JPH1136088A - Electrolytic corrosion protection method capable of executing sea water electrolytic fouling prevention and iron oxide film formation by generation of iron ion and apparatus therefor - Google Patents

Electrolytic corrosion protection method capable of executing sea water electrolytic fouling prevention and iron oxide film formation by generation of iron ion and apparatus therefor

Info

Publication number
JPH1136088A
JPH1136088A JP9190862A JP19086297A JPH1136088A JP H1136088 A JPH1136088 A JP H1136088A JP 9190862 A JP9190862 A JP 9190862A JP 19086297 A JP19086297 A JP 19086297A JP H1136088 A JPH1136088 A JP H1136088A
Authority
JP
Japan
Prior art keywords
electrode
iron
power supply
electrolysis
anticorrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9190862A
Other languages
Japanese (ja)
Inventor
Mitsuyuki Abe
三之 阿部
Hikari Sudo
光 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Corrosion Engineering Co Ltd
Original Assignee
Nippon Corrosion Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Corrosion Engineering Co Ltd filed Critical Nippon Corrosion Engineering Co Ltd
Priority to JP9190862A priority Critical patent/JPH1136088A/en
Publication of JPH1136088A publication Critical patent/JPH1136088A/en
Pending legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic corrosion protection method capable of executing both of sea water electrolytic fouling prevention and iron oxide film formation by generation of iron ions by suppressing the adhesion and propagation of oceanic organisms by the hypochlo rite generated by electrolysis of the sea water for execution of cathodic corrosion protection by an external power source system and forming the iron oxide film on the inside surface of an apparatus consisting of a copper alloy by releasing the iron ions into cooling water and an apparatus therefor. SOLUTION: An insoluble electrode 5 and an iron electrode 6 are mounted at the objected to be corrosion-protected in the state of insulating both electrodes from the objected to be corrosion-protected. The insoluble electrode 5 and the iron electrode 6 are respectively connected to a DC power source device 9 for electrolysis in such a manner that the polarities of the insoluble electrode 5 and the iron electrode 6 are made respectively counter in polarities. The constitution to allow the alternation of the polarities of the insoluble electrode 5 and the iron electrode 6 is adopted. The sea water electrolytic pollution prevention and the iron oxide film formation by the generation of the iron ions are executed by connecting the insoluble electrode 5 to a positive pole at the time of suppressing the adhesion and propagation of the oceanic organisms to the objected to be corrosion protected and connecting the iron electrode 6 to the positive pole at the time of eluting the iron ions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、海水を冷却水と
して使用する機器(例えば復水器、熱交換器、海水取水
設備、海水配管など)を、外部電源方式による陰極防食
を行いつつ、海水の電解により発生する次亜塩素酸塩に
より海洋生物の付着繁殖を抑制したり、鉄イオンを冷却
水に放出して銅合金からなる前記機器内面に酸化鉄皮膜
を形成したりして、海水電解防汚と鉄イオン発生による
酸化鉄皮膜形成の両方を行うことのできる電気防食方法
およびその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for using seawater as cooling water (for example, a condenser, a heat exchanger, a seawater intake facility, a seawater pipe, etc.) while performing cathodic protection by an external power supply system, The hypochlorite generated by the electrolysis of seawater suppresses the adhesion and propagation of marine organisms, and releases iron ions to cooling water to form an iron oxide film on the inner surface of the copper alloy, thereby forming seawater electrolysis. The present invention relates to an anticorrosion method capable of performing both antifouling and formation of an iron oxide film by generating iron ions, and an apparatus therefor.

【0002】[0002]

