JPH028384A - Stain-proofing method - Google Patents

Stain-proofing method

Info

Publication number
JPH028384A
JPH028384A JP15864788A JP15864788A JPH028384A JP H028384 A JPH028384 A JP H028384A JP 15864788 A JP15864788 A JP 15864788A JP 15864788 A JP15864788 A JP 15864788A JP H028384 A JPH028384 A JP H028384A
Authority
JP
Japan
Prior art keywords
copper
copper alloy
underwater
anode
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15864788A
Other languages
Japanese (ja)
Inventor
Chiyuugo Yokochi
横地 忠五
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Original Assignee
Dai Nippon Toryo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK filed Critical Dai Nippon Toryo KK
Priority to JP15864788A priority Critical patent/JPH028384A/en
Publication of JPH028384A publication Critical patent/JPH028384A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the stain-proofing property of a copper-series metallic structure underwater by forming one end of the structure made of copper or copper alloy underwater into an anode and always or intermittently impressing voltage between the anode and a cathodic electrode. CONSTITUTION:A copper or copper alloy plate 3 is fitted on the surface of corrosion resistant coating 2 of an underwater structure 1 made of copper or copper alloy which has the corrosion resistant coating or film 2 and a cathode 5 is fitted via an insulator 4 and also an anode is fitted to the copper plate 3. The negative pole and the positive pole of a power source cell 6 are connected via a switch 7 and low voltage of 1-2V is impressed. Fine current is allowed to always or intermittently flow between the anode 3 made of the copper plate and the cathode 5 by opening and closing the switch 7. An inactive oxidative film on the surface of the copper plate or the copper alloy plate which is formed underwater is reduced by hydrogen ions generated by anodic reaction and the active metal surface is allowed to reemerge and stain-proofing property of copper or copper alloy is maintained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は水中構造物(船舶、構造物、海水導入管等を含
む)の防汚方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for preventing fouling of underwater structures (including ships, structures, seawater introduction pipes, etc.).

(従来の技術及びその解決すべき課題)従来、船舶、海
洋構造物、海水導入管等(以下、これらを水中構造物と
いう)においては水中生物が付着し水中構造物の劣化、
腐食するのを防ぐために防汚薬剤含有の防汚塗料が塗布
されていた。
(Prior art and problems to be solved) Conventionally, aquatic organisms adhere to ships, marine structures, seawater inlet pipes, etc. (hereinafter referred to as underwater structures), causing deterioration of the underwater structures.
Antifouling paint containing antifouling agents was applied to prevent corrosion.

防汚塗料塗膜は、膜中の防汚薬剤(例えば、有機錫化合
物)が徐々に溶出し、塗膜表面への生物付着を防止する
ものであるが、最近防汚薬剤の魚体中への残留性や、水
中へ溶出した防汚薬剤による環境汚染等が社会的な問題
となり、防汚薬剤の使用は規制されるようになって来て
いる。
The antifouling paint film is designed to gradually elute the antifouling agent (e.g., an organic tin compound) in the film to prevent biofouling from attaching to the surface of the coating. Residual properties and environmental pollution caused by antifouling agents eluted into water have become social problems, and the use of antifouling agents has become regulated.

前記の如き防汚薬剤を使用しないで水中構造物の防汚性
を向上せしめる方法として、銅板又は銅合金板を使う方
法が提案されている。
As a method for improving the antifouling properties of underwater structures without using the above-mentioned antifouling agents, a method using copper plates or copper alloy plates has been proposed.

しかしながら、銅板又は銅合金板の表面には時間の経過
とともに不活性酸化生成物が沈積し、防汚効果を徐々に
阻害するようになる。銅は中性ないし弱アルカリ性領域
で不溶性酸化皮膜を形成するが、この皮膜が銅イオンの
溶出を抑制するため、防汚効果を低下せしめるのである
However, inert oxidation products accumulate on the surface of the copper plate or copper alloy plate over time, gradually impairing the antifouling effect. Copper forms an insoluble oxide film in a neutral to slightly alkaline region, but this film suppresses the elution of copper ions, reducing the antifouling effect.

