一方、毒物を含有させた塗料を塗布する方法では、
1、2年おきに塗布しなおさなくてはならず、手間がか
かり、コストアツプになるものである。Conventional antifouling methods include injecting sodium hypochlorite, which is produced by electrolyzing seawater, and applying paint containing cuprous oxide or organic tin poisons. has been done. In the method of injecting sodium hypochlorite, excessive use accelerates corrosion of seawater conveyance and drainage steel pipes. On the other hand, in the method of applying paint containing poisonous substances,
It has to be reapplied every one or two years, which is time-consuming and increases costs.
そこで本発明はかかる問題点を解消した海水環境下にお
ける電気防食防汚方法を提供するものであつて、その特
徴とするところは、海水に接する被防食防汚体に直流電
源装置の陰極を接続し、海水中に銅電極と鉛−銀合金電
極を挿入し、その銅電極と鉛−銀合金電極に直流電源装
置の陽極を接続し、銅電極から銅イオンを、また鉛−銀
合金電極から鉛イオンをそれぞれ海水中に溶解させてそ
の海水中を海洋生物の生存不適合な環境にすると共に被
防食防汚体表面に生じた局部電池の陰極と陽極との電位
差を消滅させて暴食することにありかかる方法によれば
、陽極を2つ用いているからかく陽極の電流値を従来よ
り下げることができる。Therefore, the present invention provides an electrolytic anti-corrosion and anti-fouling method in a seawater environment that solves these problems, and is characterized by connecting the cathode of a DC power supply to the anti-corrosion and anti-fouling body that is in contact with seawater. Then, insert a copper electrode and a lead-silver alloy electrode into seawater, connect the anode of a DC power supply to the copper electrode and the lead-silver alloy electrode, and collect copper ions from the copper electrode and the lead-silver alloy electrode. Lead ions are dissolved in seawater to make the seawater an environment unsuitable for the survival of marine organisms, and at the same time eliminate the potential difference between the cathode and anode of the local battery that occurs on the surface of the corrosion-protected antifouling body, resulting in excessive corrosion. According to this method, since two anodes are used, the current value of the anode can be lower than that of the conventional method.
したがつて銅電極から銅イオンが溶解しすぎるのを抑制
することができ、また鉛−銀合金電極からの塩素ガスの
発生が抑制される。また殺菌作用を有する銅イオンの溶
解量が少なくなるが、同じく殺菌作用を有する鉛イオン
が溶解しているので、この両者の共同により海洋生物が
被防食防汚体に付着するのを防止することができるもの
である。Therefore, excessive dissolution of copper ions from the copper electrode can be suppressed, and generation of chlorine gas from the lead-silver alloy electrode can be suppressed. In addition, the dissolved amount of copper ions, which have a bactericidal effect, is reduced, but since lead ions, which also have a bactericidal effect, are dissolved, the combination of these two prevents marine organisms from adhering to the corrosion-protected and antifouling body. It is something that can be done.
さらに被防食防汚体表面に生じた局部電池の陰極と陽極
との電位差を消滅させて防食することができるものであ
る。Furthermore, it is possible to prevent corrosion by eliminating the potential difference between the cathode and the anode of the local battery that occurs on the surface of the anti-corrosion and anti-fouling body.
以下、本発明の一実施例を第1図に基づいて説明する。
(1)は海水送排用鋼管(2)の途中に介在させられた
電解槽、(3)は電解槽(1)内の海水中に挿入された純
銅からなる銅電極、(4)は同じく電解槽(1)内の海水
中に挿入された銀2.5重量%含有した鉛−銀合金電極
、(5)は直流電源装置であつて、その陰極は鋼管(2
)に接続され、その陽極は銅電極(3)と鉛−銀合金電
極(4)にそれぞれ接続されている。なお、鉛−銀合金
電極は0.6A/dm2以上の電流密度において緻密な
酸化皮膜ができるため、電流密度を変えてもあまり溶出
することはなく、また使用可能な電流密度が他のPb合
金より広い。そして銀の含有量は1.0〜4.5重量%
であればよい。銀が1%未満では陽極に通電したとき酸
化皮膜の付着状態が悪く鉛の溶出速度が大きくなり、4
.5%を越えると鉛の溶解速度の改善にはならないから
である。Hereinafter, one embodiment of the present invention will be described based on FIG. 1.