【従来の技術】冷却水として海水を用いる熱交換器や復
水器には、これら設備に使用されている鉄鋼、ステンレ
ス鋼、銅合金などを防食するために、図5に示されるよ
うに、陽極の鉄電極55と、防食対象物となる陰極とは
別の軟鋼製の補助陰極52と、防食対象物の電位検出の
ための照合電極7とを備え、さらに、これらの電極およ
び防食対象物に接続されて電源となるとともに、防食対
象物の電位、および防食電流と補助電流との和を一定値
に制御する定電流定電位電源装置14を備えてなる外部
電源方式電気防食装置を設置することが知られている
(特公昭57−15667号公報参照)。図5におい
て、さらに1は熱交換器または復水器、2は冷却管、3
は管板、54は絶縁板であり、一般に冷却管3は銅合金
製管で作られている。この外部電源方式電気防食装置に
よる防食は、陽極に鉄電極55を使用することにより、
鉄電極55から発生した鉄イオンが銅合金製冷却管2の
内面に耐食性の酸化鉄皮膜を形成すると共に、外部電源
方式による電気防食作用もなし、鉄イオンによる防食と
外部電源方式による電気防食を併用することにより優れ
た防食効果を奏するものである。
2. Description of the Related Art As shown in FIG. 5, heat exchangers and condensers using seawater as cooling water are used to protect the steel, stainless steel, copper alloy and the like used in these facilities, as shown in FIG. An iron electrode 55 as an anode, an auxiliary cathode 52 made of mild steel different from a cathode serving as an anticorrosion target, and a reference electrode 7 for detecting the potential of the anticorrosion target are provided. And an external power supply type cathodic protection device comprising a constant current / constant potential power supply device 14 for controlling the potential of the object to be protected and the sum of the protection current and the auxiliary current to be constant. (See Japanese Patent Publication No. 57-15667). In FIG. 5, 1 is a heat exchanger or a condenser, 2 is a cooling pipe, 3
Is a tube sheet, 54 is an insulating plate, and the cooling pipe 3 is generally made of a copper alloy pipe. Corrosion protection by this external power supply type cathodic protection system is achieved by using iron electrode 55 for the anode.
Iron ions generated from the iron electrode 55 form a corrosion-resistant iron oxide film on the inner surface of the copper alloy cooling tube 2, and have no external corrosion protection function by an external power supply method. It exhibits an excellent anticorrosive effect when used in combination.

【0003】一方、海水を冷却水として使用する機器は
海洋生物、例えばイガイ、フジツボ、藻類などの付着に
よって、例えば熱交換器または復水器のチューブが数か
月で閉寒したり、海洋生物の付着箇所が腐食するなどの
被害を受けるために、これを防止すべく、船舶の海水使
用機器の海水取水管系列に電解槽を設け、不溶性陽極か
ら発生を行うことのできる電気防食する直流電流により
海水を電気分解することにより次亜塩素酸塩を生成し、
この次亜塩素酸塩を使用して海水使用機器に海洋生物が
付着するのを防止する技術も知られており(特公昭46
−33562号公報参照)、この海水を電気分解するこ
とにより次亜塩素酸塩を生成し、この次亜塩素酸塩を使
用して海洋生物が海水使用機器に付着するのを防止する
技術を一般に「海水電解防汚」と呼ばれている。
[0003] On the other hand, equipment that uses seawater as cooling water is often used for cooling marine organisms, such as mussels, barnacles, and algae. In order to prevent damage such as corrosion of the adhered portion of the seawater, an electrolytic cell is installed in the seawater intake pipe line of the equipment that uses seawater on ships, and a DC current that is generated by the insoluble anode is used for electrolytic protection. Produces hypochlorite by electrolyzing seawater,
A technique of using this hypochlorite to prevent marine organisms from attaching to equipment using seawater is also known (Japanese Patent Publication No. Sho-46).
No. 33562), a technique for generating hypochlorite by electrolyzing seawater and using this hypochlorite to prevent marine organisms from attaching to equipment using seawater is generally known. It is called "seawater electrolytic antifouling".

【0004】[0004]

【発明が解決しようとする課題】前記海水取水管系列に
電解槽を設け、不溶性陽極からの直流電流により海水を
電気分解して次亜塩素酸塩を生成し、この次亜塩素酸塩
を使用して海水使用機器に海洋生物が付着するのを防止
する方法は、船舶のように海水取水管系列が短い場合は
問題はないが、化学工場や発電所などの陸上設備などの
ように、海水取水口と熱交換器または復水器とが数百メ
ートルに及ぶ海水取水管でつながっている場合は、例え
海水取水管系列の途中に電解槽を設けて十分な次亜塩素
酸塩を生成させても、海水取水管系列内でその殆どが消
費され、熱交換器や復水器の海水電解防汚効果は殆ど無
い。
An electrolytic cell is provided in the seawater intake pipe line, and seawater is electrolyzed by a direct current from an insoluble anode to produce hypochlorite, and this hypochlorite is used. There is no problem in preventing marine organisms from adhering to equipment using seawater when the seawater intake pipe line is short, such as in ships. If the intake and the heat exchanger or condenser are connected by a seawater intake pipe that extends several hundred meters, an electrolytic cell may be installed in the middle of the seawater intake pipe line to generate sufficient hypochlorite. However, most of them are consumed in the seawater intake pipe line, and the heat exchanger and the condenser have almost no effect on the antifouling of seawater electrolysis.

