JP4789043B2 - Seawater electrolyzer - Google Patents

Seawater electrolyzer Download PDF

Info

Publication number
JP4789043B2
JP4789043B2 JP2006201791A JP2006201791A JP4789043B2 JP 4789043 B2 JP4789043 B2 JP 4789043B2 JP 2006201791 A JP2006201791 A JP 2006201791A JP 2006201791 A JP2006201791 A JP 2006201791A JP 4789043 B2 JP4789043 B2 JP 4789043B2
Authority
JP
Japan
Prior art keywords
cathode
seawater
anode
electrolytic cell
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006201791A
Other languages
Japanese (ja)
Other versions
JP2008023494A (en
Inventor
光 須藤
大 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Corrosion Engineering Co Ltd
Original Assignee
Nippon Corrosion Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Corrosion Engineering Co Ltd filed Critical Nippon Corrosion Engineering Co Ltd
Priority to JP2006201791A priority Critical patent/JP4789043B2/en
Publication of JP2008023494A publication Critical patent/JP2008023494A/en
Application granted granted Critical
Publication of JP4789043B2 publication Critical patent/JP4789043B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Description

本発明は、海水を電解分解して塩素系酸化剤を含む電解処理水を生成する際に、スケールが陰極に付着蓄積されることの少ない海水電解装置に関する。   The present invention relates to a seawater electrolysis apparatus in which scale is less likely to adhere to and accumulate on a cathode when electrolyzing seawater to produce electrolytically treated water containing a chlorinated oxidant.

電解槽内に設置した陽極と陰極の間に直流電圧を印加して海水を電気分解して、発電所等の海水冷却水路や冷却機器等にイガイ、フジツボ、藻類など海洋生物が付着するのを防止する技術が従来から採用されている。   Seawater is electrolyzed by applying a DC voltage between the anode and cathode installed in the electrolytic cell, and marine organisms such as mussels, barnacles, and algae are attached to seawater cooling waterways and cooling equipment such as power plants. The technology to prevent is conventionally employed.

かかる電解槽には個々の電極を直流電源に接続して給電する単極式電解槽と、両端の電極に直流電源を接続して給電する複極式電解槽とがある。   Such electrolytic cells include a single electrode type electrolytic cell in which individual electrodes are connected to a DC power source to supply power, and a bipolar electrode type electrolytic cell in which a DC power source is connected to electrodes at both ends to supply power.

このうち単極式の海水電解槽は、大型になるほど構成が複雑化する他、個々の電極に給電するため大電流を必要とするが、両端の電極にのみ給電する複極式の海水電解槽では小電流で済むという利点がある。たとえば、アノードとカソードとが10組設置された電解槽同士で海水電解防汚に必要な電流を比較すると、複極式の海水電解槽では単極式の海水電解槽の10分の1で済む。このため、直流電源装置も小型化のものでよいという利点もある。   Of these, the monopolar seawater electrolyzer is more complex as the size increases, and requires a large current to supply power to each electrode, but it is a bipolar seawater electrolyzer that supplies power only to the electrodes at both ends. Then, there is an advantage that a small current is sufficient. For example, when the current required for seawater electrolysis antifouling is compared between electrolytic cells in which 10 sets of anodes and cathodes are installed, a bipolar seawater electrolytic cell requires one-tenth of a monopolar seawater electrolytic cell. . For this reason, there is also an advantage that the DC power supply device may be downsized.

しかし一方、複極式電解槽は電極間や電極と槽壁との間から電流の漏洩が生じるので、スケールの蓄積が単極式の海水電解槽よりも多いという欠点がある。   On the other hand, however, the bipolar electrolyzer has a drawback in that the accumulation of scale is larger than that of the monopolar seawater electrolyzer because current leakage occurs between the electrodes or between the electrode and the tank wall.

この複極式海水電解槽の欠点を克服すべく特開2002−186970号公報には、被電解溶液を電解するために配設された複数枚の電極と、該電極が収納される室枠とを備え、前記電極の周端の一部またはすべてに絶縁体が被覆されたことを特徴とする複極式電解槽の発明が開示されている。
特開2002−186970号公報
In order to overcome the shortcomings of the bipolar seawater electrolysis tank, Japanese Patent Application Laid-Open No. 2002-186970 discloses a plurality of electrodes arranged to electrolyze a solution to be electrolyzed, a chamber frame in which the electrodes are stored, There is disclosed an invention of a bipolar electrolytic cell characterized in that a part or all of the peripheral edge of the electrode is covered with an insulator.
JP 2002-186970 A

しかしながら、電極の周端の一部またはすべてに絶縁体を被覆しても、電解電流が大きくなるに従って漏洩電流も増し、絶縁体に付着するスケールが増えていた。   However, even if a part or all of the peripheral edge of the electrode is covered with an insulator, the leakage current increases as the electrolytic current increases, and the scale attached to the insulator increases.