(1) is an electrolytic cell interposed in the middle of the seawater conveyance and drainage steel pipe (2), (3) is a copper electrode made of pure copper inserted into the seawater in electrolytic cell (1), and (4) is the same. A lead-silver alloy electrode containing 2.5% by weight of silver is inserted into the seawater in the electrolytic cell (1), and (5) is a DC power supply, the cathode of which is a steel pipe (2
), and its anode is connected to a copper electrode (3) and a lead-silver alloy electrode (4), respectively. Note that lead-silver alloy electrodes form a dense oxide film at a current density of 0.6 A/dm2 or higher, so they do not elute much even if the current density is changed, and the usable current density is higher than that of other Pb alloys. Wider. And the silver content is 1.0-4.5% by weight
That's fine. If the silver content is less than 1%, when electricity is applied to the anode, the adhesion of the oxide film is poor and the elution rate of lead increases.
.. This is because if it exceeds 5%, the dissolution rate of lead will not be improved.
上記構成において、直流電源装置(5)を作動させると
、銅電極(3)から銅イオンが、また鉛−銀合金電極(
4)から鉛イオンが溶解して鋼管(2)の内周面に海洋
生物(たとえばふじつぼ)が付着しようとするのを殺菌
作用により阻止する。また鋼管(2)の内周面に生じた
局部電池の陰極と陽極との電位差を消滅させて防食する
ものである。In the above configuration, when the DC power supply (5) is operated, copper ions are released from the copper electrode (3) and the lead-silver alloy electrode (
The lead ions from 4) are dissolved to prevent marine organisms (for example, barnacles) from adhering to the inner circumferential surface of the steel pipe (2) by a bactericidal action. It also prevents corrosion by eliminating the potential difference between the cathode and anode of the local battery that occurs on the inner peripheral surface of the steel pipe (2).
次に本実施例による効果を第2図に示す具体例に基づい
て説明する。同図において、(6)は海水ポンプ、(2
1)〜(27)は鋼管、(7)〜(11)は流量計であ
る。Next, the effects of this embodiment will be explained based on a specific example shown in FIG. In the figure, (6) is a seawater pump, (2
1) to (27) are steel pipes, and (7) to (11) are flowmeters.
なお流連を変えるため(7)と(8)、(10)と(1
1)では管径を異ならせてある。中央の鋼管(9)は比
較のため、海水を電解槽(1)に通すことなく直接通過
させたものである。銅電極の電流は海水中の電解銅イオ
ン濃度を0.002ppmになるように設定した。In addition, in order to change the flow chain, (7), (8), (10), and (1)
In 1), the pipe diameters are different. For comparison, the steel pipe (9) in the center is one in which seawater is passed directly through the electrolytic cell (1) without passing through it. The current of the copper electrode was set so that the electrolytic copper ion concentration in seawater was 0.002 ppm.
かかる海水配管系において実施した結果を表1に示す。Table 1 shows the results obtained using this seawater piping system.