【0005】そこで、熱交換器または復水器の海水電解
防汚効果を高めるために、不溶性陽極を熱交換器または
復水器の水室に直接設置して海水電解防汚することも考
えられるが、十分な海水電解防汚効果を達成するために
は、同じ熱交換器または復水器を防食するために必要な
電流の5倍から10倍の電流が必要であるために、熱交
換器または復水器の水室および冷却管が過防食となって
電解生成物が蓄積し、これにより冷却管の閉寒や熱貫流
率の低減が生じるので、常に海水電解防汚の状態に保持
することは好ましくない。一方、通常の防食電流を流し
て電気防食を行うだけでは銅合金製冷却管の防食には不
十分であり、鉄イオンを発生させて酸化鉄皮膜を形成す
ることにより防食を行うことも必要である。したがっ
て、海水電解防汚と鉄イオン発生を行うことのできる電
気防食方法およびその装置が必要であった。
[0005] Therefore, in order to enhance the seawater electrolysis antifouling effect of the heat exchanger or the condenser, it is conceivable to install an insoluble anode directly in the water chamber of the heat exchanger or the condenser to perform the seawater electrolysis antifouling. However, in order to achieve a sufficient seawater electrolytic antifouling effect, a current of 5 to 10 times the current required to protect the same heat exchanger or condenser is required. Alternatively, the water chamber of the condenser and the cooling pipe become over-corrosive and accumulate electrolysis products, which cause the cooling pipe to close and reduce the heat transmission coefficient, so that it is always kept in the state of seawater electrolytic antifouling. It is not preferable. On the other hand, it is not enough to prevent corrosion of copper alloy cooling pipes simply by applying normal corrosion protection current and conducting electrolytic protection.It is also necessary to perform corrosion protection by generating iron ions and forming an iron oxide film. is there. Therefore, there is a need for a method and an apparatus for preventing corrosion of seawater by electrolysis and generating iron ions.

【0006】[0006]

【課題を解決するための手段】そこで、本発明者は、か
かる海水電解防汚と鉄イオン発生を行うことのできる電
気防食方法およびその装置を開発すべく研究を行なった
結果、図1に示すように、熱交換器または復水器1の水
室4内に不溶性電極5と鉄電極6を互に近接させて設置
し、極性切替えスイッチ20と接点21P、21N、2
2P、22Nを介して該不溶性電極5と鉄電極6とが対
極になるように、電解用直流電源装置9の正極端子Pお
よび負極端子N1 に接続し、極性切替えスイッチ20の
切り替えにより海水電解防汚を行うように切り替える
と、海水電解防汚を強力に行うことができ、一方、極性
切替えスイッチ20を鉄イオン発生に切り替えると、鉄
イオンが流入して銅合金製冷却管内部に酸化鉄皮膜が形
成され、それによって銅合金製冷却管の防食を強力に行
うことができ、海水電解防汚と鉄イオン発生の切り替え
を環境の変化に応じて交代で行うことにより前記課題が
解決できる、という知見を得たのである。
Therefore, the present inventor conducted a study to develop an electrolytic protection method and an apparatus for performing such anti-fouling of seawater and generation of iron ions. As a result, the results are shown in FIG. As described above, the insoluble electrode 5 and the iron electrode 6 are installed close to each other in the water chamber 4 of the heat exchanger or the condenser 1, and the polarity switch 20 and the contacts 21P, 21N, 2
2P, as the insoluble electrode 5 and the iron electrode 6 is a counter electrode through 22N, and connected to the positive terminal P and the negative terminal N 1 of the electrode for the DC power supply device 9, seawater electrolysis by switching the polarity switching 20 When the antifouling is switched, seawater electrolytic antifouling can be performed strongly. On the other hand, when the polarity switch 20 is switched to the generation of iron ions, iron ions flow into the cooling pipe made of copper alloy and iron oxide is introduced into the cooling pipe. A film is formed, thereby making it possible to strongly prevent corrosion of the copper alloy cooling pipe, and to solve the above-mentioned problem by alternately performing switching between seawater electrolytic antifouling and iron ion generation according to environmental changes. That's the finding.