また、部分的に酸化生成物が欠落すると、その欠落によ
り生じた活性な表面と、そうでない不活性な面との間で
局部電池が形成され、局部腐食を起こし、銅板等の孔食
を促進する等の不具合が生じる。
In addition, when oxidation products are partially missing, a local battery is formed between the active surface created by the lack and the otherwise inactive surface, causing local corrosion and promoting pitting corrosion of copper plates, etc. This may cause problems such as

前記の如き不溶性酸化皮膜生成防止を目的として、中性
から弱アルカリ領域で酸化皮膜を形成しない銅合金の作
成が試みられているようであるが、実用段階には到って
いない。
In order to prevent the formation of an insoluble oxide film as described above, attempts have been made to create a copper alloy that does not form an oxide film in the neutral to weakly alkaline range, but this has not yet reached a practical stage.

(課題を解決するための手段) 本発明は、銅及び/又は銅合金板を用いた水中構造物に
おいて、水中で前記銅及び/又は銅合金板に常時又は断
続的に電位を付加することを特徴とする防汚方法に関す
るものである。
(Means for Solving the Problems) The present invention provides an underwater structure using copper and/or copper alloy plates, in which a potential is constantly or intermittently applied to the copper and/or copper alloy plates underwater. This article relates to a characteristic antifouling method.

以下、本発明について詳述する。The present invention will be explained in detail below.

本発明においては、銅及び/又は銅合金板に常時又は断
続的に通電することにより、水中で生成する銅又は銅合
金表面の不活性酸化皮膜を、アノード反応で発生する水
素イオンによって溶解せしめ、再び活性な金属表面を現
出させ、銅又は銅合金の防汚性を維持しようとするもの
である。
In the present invention, by constantly or intermittently applying electricity to the copper and/or copper alloy plate, an inert oxide film on the surface of the copper or copper alloy that is generated in water is dissolved by hydrogen ions generated by the anode reaction, The purpose is to make the active metal surface appear again and maintain the antifouling properties of copper or copper alloy.

上記の反応を式で示すと下記の如くなる。The above reaction is expressed as follows.

口u →Cu”+2e  −Cu(0旧z+28”+2
e2H”+ CuD  →[:LI”+H20本発明の
方法について、水中構造物を模型的に示した第1図及び
第2図により説明する。
Mouth u → Cu”+2e −Cu(0 old z+28”+2
e2H"+ CuD → [:LI"+H20 The method of the present invention will be explained with reference to FIGS. 1 and 2, which schematically show underwater structures.

第1図は水中構造物に固定した通電装置により防汚効果
を発揮せしめる場合を例示したもので、1は水中構造物
、2は防食塗装又は防食皮膜、3は銅又は銅合金板、4
は絶縁物、5はカソード電極、6は電源電池、7はスイ
ッチを各々示す。
Figure 1 shows an example of the case where an antifouling effect is exerted by an energizing device fixed to an underwater structure, where 1 is the underwater structure, 2 is an anticorrosion coating or coating, 3 is a copper or copper alloy plate, and 4
5 is an insulator, 5 is a cathode electrode, 6 is a power source battery, and 7 is a switch.

第2図は通電装置を水中構造物に固定せず、移動方式(
例えば、通電装置を積み込んだ船等)により通電せしめ
る場合を模型的に示した図面である。
Figure 2 shows a moving method (without fixing the energizing device to an underwater structure).
For example, it is a drawing schematically showing a case in which electricity is supplied by a ship (such as a ship loaded with an energizing device).

本発明の方法においてはまず、水中構造物に用いられて
いる銅及び/又は銅合金板の一端をアノードとし、カソ
ード電極との間に電源電池を設け、その間に微少な電圧
を印加する。
In the method of the present invention, first, one end of a copper and/or copper alloy plate used in an underwater structure is used as an anode, a power source battery is provided between the anode electrode and the cathode electrode, and a minute voltage is applied therebetween.

一般的に印加電圧は1〜2V程度が好ましく、あまり高
い電圧を印加すると塩素ガスの発生を伴うようになるた
め好ましくない。
Generally, the applied voltage is preferably about 1 to 2 V, and if too high a voltage is applied, chlorine gas will be generated, which is not preferable.