なおこの場合、比較のため鉛−銀合金電極(4)に代え
てアルミニウム電極を用いた場合も示してある。表1か
ら明らかなように、銅電極(3)とアルミニウム電極を
併用した場合の電解条件と防汚効果は、9月〜11月の
期間では、第4欄に示すごとく銅電極(3)の電流値0
.2A、アルミニウム電極の電流値0.15Aの条件下
で生物付着がわずかに認められたが、第1欄および第2
欄に示すごとく銅電極(3)の電流値0.4A、アルミ
ニウム電極の電流値0.3Aの条件下で生物付着はまつ
たくみとめられなかつた。しかしながら同一条件で4月
〜8月では、第6欄および第7欄に示すごとく生物付着
が若干認められた。これに対し銅電極(3)と鉛−銀合
金電極(4)の場合には、上記と同じ条件下でも第9欄
および第10欄に示すごとく生物付着はまつたく認めら
れなかつた。この生物付着の防止効果は鋼管(21)〜
(27)が裸鋼でもタールエポキシ塗装鋼でも変わらな
かつた。In this case, for comparison, a case where an aluminum electrode was used instead of the lead-silver alloy electrode (4) is also shown. As is clear from Table 1, the electrolytic conditions and antifouling effect when copper electrode (3) and aluminum electrode are used together are as shown in the fourth column for the period from September to November. Current value 0
.. 2A, and a slight amount of biofouling was observed under the conditions of aluminum electrode current value 0.15A, but in column 1 and column 2,
As shown in the column, no biofouling was observed under the conditions of a current value of 0.4 A for the copper electrode (3) and a current value of 0.3 A for the aluminum electrode. However, under the same conditions from April to August, some biofouling was observed as shown in columns 6 and 7. On the other hand, in the case of the copper electrode (3) and the lead-silver alloy electrode (4), no biofouling was observed even under the same conditions as above, as shown in columns 9 and 10. This biofouling prevention effect is due to steel pipes (21)
(27) remained the same for bare steel and tar-epoxy coated steel.
次に防食効果について調べた結果が第3図である。同図
の(イ)は自然のままを示し、同図の(ロ)は銅電極(
3)に0.4Aの電流を、鉛−銀合金に0.3Aの電流
を流した場合を示している。(イ)に示すごとく自然の
ままでは鋼管(2)の内周面に生じた局部電池の陰極と
陽極との間の電位差があり、腐食が進むものである。こ
れに対し、(ロ)の場合は、2、3日後に鋼管(2)の
内周面の電位が完全防食域にあり、局部電池の陰極と陽
極との間の電位差がほとんどなくなり、腐食はほとんど
発生しないものである。Next, Fig. 3 shows the results of investigating the anticorrosion effect. (a) in the same figure shows the natural state, and (b) in the same figure shows the copper electrode (
3) shows the case where a current of 0.4 A was passed through the lead-silver alloy, and the case where a current of 0.3 A was passed through the lead-silver alloy. As shown in (a), if the steel pipe (2) is left in its natural state, there is a potential difference between the cathode and anode of the local battery that occurs on the inner peripheral surface of the steel pipe (2), and corrosion progresses. On the other hand, in the case of (b), the potential of the inner circumferential surface of the steel pipe (2) is in the completely anti-corrosion range after a few days, and the potential difference between the cathode and anode of the local battery has almost disappeared, preventing corrosion. It almost never occurs.
すなわち自然のままでは裸鋼で1年間に0.450mm
腐食が進むのに対し、上述のごとく電流を流すと1年間
に0.025mm程度しか腐食が進まないことが確かめ
られた。(第2表)。In other words, in its natural state, bare steel loses 0.450 mm per year.
While corrosion progresses, it was confirmed that when electric current was applied as described above, corrosion only progressed by about 0.025 mm per year. (Table 2).
以上述べたごとく本発明の海水環境下における電気防食
防汚方法によれば、陽極を2つ用いているから、各陽極
の電流値を従来より下げることができる。したがつて銅
電極から銅イオンが溶解しすぎるのを抑制することがで
き、また鉛−銀合金電極からの塩素ガスの発生が抑制さ
れる。また殺菌作用を有する銅イオンの溶解量が少なく
なるが同じく殺菌作用を有する鉛イオンが溶解している
ので、この両者の共同により海洋生物が被防食防汚体に
付着するのを防止することができるものである。さらに
被防食防汚体表面に生じた局部電池の陰極と陽極との電
位差を消滅させて防食することができるものである。As described above, according to the method for electrolytic corrosion protection and antifouling in a seawater environment of the present invention, since two anodes are used, the current value of each anode can be lower than that of the conventional method. Therefore, excessive dissolution of copper ions from the copper electrode can be suppressed, and generation of chlorine gas from the lead-silver alloy electrode can be suppressed. In addition, the amount of dissolved copper ions, which have a bactericidal effect, is reduced, but lead ions, which also have a bactericidal effect, are dissolved, so the combination of the two prevents marine organisms from adhering to the corrosion-protected and antifouling body. It is possible. Furthermore, it is possible to prevent corrosion by eliminating the potential difference between the cathode and the anode of the local battery that occurs on the surface of the anti-corrosion and anti-fouling body.