【0007】すなわち、極性切替えスイッチ20を切り
替えて海水電解防汚を行う時は、不溶性電極5を正極、
鉄電極6を負極とするように切り替え、極性切替えスイ
ッチ20を切り替えて鉄イオンを発生させる時は、不溶
性電極5を負極、鉄電極6を正極とするように切り替
え、且つ、各々の正極から発生した電流の大部分を負極
に流入せしめ、残りの一部の電流を水室4、管板3およ
び冷却管2の管端に廻してこれらを適正な防食電位に制
御することができるように電位検出用照合電極7と電気
防食用直流電源装置14を設けることにより前記課題を
解決することができる、という知見を得たのである。
That is, when seawater electrolysis is carried out by switching the polarity changeover switch 20, the insoluble electrode 5 is connected to the positive electrode.
When the iron electrode 6 is switched to be a negative electrode and the polarity switch 20 is switched to generate iron ions, the insoluble electrode 5 is switched to a negative electrode, and the iron electrode 6 is switched to a positive electrode. Most of the generated current flows into the negative electrode, and the remaining part of the current is passed to the water chamber 4, the tube sheet 3, and the end of the cooling pipe 2 so that they can be controlled to an appropriate anticorrosion potential. It has been found that the above problem can be solved by providing the detection reference electrode 7 and the DC power supply device for cathodic protection 14.

【0008】また、図2に示すように、熱交換器または
復水器1の水室4内に不溶性電極5と鉄電極6と陰極2
4とを互に近接させて設置し、接続切替えスイッチ25
と接点26Pおよび27Pを介して該不溶性電極5また
は鉄電極6のいずれかが電解用直流電源装置9の正極端
子Pに接続されるようにし、該陰極24を該電解用直流
電源装置9の負極N1に接続し、接続切替えスイッチ2
5の切り替えにより海水電解防汚を行うように切り替え
ると、海水電解防汚を強力に行うことができ、一方、接
続切替えスイッチ25を鉄イオン発生に切り替えると、
鉄イオンが流入して銅合金製冷却管内部に酸化鉄皮膜が
形成され、それによって銅合金製冷却管の防食を強力に
行うことができ、海水電解防汚と鉄イオン発生の切り替
えを環境の変化に応じて交代で行うことにより前記課題
が解決できる、という知見を得たのである。すなわち、
接続切替えスイッチ25を切り替えて海水電解防汚を行
う時は、不溶性電極5を正極にするように切り替え、鉄
イオンを発生させる時は、鉄電極6を正極とするように
切り替え、且つ、各々の正極から発生した電流の大部分
を陰極24に流入せしめ、残りの一部の電流を水室4、
管板3および冷却管2の管端に廻してこれらを適正な防
食電位に制御することができるように電位検出用照合電
極7と電気防食用直流電源装置14を設けることにより
前記課題を解決することができる、という知見を得たの
である。
As shown in FIG. 2, an insoluble electrode 5, an iron electrode 6, and a cathode 2 are provided in a water chamber 4 of a heat exchanger or a condenser 1.
4 and the connection switch 25.
Either the insoluble electrode 5 or the iron electrode 6 is connected to the positive terminal P of the DC power supply 9 for electrolysis via the contacts 26P and 27P, and the cathode 24 is connected to the negative electrode of the DC power supply 9 for electrolysis. Connect to N1, connect switch 2
When the seawater electrolysis and antifouling are switched by switching 5, the seawater electrolysis and antifouling can be performed strongly. On the other hand, when the connection changeover switch 25 is switched to iron ion generation,
Iron ions flow in and an iron oxide film is formed inside the copper alloy cooling pipe, which can strongly prevent corrosion of the copper alloy cooling pipe and switch between seawater electrolytic antifouling and iron ion generation in the environment. The inventor has found that the above problem can be solved by taking turns in response to a change. That is,
When the seawater electrolytic antifouling is performed by switching the connection changeover switch 25, the insoluble electrode 5 is switched to be a positive electrode, and when iron ions are generated, the iron electrode 6 is switched to be a positive electrode. Most of the current generated from the positive electrode flows into the cathode 24, and the remaining part of the current is transferred to the water chamber 4,
The above-mentioned problem is solved by providing the reference electrode 7 for potential detection and the DC power supply device 14 for cathodic protection so that the tube sheet 3 and the cooling pipe 2 can be turned around the pipe ends and controlled at an appropriate corrosion protection potential. We learned that we can do it.