本発明は、塩分含有水を電気分解して塩素系酸化剤を含む電解処理水を生成する海水電解装置において、電極およびその周囲の絶縁体に、海水電解に伴って発生するスケールの付着を防止した、特に、複極式電解槽において好適な、海水電解装置を提供することを目的とする。   The present invention relates to a seawater electrolysis apparatus that electrolyzes salt-containing water to produce electrolytically treated water containing a chlorine-based oxidant, and prevents adhesion of scales generated by seawater electrolysis to electrodes and surrounding insulators. In particular, an object of the present invention is to provide a seawater electrolysis apparatus suitable for a bipolar electrolytic cell.

上記目的を達成するため、海水電解装置を次のように構成した。   In order to achieve the above object, the seawater electrolyzer was configured as follows.

1. 電解槽の内部に陽極と陰極とを所定間隔をおいて対峙させ、電解槽内部に導入した海水を前記陽極と陰極とで電気分解して塩素系酸化剤を含む電解処理水を生成する海水電解装置において、電解槽の上流と下流に接続された配管の少なくとも一方の配管内面に第二陰極を設け、陽極から漏洩する漏洩電流を前記第二陰極に吸収させることとした。
さらに、上記の海水電解装置において、陰極に第二直流電源装置の正極を接続させ、第二陰極に第二直流電源装置の負極を接続させ、陽極から漏洩する漏洩電流を第二陰極に吸収させることとした。
1. Seawater electrolysis in which an anode and a cathode are opposed to each other inside the electrolytic cell at a predetermined interval, and seawater introduced into the electrolytic cell is electrolyzed with the anode and the cathode to generate electrolytically treated water containing a chlorinated oxidant. In the apparatus, a second cathode is provided on the inner surface of at least one of the pipes connected upstream and downstream of the electrolytic cell, and leakage current leaking from the anode is absorbed by the second cathode.
Further, in the seawater electrolysis apparatus, the cathode of the second DC power supply device is connected to the cathode, the anode of the second DC power supply device is connected to the second cathode, and the leakage current leaking from the anode is absorbed by the second cathode. It was decided.

配管の内面に設けられる第二陰極は、a.金属製配管内面の絶縁被覆の一部を剥ぎ取って金属面を露出させる、b.金属製配管内面に金属片を貼り付け、該金属片表面以外の該金属製配管内面を絶縁被覆する、c.金属製配管内部に金属棒等を突出させ、周囲の該金属製配管内面を絶縁被覆する、などの方法で形成する。尚第二陰極を形成する方法は、かかる方法に限定されるものではない。   The second cathode provided on the inner surface of the pipe is a. A part of the insulation coating on the inner surface of the metal pipe is stripped to expose the metal surface; b. Affixing a metal piece to the inner surface of the metal pipe and insulatingly coating the inner surface of the metal pipe other than the surface of the metal piece; c. A metal rod or the like is projected inside the metal pipe, and the surrounding inner surface of the metal pipe is insulated and coated. The method for forming the second cathode is not limited to such a method.

また、前記配管内面に貼り付ける金属片や、配管内部に突出させる金属棒等は、金属製配管と同種の金属でも異種の金属、例えば耐腐食性金属でも良い。   Further, the metal piece to be affixed to the inner surface of the pipe, the metal rod that protrudes into the pipe, etc. may be the same type of metal as the metal pipe or a different type of metal, such as a corrosion-resistant metal.