第1図は本発明の一実施例を示す概略正面図、第2図は
防食防汚の効果を確かめるための配管図、第3図は防食
効果を示すグラフである。
(1)・・・電解槽、(2)(21)〜(27)・・・
海水送排用鋼管(被防食防汚体)、(3)・・・銅電槽
、(4)・・・鉛−銀合金電極、(5)・・・直流電源
装■FIG. 1 is a schematic front view showing an embodiment of the present invention, FIG. 2 is a piping diagram for confirming the anti-corrosion and anti-fouling effect, and FIG. 3 is a graph showing the anti-corrosion effect. (1)... Electrolytic cell, (2) (21) to (27)...
Steel pipe for seawater conveyance and drainage (corrosion-proof and antifouling body), (3)...Copper battery case, (4)...Lead-silver alloy electrode, (5)...DC power supply unit■
Claims (1)
接続し、海水中に銅電極と鉛−銀合金電極を挿入し、そ
の銅電極と鉛−銀合金電極に直流電源装置の陽極を接続
し、銅電極から銅イオンを、また鉛−銀合金電極から鉛
イオンをそれぞれ海水中に溶解させてその海水中を海洋
生物の生存不適合な環境にすると共に被防食防汚体表面
に生じた局部電池の陰極と陽極との電位差を消滅させて
防食することを特徴とする海水環境下における電気防食
防汚方法。1. Connect the cathode of the DC power supply to the anti-corrosion and antifouling body that is in contact with seawater, insert a copper electrode and a lead-silver alloy electrode into the seawater, and connect the anode of the DC power supply to the copper electrode and lead-silver alloy electrode. Dissolve copper ions from the copper electrode and lead ions from the lead-silver alloy electrode into the seawater, making the seawater an unsuitable environment for marine organisms to live in, and at the same time, dissolving the copper ions from the copper electrode and the lead ions from the lead-silver alloy electrode. An electrolytic anti-corrosion and anti-fouling method in a seawater environment characterized by preventing corrosion by eliminating the potential difference between the cathode and the anode of a local battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57207858A JPS59100273A (en) | 1982-11-26 | 1982-11-26 | Prevention of electrolytic corrosion and contamination in sea water environment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57207858A JPS59100273A (en) | 1982-11-26 | 1982-11-26 | Prevention of electrolytic corrosion and contamination in sea water environment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59100273A true JPS59100273A (en) | 1984-06-09 |
JPS6318667B2 JPS6318667B2 (en) | 1988-04-19 |
Family
ID=16546695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57207858A Granted JPS59100273A (en) | 1982-11-26 | 1982-11-26 | Prevention of electrolytic corrosion and contamination in sea water environment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59100273A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61221382A (en) * | 1985-03-27 | 1986-10-01 | Hitachi Zosen Corp | Method for preventing corrosion and contamination of steel structure sunk under sea water |
JPS61221384A (en) * | 1985-03-27 | 1986-10-01 | Hitachi Zosen Corp | Method for preventing corrosion and contamination of steel structure sunk under sea water |
JPS61221383A (en) * | 1985-03-27 | 1986-10-01 | Hitachi Zosen Corp | Method for preventing corrosion and contamination of steel structure sunk under sea water |
KR20010085036A (en) * | 2001-07-24 | 2001-09-07 | 김유창 | Apparatus and method for removing an industrial pollution material by copper and silver ion |
KR101282186B1 (en) * | 2010-11-25 | 2013-07-04 | 목포해양대학교 산학협력단 | Apparatus on marine growth prevention to prevent for hydrogen embrittlement by excess current of aluminum anodes |
-
1982
- 1982-11-26 JP JP57207858A patent/JPS59100273A/en active Granted
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61221382A (en) * | 1985-03-27 | 1986-10-01 | Hitachi Zosen Corp | Method for preventing corrosion and contamination of steel structure sunk under sea water |