【0009】この発明は、かかる知見に基づいて成され
たものであって、(1)防食対象物に不溶性電極5と鉄
電極6を防食対象物とは絶縁状態に取り付けるととも
に、該不溶性電極5と鉄電極6とが互に対極となるよう
に電解用直流電源装置9にそれぞれ接続し、且つ、該不
溶性電極5と鉄電極6との極性を切り換えられる構成と
するとともに、該防食対象物を電気防食用直流電源装置
14の負極に接続し、且つ、該電気防食用直流電源装置
14の正極を該電解用直流電源装置9の正極に接続し、
該防食対象物への海洋生物の付着繁殖を抑制するとき
は、該不溶性電極5を電解用直流電源装置9の正極に接
続して該不溶性電極5から流れ出る直流電流により海水
を電解して次亜塩素酸塩を発生させつつ該直流電流の一
部を該防食対象物に到達せしめて電気防食を行い、鉄イ
オンを溶出させて該防食対象物に酸化鉄皮膜を形成する
ときは、該鉄電極6を該電解用直流電源装置9の正極に
接続して該鉄電極6から流れ出る直流電流により鉄イオ
ンを発生させつつ該直流電流の一部を該防食対象物に到
達せしめて電気防食を行う海水電解防汚と鉄イオン発生
による酸化鉄皮膜形成を行うことのできる電気防食方
法、(2)防食対象物に不溶性電極5と鉄電極6と防食
対象物とは別の陰極24とを防食対象物と絶縁状態に取
り付け、該陰極24を電解用直流電源装置9の負極に接
続するとともに、防食対象物への海洋生物の付着繁殖を
抑制するときは、該不溶性電極5が、鉄イオンを溶出さ
せるときは鉄電極6がそれぞれ電解用直流電源装置9の
正極に接続されるように不溶性電極5および鉄電極6と
電解用直流電源装置9との間に接続切り替え装置24を
設け、且、防食対象物を電気防食用直流電源装置14の
負極に、該電気防食用直流電源装置14の正極を電解用
直流電源装置9の正極にそれぞれ接続して、該防食対象
物への海洋生物の付着繁殖を抑制するときは、該不溶性
電極から流れ出る直流電流により海水を電解して次亜塩
素酸塩を発生させつつ該直流電流の一部を該防食対象物
に到達せしめて電気防食を行い、鉄イオンを溶出させる
ときは該鉄電極から流れ出る直流電流により鉄イオンを
発生させつつ該直流電流の一部を該防食対象物に到達せ
しめて電気防食を行う海水電解防汚と鉄イオン発生によ
る酸化鉄皮膜形成を行うことのできる電気防食方法、
(3)不溶性電極5と、鉄電極6と、該不溶性電極5と
鉄電極6とが互に対極となるように接続されて海水電解
および鉄イオン溶出用の電源となる電解用直流電源装置
9と、不溶性電極5と鉄電極6との極性切替え装置19
とを備え、さらに防食対象物の電位検出用照合電極7
と、該電位検出用照合電極7と防食対象物と該電解用直
流電源装置9の正極とが接続されている電気防食用直流
電源装置14とを備えてなる海水電解防汚と鉄イオン発
生による酸化鉄皮膜形成を行うことのできる電気防食装
置であって、該電解用直流電源装置9は、定電流整流回
路10および定電流制御回路13から構成され、該電気
防食用直流電源装置14は定電位整流回路15および定
電位制御回路17から構成されている海水電解防汚と鉄
イオン発生による酸化鉄皮膜形成を行うことのできる電
気防食装置、(4)不溶性電極5と、鉄電極6と、防食
対象物とは別の陰極24と、該陰極24が負極に該不溶
性電極5および鉄電極6が正極にそれぞれ接続されて海
水電解および鉄イオン溶出用の電源となる電解用直流電
源装置9と、該不溶性電極5および鉄電極6と電解用直
流電源装置9の正極との間に接続切り替え装置25とを
備え、さらに防食対象物の電位検出用照合電極7と、該
電位検出用照合電極7と防食対象物と該電解用直流電源
装置9の正極に接続される電気防食用直流電源装置14
とを備えてなる海水電解防汚と鉄イオン発生による酸化
鉄皮膜形成を行うことのできる電気防食装置であって、
該電解用直流電源装置9は、定電流整流回路10および
定電流制御回路13から構成され、該電気防食用直流電
源装置14は定電位整流回路15および定電位制御回路
17から構成されている海水電解防汚と鉄イオン発生に
よる酸化鉄皮膜形成を行うことのできる電気防食装置、
(5)該電解用直流電源装置9と、該電気防食用直流電
源装置14と、該不溶性電極5および鉄電極6の極性切
替え装置19とが、定電流定電位電源装置18として一
体的に構成されている(3)記載の海水電解防汚と鉄イ
オン発生による酸化鉄皮膜形成を行うことのできる電気
防食装置、(6)該電解用直流電源装置9と該電気防食
用直流電源装置14と該不溶性電極5および鉄電極6と
該電解用直流電源装置9との接続を切替える接続切替え
装置28とが、定電流定電位電源装置18として一体的
に構成されている(4)記載の海水電解防汚と鉄イオン
発生による酸化鉄皮膜形成を行うことのできる電気防食
装置、に特徴を有するものである。
The present invention has been made on the basis of such findings. (1) The insoluble electrode 5 and the iron electrode 6 are attached to the anticorrosion target in a state where the anticorrosion target is insulated from the anticorrosion target. And the iron electrode 6 are connected to the DC power supply for electrolysis 9 so as to be opposite electrodes to each other, and the polarity of the insoluble electrode 5 and the iron electrode 6 can be switched. Connected to the negative electrode of the DC power supply for cathodic protection 14, and connected the positive electrode of the DC power supply 14 for cathodic protection to the positive electrode of the DC power supply 9 for electrolysis,
In order to suppress the adhesion and propagation of marine organisms to the anticorrosion target, the insoluble electrode 5 is connected to the positive electrode of a DC power supply 9 for electrolysis, and seawater is electrolyzed by a DC current flowing out of the insoluble electrode 5 to form a sub-electrode. When a part of the direct current reaches the anticorrosion target while chlorate is generated, the anticorrosion is performed, and iron ions are eluted to form an iron oxide film on the anticorrosion target. 6 is connected to the positive electrode of the direct current power supply device 9 for electrolysis to generate iron ions by a direct current flowing out of the iron electrode 6, and to allow a part of the direct current to reach the object to be protected, thereby preventing seawater from being subjected to cathodic protection. An anticorrosion method capable of forming an iron oxide film by electrolytic antifouling and generation of iron ions. (2) An insoluble electrode 5, an iron electrode 6, and a cathode 24 different from the anticorrosion target are used for the anticorrosion target. And the cathode 24 is attached in an insulated state. The insoluble electrode 5 is connected to the negative electrode of the dissolving DC power supply 9 to suppress the adhesion and propagation of marine organisms to the anticorrosion target, and the iron electrode 6 is connected to the electrolytic DC power supply to elute iron ions. A connection switching device 24 is provided between the insoluble electrode 5 and the iron electrode 6 and the DC power supply device 9 for electrolysis so as to be connected to the positive electrode of the power supply device 9. When the positive electrode of the direct current power supply for electrolytic protection 14 is connected to the negative electrode and the positive electrode of the direct current power supply 9 for electrolysis, respectively, to prevent the adhesion and propagation of marine organisms to the anticorrosion target, the positive electrode flows out from the insoluble electrode. When a part of the direct current reaches the object to be anticorrosive while electrolyzing seawater by the direct current to generate hypochlorite, and the electrolytic protection is performed, and when the iron ions are eluted, the direct current flowing from the iron electrode is used. To the current Cathodic protection method capable of performing an iron oxide film formed by seawater electrolysis antifouling iron ion generator for electrical corrosion and while generating a Li Tie ions allowed reaching a portion of the DC current-proof food object,
(3) An insoluble electrode 5, an iron electrode 6, and an electrolysis direct-current power supply device 9 which is connected so that the insoluble electrode 5 and the iron electrode 6 become opposite electrodes and serves as a power source for seawater electrolysis and iron ion elution. And polarity switching device 19 between insoluble electrode 5 and iron electrode 6
And a reference electrode 7 for detecting the potential of the anticorrosion target.
Seawater electrolytic antifouling and iron ion generation, comprising: a potential detection reference electrode 7; an anticorrosion target; and a cathodic anticorrosion DC power supply 14 to which the positive electrode of the electrolysis DC power supply 9 is connected. An electrolytic protection device capable of forming an iron oxide film, wherein the DC power supply device for electrolysis 9 is composed of a constant current rectifier circuit 10 and a constant current control circuit 13, and the DC power supply device for electrolytic protection is 14 An anticorrosion device comprising a potential rectification circuit 15 and a constant potential control circuit 17 capable of forming seawater electrolytic antifouling and forming an iron oxide film by generating iron ions; (4) an insoluble electrode 5 and an iron electrode 6; A cathode 24 separate from the anticorrosion target; an electrolysis DC power supply 9 having the cathode 24 connected to the negative electrode and the insoluble electrode 5 and the iron electrode 6 connected to the positive electrode, respectively, and serving as a power supply for seawater electrolysis and iron ion elution. The said A connection switching device 25 is provided between the neutral electrode 5 and the iron electrode 6 and the positive electrode of the DC power supply device 9 for electrolysis, and further includes a reference electrode 7 for detecting the potential of the anticorrosion target, and the reference electrode 7 for detecting the anticorrosion. DC power supply for cathodic protection 14 connected to the object and the positive electrode of DC power supply 9 for electrolysis
An anticorrosion device capable of forming an iron oxide film by seawater electrolytic antifouling and iron ion generation comprising:
The electrolysis DC power supply 9 is composed of a constant current rectifier circuit 10 and a constant current control circuit 13, and the cathodic protection DC power supply 14 is composed of a constant potential rectifier circuit 15 and a constant potential control circuit 17. An anticorrosion device capable of forming an iron oxide film by electrolytic antifouling and iron ion generation,
(5) The DC power supply device 9 for electrolysis, the DC power supply device 14 for cathodic protection, and the polarity switching device 19 for the insoluble electrode 5 and the iron electrode 6 are integrally configured as a constant current constant potential power supply device 18. (3) an anticorrosion device capable of forming an iron oxide film by generation of iron ions and seawater electrolysis according to (3), (6) the DC power supply device 9 for electrolysis and the DC power supply device 14 for anticorrosion. The seawater electrolysis according to (4), wherein the connection switching device 28 for switching the connection between the insoluble electrode 5 and the iron electrode 6 and the DC power supply device 9 for electrolysis is integrally configured as a constant current / constant potential power supply device 18. It is characterized by an anticorrosion device capable of forming an iron oxide film by antifouling and generation of iron ions.