電圧の印加は継続的もしくは断続的に行われるが、銅及
び/又は銅合金板の消耗を極力避けるためには断続的で
ある方が好ましい。
The voltage is applied continuously or intermittently, but it is preferable to apply the voltage intermittently in order to avoid wearing out the copper and/or copper alloy plate as much as possible.

尚、カソード電極は通電中に分極抵抗が生じ、電解反応
が低下することがあるので、分極抵抗の発生を抑制する
ようなフィン構造の如き表面積の広いものや、電極近辺
に水の流れをつくったりすることが好ましい。
In addition, the cathode electrode may generate polarization resistance during energization, which may reduce the electrolytic reaction. Therefore, use a cathode electrode with a large surface area such as a fin structure that suppresses the generation of polarization resistance, or a structure that creates a flow of water near the electrode. It is preferable to

又、電極の代りに同じ構造の別の水中構造物(例えば、
船等)を対極として使用することも可能である。
Also, instead of the electrode, another underwater structure of the same structure (e.g.
It is also possible to use a ship (such as a ship) as a counter pole.

以下、本発明を実施例により更に詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 鋼製の箱状物の外面に防食塗料を塗布した後、厚さ2 
mmの銅又は銅合金(Cu: Ni= 9 : 1 )
板を貼りつけた供試体を作成した。
Example: After applying anticorrosion paint to the outer surface of a steel box-like object, the thickness of
mm copper or copper alloy (Cu:Ni=9:1)
A specimen with a plate attached was created.

カソード電極は100 X 100 X 1.5 mm
の銅合金板([:u: Ni= 9 : 1 )を使用
した。
Cathode electrode is 100 x 100 x 1.5 mm
A copper alloy plate ([:u:Ni=9:1) was used.

前記供試体を三重県鳥羽に浸漬し、6ケ月に1回の割合
で1.5Vの電圧を印加し、生物付着の有無を調べた。
The specimen was immersed in Toba, Mie Prefecture, and a voltage of 1.5 V was applied once every six months to examine the presence or absence of biofouling.

その結果を第1表に示す。1.5Vの電圧印加時の両極
の電位は、アノードが−9,6〜55、8 mNcu−
Ni)、−26,2〜−5L 3 mV(Cu)、カソ
ードが−1,120〜−1,170mV ([:u−N
i)、1、130〜−1.180 mV(Cu) [:
いずれも対5CEIであり、24時間の通電によりアノ
ード表面は酸化皮膜が溶解し、金属光沢を回復した。
The results are shown in Table 1. The potential of both poles when a voltage of 1.5 V is applied is -9.6 to 55.8 mNcu- for the anode.
Ni), -26,2 to -5L 3 mV (Cu), cathode -1,120 to -1,170 mV ([:u-N
i), 1,130 to -1.180 mV (Cu) [:
Both were 5CEI, and the oxide film on the anode surface was dissolved by applying electricity for 24 hours, and the metallic luster was restored.

尚、比較のため通電しない場合の生物付着の有無も調べ
た。
For comparison, the presence or absence of biofouling was also investigated when no current was applied.

比較例 実施例と同様の鋼製箱状供試体に防食塗料を塗布後、通
常の塩化ゴム系防汚塗料(Cu20型)又は、有機錫ポ
リマー系防汚塗料を塗布したものを浸漬して、生物付着
の有無を調べた。その結果を第1表に示す。
Comparative Example After applying an anticorrosive paint to a steel box-shaped specimen similar to the example, immerse it in a normal chlorinated rubber-based antifouling paint (Cu20 type) or an organic tin polymer-based antifouling paint. The presence or absence of biofouling was investigated. The results are shown in Table 1.

(発明の効果) 本発明においては、微少電流を常時もしくは断続的に流
すことにより、常に活性な銅又は銅合金表面を現出せし
めるため、銅イオンの継続的な溶出を保持出来、従って
長期間の防汚性を維持出来るのである。
(Effects of the Invention) In the present invention, the active copper or copper alloy surface is always exposed by constantly or intermittently flowing a minute current, so that the continuous elution of copper ions can be maintained, and therefore the copper ions can be continuously eluted for a long period of time. It is possible to maintain the antifouling property of the material.