2. 電解槽の内部に陽極と陰極とを所定間隔をおいて対峙させ、電解槽内部に導入した海水を前記陽極と陰極とで電気分解して塩素系酸化剤を含む電解処理水を生成する海水電解装置において、電解槽の上流と下流に接続された配管の少なくとも一方の配管内面を第二陰極に形成し、陽極から漏洩する漏洩電流を第二陰極に吸収させることとした。すなわち、電解槽の上流下流いずれか、または双方に、内面が絶縁被覆されていない配管を接続するものである。 2. Seawater electrolysis in which an anode and a cathode are opposed to each other inside the electrolytic cell at a predetermined interval, and seawater introduced into the electrolytic cell is electrolyzed with the anode and the cathode to generate electrolytically treated water containing a chlorinated oxidant. In the apparatus, the inner surface of at least one of the pipes connected upstream and downstream of the electrolytic cell is formed on the second cathode, and the leakage current leaking from the anode is absorbed by the second cathode. That is, a pipe whose inner surface is not covered with insulation is connected to either or both of the upstream and downstream sides of the electrolytic cell.

なお、配管内面が耐腐食性金属で構成されていない場合には、この配管の長さは陽極から漏洩する漏洩電流で電気防食される長さ、例えば鋼管であれば管長を管内径の10倍の長さ以下とする。   When the inner surface of the pipe is not made of a corrosion-resistant metal, the length of the pipe is a length that is electrically protected by a leakage current leaking from the anode. For example, in the case of a steel pipe, the pipe length is 10 times the pipe inner diameter. Or less.

このようにすれば、第二陰極としての配管が残留塩素を含む海水で腐食されることを防ぐことができる。In this way, it is possible to prevent the pipe as the second cathode from being corroded by seawater containing residual chlorine.

3.上記の海水電解装置において、第二直流電源装置を、陽極と陰極間に接続される水電解用直流電源よりも小容量とした。 3. In the seawater electrolysis apparatus described above , the second DC power supply apparatus has a smaller capacity than the water electrolysis DC power supply connected between the anode and the cathode.

なお本発明は、複極式電解槽に限られるものではなく、単極式電解槽に適用してもよい。また海水電解装置は、海水を電気分解して塩素系酸化剤を含む電解処理水を生成する装置であれば、例えば殺菌水製造用電解装置等に用いるなど、その使用目的は問わない。   In addition, this invention is not restricted to a bipolar electrode electrolytic cell, You may apply to a monopolar electrolytic cell. The seawater electrolyzer is not particularly limited as long as it is an apparatus that electrolyzes seawater to produce electrolytically treated water containing a chlorinated oxidant, such as an electrolyzer for producing sterilized water.

本発明にかかる海水電解装置によれば、次の効果を有する。   The seawater electrolysis apparatus according to the present invention has the following effects.

電解槽に接続された、上流下流のいずれか、または双方の配管内面に第二陰極が設けられ、または、配管内面が第二陰極とされるので、海水電解の際に電解槽内の陽極から漏洩する漏洩電流が第二陰極に吸収され、陰極および陰極周端付近を被覆している絶縁体に、漏洩電流を原因としたスケールが付着することを防止できる。   The second cathode is provided on the inner surface of either or both of the upstream and downstream pipes connected to the electrolytic cell, or the inner surface of the piping is used as the second cathode, so that from the anode in the electrolytic cell during seawater electrolysis The leakage current that leaks is absorbed by the second cathode, and it is possible to prevent the scale due to the leakage current from adhering to the insulator covering the cathode and the vicinity of the cathode peripheral edge.

第二直流電源装置の正極を陰極に、負極を第二陰極に接続させると、海水電解の際の漏洩電流がより強く第二陰極に吸収されるとともに、電解電流の漏洩電流が陰極に流入することを防止し、より効果的に陰極、および陰極周端を被覆している絶縁体に、漏洩電流を原因としたスケールが付着することを防止することができる。   When the positive electrode of the second DC power supply device is connected to the cathode and the negative electrode is connected to the second cathode, the leakage current during seawater electrolysis is more strongly absorbed by the second cathode and the leakage current of the electrolysis current flows into the cathode. This can prevent the scales caused by the leakage current from adhering to the cathode and the insulator covering the cathode peripheral edge more effectively.

本発明にかかる海水電解装置の最良の実施形態について、図面を参照して説明する。   The best embodiment of the seawater electrolysis apparatus according to the present invention will be described with reference to the drawings.