【0010】この発明の外部電源方式による陰極防食を
行いつつ海水電解防汚と鉄イオン発生による酸化鉄皮膜
形成を行うことのできる電気防食装置において、不溶性
電極5は、Pb−Ag(2%Agを含有し、残りがPb
からなる鉛合金)電極、白金メッキしたチタン、ニオブ
またはチタン合金からなる電極、金属に金属酸化物を被
覆した電極(例えば、チタンまたはチタン合金基体表面
に白金族酸化物皮膜が施されている電極)などを用いる
ことができる。また鉄電極6は通常の軟鋼製電極を用い
ることができる。さらに陰極24は通常の軟鋼製板、棒
状体などを用いることができる。
In the cathodic protection using an external power supply system according to the present invention, the anti-corrosion device capable of forming seawater electrolytic antifouling and forming an iron oxide film by generating iron ions forms an insoluble electrode 5 comprising Pb-Ag (2% Ag). And the remainder is Pb
Electrodes made of platinum, titanium-plated titanium, niobium or titanium alloy, electrodes coated with a metal oxide on a metal (for example, an electrode in which a platinum group oxide film is formed on the surface of a titanium or titanium alloy substrate) ) Can be used. Further, as the iron electrode 6, a normal mild steel electrode can be used. Further, as the cathode 24, a normal mild steel plate, a rod-shaped body, or the like can be used.