JPS61221384A (en) * | 1985-03-27 | 1986-10-01 | Hitachi Zosen Corp | Method for preventing corrosion and contamination of steel structure sunk under sea water |
JPS61221383A (en) * | 1985-03-27 | 1986-10-01 | Hitachi Zosen Corp | Method for preventing corrosion and contamination of steel structure sunk under sea water |
JPH0429750B2 (en) * | 1985-03-27 | 1992-05-19 | ||
JPH0430472B2 (en) * | 1985-03-27 | 1992-05-21 | ||
KR20010085036A (en) * | 2001-07-24 | 2001-09-07 | 김유창 | Apparatus and method for removing an industrial pollution material by copper and silver ion |
KR101282186B1 (en) * | 2010-11-25 | 2013-07-04 | 목포해양대학교 산학협력단 | Apparatus on marine growth prevention to prevent for hydrogen embrittlement by excess current of aluminum anodes |
Also Published As
Publication number | Publication date |
---|---|
JPS6318667B2 (en) | 1988-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kuleyin et al. | Recovery of copper ions from industrial wastewater by electrodeposition | |
CN103233260A (en) | Preparation of antifouling ceramic membrane electrolyte for titanium alloy surface and micro-arc oxidation method | |
KR100246555B1 (en) | Method and apparatus for the prevention of fouling and/or corrosion of structures in seawater, brackish and/or fresh water | |
JPS59100273A (en) | Prevention of electrolytic corrosion and contamination in sea water environment | |
US3458413A (en) | Method of inhibiting fouling of sea water conduits and the like by marine organisms | |
JP5879216B2 (en) | Seawater desalination equipment | |
US4123338A (en) | Method for prevention of fouling and corrosion utilizing technetium-99 | |
Swain et al. | The use of controlled copper dissolution as an anti-fouling system | |
JP4789043B2 (en) | Seawater electrolyzer | |
JPH1085750A (en) | Electrolytic equipment for seawater | |
JPH1136088A (en) | Electrolytic corrosion protection method capable of executing sea water electrolytic fouling prevention and iron oxide film formation by generation of iron ion and apparatus therefor | |
GB927284A (en) | Protection of ferrous metal surfaces | |
JP4605913B2 (en) | Electric antifouling device and electric antifouling method | |
Dhar | Electrochemical methods for the prevention of microbial fouling | |
Wake et al. | Electrochemical prevention of biofouling using Pt/IrO2-coated titanium electrode | |
EP1361977A1 (en) | Method for protecting surfaces against biological macro-fouling | |
JPS6062930A (en) | Treatment of fish breeding water | |
JP2000008338A (en) | Antifouling device for underwater structure | |
Spears et al. | Electrolysis of copper screening: a technique for the prevention of marine fouling | |
JPS58217681A (en) | Method for preventing corrosion and staining of sea water introducing arranged pipe | |
JPH11244861A (en) | Anti-fouling device for underwater structure and electrochemical control method of organism | |
JPH028384A (en) | Stain-proofing method | |
JPS5940361B2 (en) | Method for preventing aquatic microorganisms from adhering to walls that are in constant contact with seawater or river water | |
JPH08229567A (en) | Metallic ion eluter, device for purifying fish farming water using the eluter and device for suppressing sticking of shellfish and alga to cooling water passage | |
Kretschmer et al. | A Technique For Prevention Or Removal Of Biofouling From Surfaces Exposed To The Marine Environment. |