本発明の海水電解装置1は図1に示すように、電極3を備えた電解槽2、電極3に直流電圧を印加する直流電源装置9、海水を電解槽2に導入する導入管30、生成された電解処理水を電解槽から送出する供給管31などから構成されており、海水から塩素系酸化剤を含む電解処理水を生成し、例えば水路内に海洋生物が付着することを防ぐ防汚装置や海産物などを洗浄するための洗浄水を生成する洗浄水生成装置などに用いられる。   As shown in FIG. 1, the seawater electrolysis apparatus 1 of the present invention includes an electrolytic cell 2 provided with an electrode 3, a DC power supply device 9 that applies a DC voltage to the electrode 3, an introduction pipe 30 that introduces seawater into the electrolytic cell 2, Anti-fouling which is composed of a supply pipe 31 for sending the electrolyzed water treated from the electrolyzer, etc., and produces electrolyzed water containing a chlorine-based oxidant from seawater, for example, preventing marine organisms from adhering in the water channel It is used for a washing water generating device for generating washing water for washing an apparatus or marine products.

電極3は、金属酸化物被覆製や白金メッキ製などからなり、電解槽2内を流れる海水の流れと平行に配置してあり、各電極3の海水の流れに沿った前後端部には、電気絶縁板7が取り付けてある。電気絶縁板7は、電極3を電解槽2の内部で所定位置に保持し、また、電極3の端部からの漏洩電流の発生を抑止している。   The electrode 3 is made of metal oxide coating or platinum plating, and is arranged in parallel with the flow of seawater flowing in the electrolytic cell 2, and at the front and rear end portions along the flow of seawater of each electrode 3, An electrical insulating plate 7 is attached. The electrical insulating plate 7 holds the electrode 3 in a predetermined position inside the electrolytic cell 2 and suppresses the generation of leakage current from the end of the electrode 3.

電解槽2は複極式電解槽で、外側に配置された電極3の一方に直流電源装置9の正極を接続して陽極4を形成し、電極3の他方に該直流電源装置9の負極を接続して陰極5を形成する。このように陽極4と陰極5との間に直流電源装置9を接続して電圧を印加すると、陽極4と陰極5の中間に配された中間電極6は、陽極4に対向した面が陰極となり、陰極の裏面が陽極となって、電極3の全体に順次陽極と陰極とが対向して形成される。   The electrolytic cell 2 is a bipolar electrolytic cell, and the positive electrode of the DC power supply device 9 is connected to one of the electrodes 3 arranged outside to form the anode 4, and the negative electrode of the DC power supply device 9 is connected to the other electrode 3. Connected to form the cathode 5. In this way, when the DC power supply device 9 is connected between the anode 4 and the cathode 5 and a voltage is applied, the intermediate electrode 6 disposed between the anode 4 and the cathode 5 has a surface facing the anode 4 as a cathode. The back surface of the cathode serves as an anode, and the anode and the cathode are sequentially formed on the entire electrode 3 so as to face each other.

導入管30と供給管31は、導入管フランジ30F、および供給管フランジ31Fを電解槽2のフランジ2Fにそれぞれボルトナット(図示せず)で締付けて、電解槽2に接続されている。   The introduction pipe 30 and the supply pipe 31 are connected to the electrolytic cell 2 by fastening the introduction tube flange 30F and the supply tube flange 31F to the flange 2F of the electrolytic cell 2 with bolts and nuts (not shown), respectively.

第二陰極10は、図1のように、導入管30に電気絶縁体11を介して設置してある。この第二陰極10は、導入管30および供給管31の内面に、板状に設置してもよい。なお、この場合、第二陰極10が設置されている箇所を除く導入管30および供給管31の内面、および、電解槽胴体2Sの内面は、ゴムライニング等を敷設することにより絶縁する。
また、前記第二陰極10と陰極5との間に第二直流電源装置91が接続してある。
As shown in FIG. 1, the second cathode 10 is installed in the introduction tube 30 via the electrical insulator 11. The second cathode 10 may be installed in a plate shape on the inner surfaces of the introduction tube 30 and the supply tube 31 . In this case, the inner surfaces of the introduction tube 30 and the supply tube 31 excluding the place where the second cathode 10 is installed, and the inner surface of the electrolytic cell body 2S are insulated by laying rubber lining or the like .
A second DC power supply 91 is connected between the second cathode 10 and the cathode 5.