【0011】つぎに、この発明の外部電源方式による陰
極防食を行いつつ海水電解防汚と鉄イオン発生による酸
化鉄皮膜形成を行うことのできる電気防食方法およびそ
の装置の特に電解用直流電源装置9および電気防食用直
流電源装置14部分を図面に基づいて具体的に説明す
る。図3は、この発明の海水電解防汚と鉄イオン発生に
よる酸化鉄皮膜形成を行うことのできる電気防食装置を
復水器に取り付けた概略図であり、図3において、1は
復水器、2は銅合金製の冷却管、3は銅合金製の管板、
4は水室であり、水室4は内面にゴムライニングが施さ
れている軟鋼にて構成されている。水室4には、不溶性
電極5と該鉄電極6とが互に隣接した位置に水室4とは
電気的に絶縁した状態で取り付けられている。なお、不
溶性電極5と該鉄電極6とを電気的に絶縁した状態で一
体に構成し、水室4の壁面に電気的に絶縁した状態で取
り付けてもよい。
Next, a cathodic protection method using an external power supply system according to the present invention and an anticorrosion method capable of forming an iron oxide film by seawater electrolytic antifouling and iron ion generation, and particularly a DC power supply device 9 for electrolysis, are provided. The portion of the DC power supply 14 for cathodic protection will be specifically described with reference to the drawings. FIG. 3 is a schematic diagram of an electrolytic protection device capable of forming an iron oxide film by seawater electrolytic antifouling and iron ion generation of the present invention attached to a condenser. In FIG. 2 is a copper alloy cooling pipe, 3 is a copper alloy tube sheet,
Reference numeral 4 denotes a water chamber, and the water chamber 4 is made of mild steel with an inner surface lining with a rubber lining. An insoluble electrode 5 and the iron electrode 6 are attached to the water chamber 4 at positions adjacent to each other while being electrically insulated from the water chamber 4. Note that the insoluble electrode 5 and the iron electrode 6 may be integrally formed in an electrically insulated state, and may be attached to the wall surface of the water chamber 4 in an electrically insulated state.