又、従来の防汚塗料の如く比較的短い期間(例えば、1
〜2年)に定期的に塗り替える必要もなく、防汚薬剤に
よる毒性、環境汚染の心配が全くない。
Also, unlike conventional antifouling paints, it may last for a relatively short period of time (for example, 1
There is no need for periodic repainting (up to 2 years), and there is no need to worry about toxicity or environmental pollution caused by antifouling agents.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は各々本発明の一例を模型的に示した
概略図である。 1.1′・・・水中構造物、 2.2′・・・防食塗膜
、3.3′・・・銅又は銅合金板、  4・・・絶縁物
、5.5′・・・対向電極、  6.6′・・・電源電
池7.7′・・・スイッチ。
1 and 2 are schematic diagrams each schematically showing an example of the present invention. 1.1'...Underwater structure, 2.2'...Anti-corrosion coating, 3.3'...Copper or copper alloy plate, 4...Insulator, 5.5'...Opposing Electrode, 6.6'...Power battery 7.7'...Switch.

Claims (1)

【特許請求の範囲】[Claims] 銅及び/又は銅合金板を用いた水中構造物において、水
中で前記銅及び/又は銅合金板に常時又は断続的に電位
を付加することを特徴とする防汚方法。
An antifouling method for an underwater structure using copper and/or copper alloy plates, characterized in that a potential is constantly or intermittently applied to the copper and/or copper alloy plates underwater.
JP15864788A 1988-06-27 1988-06-27 Stain-proofing method Pending JPH028384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15864788A JPH028384A (en) 1988-06-27 1988-06-27 Stain-proofing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15864788A JPH028384A (en) 1988-06-27 1988-06-27 Stain-proofing method

Publications (1)

Publication Number Publication Date
JPH028384A true JPH028384A (en) 1990-01-11

Family

ID=15676281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15864788A Pending JPH028384A (en) 1988-06-27 1988-06-27 Stain-proofing method

Country Status (1)

Country Link
JP (1) JPH028384A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8857534B2 (en) 2002-10-17 2014-10-14 C. & E. Fein Gmbh Electric tool having an optical control element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8857534B2 (en) 2002-10-17 2014-10-14 C. & E. Fein Gmbh Electric tool having an optical control element

Similar Documents

Publication Publication Date Title
Mears et al. A theory of cathodic protection
Ashworth 4.18. Principles of cathodic protection
US2444174A (en) Galvanic coating process
Treu et al. Characterization of localized surface states of Al 7075-T6 during deposition of cerium-based conversion coatings
GB1597305A (en) Marine potentiometric antifouling and anticorrosion device
JPH028384A (en) Stain-proofing method
JPH05106070A (en) Corrosion protective method for pump
Siedlarek et al. Characterisation of reaction layers on copper surfaces formed in aqueous chloride and sulphate ion containing electrolytes
Spacht The corrosion resistance of aluminum and its alloys.
Hara et al. The corrosion of nickel under cathodic polarization in molten NaNO3
JP3269887B2 (en) Dissolution method of metal film
Mansfeld et al. Discussion on “Effect of Seawater Biofilms on Corrosion Potential and Oxygen Reduction of Stainless Steel”
JPS59100273A (en) Prevention of electrolytic corrosion and contamination in sea water environment
Mickalonis et al. Corrosion Inhibition of Steel by Lead Pigments: The Steel–Lead Galvanic Couple in Acetate Solutions
Essa et al. Application the Principle of Sacrificial Anodes to Corrosive Cells Created in Different pH Media
EP0913499B1 (en) Electric anticorrosion method
JPH03240994A (en) Rust preventive steel sheet excellent in corrosion resistance
Huang Thermodynamics of materials corrosion
JP4652247B2 (en) Steel protection method
JPS5511184A (en) Surface treating method of copper or copper alloy or plated product by these metals
CN111663163A (en) Anticorrosion treatment method of 2A50 aluminum alloy and application thereof
Salvago et al. Role of biofouling on seawater aggressiveness
JP2000017629A (en) Anti-fouling and anti-corrosion device of condenser
El Warraky et al. Copper redeposition and surface enrichment during the dissolution of Al‐Cu alloys in different concentrations of NaCl solution. Part 1–electrochemical measurements
Brigham Current efficiencies in localized corrosion cells