第二陰極10は、電極3に生じる漏洩電流の回路に近く、漏洩電流を確実に吸収し、かつ、電極3での海水の電解作用に大きな影響を及ぼさない位置に設けてある。かかる位置は、直流電源装置9が電極3間に印加する電圧、電極3の電極間隔、電極の枚数、電極の面積、電気絶縁板7の形状、材質等を考慮して適宜設定する。また、第二陰極10が板状に設置されている場合は、本出願人が出願した実公平4−17562号公報に記載されているように、流入電流密度が1A/dm2以上になるように、表面積が設定されることが望ましい。 The second cathode 10 is close to the circuit of the leakage current generated in the electrode 3, is provided at a position that reliably absorbs the leakage current and does not significantly affect the electrolysis action of seawater at the electrode 3. Such a position is appropriately set in consideration of the voltage applied between the electrodes 3 by the DC power supply device 9, the electrode interval between the electrodes 3, the number of electrodes, the area of the electrodes, the shape and material of the electrical insulating plate 7, and the like. When the second cathode 10 is installed in a plate shape , the inflow current density is 1 A / dm 2 or more as described in Japanese Utility Model Publication No. 4-17562 filed by the present applicant. It is desirable that the surface area be set .

8は、第二陰極10を陰極5および直流電源装置9に接続するための電線である。既述したように、導入管30および供給管31と電解槽2とは、導入管フランジ30F、供給管フランジ31Fと電解槽フランジ2Fとをボルトナットで締付けて接続してあるReference numeral 8 denotes an electric wire for connecting the second cathode 10 to the cathode 5 and the DC power supply device 9. As already mentioned, the inlet pipe 30 and the supply pipe 31 and the electrolytic bath 2, inlet flange 30F, are connected by tightening a bolt nut supply pipe flange 31F and the electrolyzer flange 2F.

次に、海水電解装置1の作用について説明する。   Next, the operation of the seawater electrolysis apparatus 1 will be described.

電解槽2に直流電源装置9を接続して陽極4と陰極5との間に電圧を印加し、導入管30より電解槽2に海水を導入させる。すると海水が電極3、3間を通過しながら電気分解され、海水から塩素系酸化物(次亜塩素酸ナトリウム)を含む電解処理水が生成される。   A DC power supply device 9 is connected to the electrolytic cell 2, a voltage is applied between the anode 4 and the cathode 5, and seawater is introduced into the electrolytic cell 2 from the introduction tube 30. Then, seawater is electrolyzed while passing between the electrodes 3 and 3, and electrolytically treated water containing chlorine-based oxide (sodium hypochlorite) is generated from the seawater.

供給管31を通して海水電解装置1から流出した電解処理水は、例えば冷却水としての海水に混合され、冷却装置への海洋生物の付着、育成を防止する。   The electrolytically treated water that has flowed out of the seawater electrolysis apparatus 1 through the supply pipe 31 is mixed with, for example, seawater as cooling water, thereby preventing marine organisms from attaching to and growing in the cooling apparatus.

この場合、第二陰極10を導入管30に電気絶縁体11を介して設置してあるので、陽極4および中間電極6から発生した漏洩電流は、第二陰極10に吸収される。第二陰極10に吸収された漏洩電流は電線8を介して直流電源装置9の負極に流れる。その結果、陰極5および中間電極6に漏洩電流が流れ込まず、電気絶縁板7の周辺に漏洩電流を原因とするスケールが発生しない。 In this case, since the second cathode 10 is installed in the introduction tube 30 via the electrical insulator 11, the leakage current generated from the anode 4 and the intermediate electrode 6 is absorbed by the second cathode 10. The leakage current absorbed by the second cathode 10 flows to the negative electrode of the DC power supply device 9 via the electric wire 8. As a result, no leakage current flows into the cathode 5 and the intermediate electrode 6, and no scale is generated around the electrical insulating plate 7 due to the leakage current.

これは、第二陰極10を導入管30および供給管31の内面に、板状に設置する場合でも同様である、この場合、第二陰極10の表面積が1A/dm2以上の電流密度となるように設定してあれば、第二陰極10にスケールが付着しても、スケールの付着力が弱く、海水が流動することにより第二陰極10から剥離してスケールが蓄積しない。 This is the same even when the second cathode 10 is installed in the form of a plate on the inner surface of the introduction tube 30 and the supply tube 31. In this case, the surface area of the second cathode 10 is a current density of 1 A / dm 2 or more. If the scale is set to, even if the scale adheres to the second cathode 10, the adhesion of the scale is weak, and the scale does not accumulate due to separation from the second cathode 10 due to the flow of seawater.

第二陰極10と陰極5との間に第二直流電源装置91が接続してあるが、この第二直流電源装置91は、海水電解の際の漏洩電流をより強く第二陰極に吸収させるとともに、電解電流の漏洩電流が陰極に流入することを防止するためのものであるから、直流電源装置9よりも容量が小さなものが設置されている。   A second DC power supply 91 is connected between the second cathode 10 and the cathode 5, and this second DC power supply 91 absorbs the leakage current during seawater electrolysis more strongly into the second cathode. In order to prevent the leakage current of the electrolysis current from flowing into the cathode, a capacitor having a smaller capacity than the DC power supply device 9 is installed.

以上の海水電解装置1によれば、第二陰極10は第二直流電源装置91によって陰極5より低い電位に設定され、直流電源装置9により電極3に直流電圧を印加して海水電解した際、陽極4および中間電極6の陽極から発生する漏洩電流がより強く第二陰極10に吸収される。また、陰極5から第二陰極10に向う電流Cが生じ、かかる電流Cは、漏洩電流と逆方向の電流となるので、漏洩電流が遮断され、より効果的にスケールの付着が防止される。 According to the seawater electrolysis apparatus 1 described above, when the second cathode 10 is set to a lower potential than the cathode 5 by the second DC power supply device 91, and when direct current voltage is applied to the electrode 3 by the DC power supply device 9, seawater electrolysis is performed, The leakage current generated from the anode 4 and the anode of the intermediate electrode 6 is more strongly absorbed by the second cathode 10. In addition, a current C from the cathode 5 to the second cathode 10 is generated, and the current C becomes a current in a direction opposite to the leakage current. Therefore, the leakage current is cut off, and scale adhesion is more effectively prevented.

したがって、漏洩電流を原因とする陰極5および中間電極6の陰極周辺や、電気絶縁板7の周辺などへのスケールの付着を上記例の場合よりも効果的に防止できる。   Accordingly, it is possible to more effectively prevent the scale from adhering to the periphery of the cathodes of the cathode 5 and the intermediate electrode 6 and the periphery of the electrical insulating plate 7 due to the leakage current than in the above example.

実験では、第二陰極10を設けたことにより、陰極側の電気絶縁板7へのスケール付着量が、第二陰極なしの場合のほぼ1/2になり、第二直流電源装置91を第二陰極10に接続して電圧を印加した場合には、スケール付着量が更に60%低減した。   In the experiment, since the second cathode 10 is provided, the amount of scale attached to the electrical insulating plate 7 on the cathode side is almost ½ that of the case without the second cathode, and the second DC power supply 91 is installed in the second. When a voltage was applied while connected to the cathode 10, the amount of scale adhesion was further reduced by 60%.

第二陰極10を導入管30および供給管31の内面に、板状に設置する場合、第二陰極10の表面積が1A/dm2以上の電流密度となるように設定してあれば、第二陰極10にスケールが付着しても、スケールの付着力が弱く、流動海水により剥離してスケールが蓄積しない。 When the second cathode 10 is installed on the inner surfaces of the introduction tube 30 and the supply tube 31 in the form of a plate , the second cathode 10 may be provided if the surface area of the second cathode 10 is set to a current density of 1 A / dm 2 or more. Even if a scale adheres to the scale 10, the adhesion of the scale is weak, and the scale does not accumulate due to separation by flowing seawater.

更に、図示はしないが、本発明の海水電解装置の他の例について説明する。 Furthermore, although not shown in figure, the other example of the seawater electrolysis apparatus of this invention is demonstrated.

この海水電解装置1では、電解槽2と導入管30、および電解槽2と供給管31との間に第二陰極用配管12が装着されている。第二陰極用配管12は、配管として通常用いられる鋼管でも、他の金属、例えば、耐食性金属または合金で構成されたものでもよい。但し、塩素系酸化剤を含む電解処理水は通常の海水よりも腐食力が強く、鋼などは早期に腐食するために、鋼管などを第二陰極用配管12に使用するときは、第二陰極用配管12の長さを、陽極4および中間電極6から発生した漏洩電流で電気防食がなされる距離と等しい長さ、例えば管内径の10倍の長さより短い長さとする。   In the seawater electrolysis apparatus 1, a second cathode pipe 12 is mounted between the electrolytic cell 2 and the introduction pipe 30 and between the electrolytic cell 2 and the supply pipe 31. The second cathode pipe 12 may be a steel pipe ordinarily used as a pipe, or may be composed of another metal, for example, a corrosion-resistant metal or an alloy. However, the electrolytically treated water containing a chlorinated oxidant is stronger in corrosive power than normal seawater, and steel and the like corrode early. Therefore, when using a steel pipe or the like for the second cathode pipe 12, the second cathode The length of the pipe 12 for use is set to a length equal to the distance at which the anticorrosion is performed by the leakage current generated from the anode 4 and the intermediate electrode 6, for example, a length shorter than 10 times the inner diameter of the pipe.

かかる海水電解装置1のその他の構成は、既述したものと同一である。このように構成しても、第二陰極用配管12が漏洩電流を吸収するので、陰極5付近へのスケールの発生、付着を効果的に防止できる。   Other configurations of the seawater electrolysis apparatus 1 are the same as those already described. Even if comprised in this way, since the 2nd cathode piping 12 absorbs a leakage current, generation | occurrence | production and adhesion of the scale to the cathode 5 vicinity can be prevented effectively.

本発明にかかる海水電解装置を示す断面図である。It is sectional drawing which shows the seawater electrolysis apparatus concerning this invention.

1 海水電解装置
2 電解槽
2F 電解槽フランジ
2S 電解槽胴体
3 電極
4 陽極
5 陰極
5T 陰極端子
6 中間電極
7 電気絶縁板
8 電線
9 直流電源装置
10 第二陰極
11 電気絶縁体
12 第二陰極用配管
12F 第二陰極用配管フランジ
30 導入管
30F 導入管フランジ
31 供給管
31F 供給管フランジ
91 第二直流電源装置
DESCRIPTION OF SYMBOLS 1 Seawater electrolysis apparatus 2 Electrolysis tank 2F Electrolysis tank flange 2S Electrolysis tank body 3 Electrode 4 Anode 5 Cathode 5T Cathode terminal 6 Intermediate electrode 7 Electrical insulation board 8 Electric wire 9 DC power supply device 10 Second cathode 11 Electrical insulator 12 For second cathode Piping 12F Piping flange 30 for the second cathode Introducing pipe 30F Introducing pipe flange 31 Supply pipe 31F Supply pipe flange 91 Second DC power supply

Claims (3)

電解槽の内部に陽極と陰極とを所定間隔をおいて対峙させ、該電解槽内部に導入した海水を前記陽極と陰極とで電気分解して塩素系酸化剤を含む電解処理水を生成する海水電解装置において、
前記電解槽の上流と下流に接続された配管の少なくとも一方の配管内面に第二陰極を設け、前記陽極から漏洩する漏洩電流を前記第二陰極に吸収させ、前記陰極に第二直流電源装置の正極を接続させ、前記第二陰極に該第二直流電源装置の負極を接続させ、前記陽極から漏洩する漏洩電流を該第二陰極に吸収させることを特徴とした海水電解装置。
Seawater in which an anode and a cathode are opposed to each other inside the electrolytic cell at a predetermined interval, and seawater introduced into the electrolytic cell is electrolyzed with the anode and the cathode to generate electrolytically treated water containing a chlorine-based oxidant. In the electrolyzer,
A second cathode is provided on the inner surface of at least one of the pipes connected upstream and downstream of the electrolytic cell, the leakage current leaking from the anode is absorbed by the second cathode, and the cathode is connected to the second DC power supply device. A seawater electrolyzer characterized in that a positive electrode is connected, a negative electrode of the second DC power supply device is connected to the second cathode, and a leakage current leaking from the anode is absorbed by the second cathode .
電解槽の内部に陽極と陰極とを所定間隔をおいて対峙させ、該電解槽内部に導入した海水を前記陽極と陰極とで電気分解して塩素系酸化剤を含む電解処理水を生成する海水電解装置において、
前記電解槽の上流と下流に接続された配管の少なくとも一方の配管内面を第二陰極に形成し、前記陽極から漏洩する漏洩電流を前記第二陰極に吸収させ、前記陰極に第二直流電源装置の正極を接続させ、前記第二陰極に該第二直流電源装置の負極を接続させ、前記陽極から漏洩する漏洩電流を該第二陰極に吸収させることを特徴とした海水電解装置。
Seawater in which an anode and a cathode are opposed to each other inside the electrolytic cell at a predetermined interval, and seawater introduced into the electrolytic cell is electrolyzed with the anode and the cathode to generate electrolytically treated water containing a chlorine-based oxidant. In the electrolyzer,
The inner surface of at least one of the pipes connected upstream and downstream of the electrolytic cell is formed in the second cathode, the leakage current leaking from the anode is absorbed by the second cathode, and the second DC power supply device is absorbed by the cathode The seawater electrolysis apparatus is characterized in that a negative electrode of the second DC power supply device is connected to the second cathode, and a leakage current leaking from the anode is absorbed by the second cathode .
前記第二直流電源装置を、前記陽極と陰極間に接続される水電解用直流電源よりも小容量としたことを特徴とする請求項1または2に記載の海水電解装置。
The seawater electrolysis apparatus according to claim 1 or 2 , wherein the second DC power supply device has a smaller capacity than a DC power supply for water electrolysis connected between the anode and the cathode.
JP2006201791A 2006-07-25 2006-07-25 Seawater electrolyzer Active JP4789043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006201791A JP4789043B2 (en) 2006-07-25 2006-07-25 Seawater electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006201791A JP4789043B2 (en) 2006-07-25 2006-07-25 Seawater electrolyzer

Publications (2)

Publication Number Publication Date
JP2008023494A JP2008023494A (en) 2008-02-07
JP4789043B2 true JP4789043B2 (en) 2011-10-05

Family

ID=39114682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006201791A Active JP4789043B2 (en) 2006-07-25 2006-07-25 Seawater electrolyzer

Country Status (1)

Country Link
JP (1) JP4789043B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101812008B1 (en) * 2016-03-15 2017-12-27 (주)엘켐텍 An electrolyzer having a porous 3-dimensional mono-polar electrodes, and water treatment method using the electrolyzer having the porous 3-dimensional mono-polar electrodes
JP7037303B2 (en) * 2017-09-08 2022-03-16 株式会社ナカボーテック Open type multi-pole electrolyzer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06233983A (en) * 1991-06-26 1994-08-23 Konica Corp Three dimensional electrode-type electrolytic tank
JP3091617B2 (en) * 1993-12-22 2000-09-25 大機エンジニアリング株式会社 Bipolar electrolytic cell
JPH10128334A (en) * 1996-10-31 1998-05-19 Konica Corp Method and apparatus for treating water, double electrode fixed bed type electrode electrolytic cell, and method for installing grounding electrode
JP2007117986A (en) * 2005-09-28 2007-05-17 Nippon Corrosion Engineering Co Ltd Water electrolytic device and method for preventing scale from being deposited thereon

Also Published As

Publication number Publication date
JP2008023494A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
KR930008997B1 (en) Anti-fouling device for afloaters
JP4789043B2 (en) Seawater electrolyzer
JP6569144B1 (en) Monopolar electrolytic device
KR101272295B1 (en) Ship ballast water disinfection electrolysis electrode module
CN108048864A (en) Common cathode ultrasonic electrochemical device
KR101481327B1 (en) Bipolar type electrolysis reactor
CN104831287A (en) Method for controlling marine biofouling of titanium alloy workpieces
JP2007117986A (en) Water electrolytic device and method for preventing scale from being deposited thereon
CN106222692B (en) Anti-fouler and its implementation based on platform piling bar ring type electrolysis anti-soil electrode
JP2006081449A (en) Apparatus for preventing adhesion of marine organism, composite plate for preventing adhesion of marine organism and method for installing the apparatus
JP2013086031A (en) Electrode for water treatment and water treatment apparatus
JP4851175B2 (en) Antifouling device and antifouling method for heat exchanger
CN204999980U (en) High yield chlorine electrolytic device
CN202265610U (en) Anticorrosion electrolytic cell for nitrogen trifluoride
CN206359630U (en) Apply the electrolysis unit in seawaterline
JP4924999B2 (en) Method for preventing scale adhesion of electrolytic cell, and electrolyzed water generating apparatus using the same
KR20160051234A (en) seawater electrolyer not using acid cleaning
JPH1136088A (en) Electrolytic corrosion protection method capable of executing sea water electrolytic fouling prevention and iron oxide film formation by generation of iron ion and apparatus therefor
JP3448837B2 (en) Iron electrolysis equipment
JP4605913B2 (en) Electric antifouling device and electric antifouling method
CN102383141B (en) Anti-corrosion electrolytic tank for nitrogen trifluoride
US3558465A (en) Electrolytic cell
JP2006176801A (en) Vessel type iron electrolyzer for iron ion feeding device
JP2010242161A (en) Galvanic anode body and galvanic anode method
CN105112933A (en) High-yielding chlorine electrolysis device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4789043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150