【0012】さらに管板3付近の水室4には復水器1内
の防食電位検出のため照合電極7が水室4とは電気的に
絶縁した状態で取り付けられている。不溶性電極5は、
極性切替え装置19内の接点21P、21Nに、鉄電極
6は、接点22P、22Nにそれぞれ接続され、極性切
替えスイッチ20を介して電解用直流電源装置9の正極
端子Pまたは負極端子N1 に接続されている。また、水
室4は電気防食用直流電源装置14の負極端子N2 と電
位検出正端子Dに接続されており、さらに照合電極7は
電気防食用直流電源装置14の電位検出負端子Rにそれ
ぞれ接続されている。
Further, a reference electrode 7 is attached to the water chamber 4 near the tube sheet 3 in a state of being electrically insulated from the water chamber 4 for detecting the anticorrosion potential in the condenser 1. The insoluble electrode 5
Contacts 21P polarity switching device 19, to 21N, the iron electrode 6 contacts 22P, respectively connected to 22N, the positive terminal P or connected to the negative terminal N 1 of the polarity switching 20 electrolytic DC power supply device through 9 Have been. Further, the water chamber 4 is connected to the negative terminal N 2 and the potential detection positive terminal D of the cathodic protection DC power supply 14, and the reference electrode 7 is connected to the potential detection negative terminal R of the cathodic protection DC power supply 14, respectively. It is connected.

【0013】電解用直流電源装置9は定電流整流回路1
0および定電流制御回路13を有しており、電気防食用
直流電源装置14は定電位整流回路15および定電位制
御回路17を有している。そして交流入力電源8は、定
電流整流回路10と定電位整流回路15に接続されてい
る。
The DC power supply for electrolysis 9 is a constant current rectifier circuit 1.
0 and a constant current control circuit 13, and the DC power supply for cathodic protection 14 has a constant potential rectification circuit 15 and a constant potential control circuit 17. The AC input power supply 8 is connected to a constant current rectifier circuit 10 and a constant potential rectifier circuit 15.

【0014】定電流整流回路10の正極は電流検出器1
1、12を介して正極端子Pに、負極は負極端子N1
それぞれ接続されており、また、定電位整流回路15の
正極は、電流検出器16を介して定電流制御部9の電流
検出器11と電流検出器12との間に接続され、負極は
負極端子N2 に接続されている
The positive terminal of the constant current rectifier circuit 10 is a current detector 1
To the positive terminal P via the 1 and 12, the negative electrode are respectively connected to the negative terminal N 1, also, the positive electrode of the constant potential rectifier circuit 15, a current detection of the constant current control unit 9 via the current detector 16 is connected between the vessel 11 and the current detector 12, the negative electrode is connected to the negative terminal N 2

【0015】定電流制御回路13の正極は電流検出器1
1と12の間に、負極は電流検出器12と正極端子Pの
間にそれぞれ接続されている。さらに定電位制御回路1
7の正極は電位検出正端子Dに、負極は電位検出負端子
Rにそれぞれ接続されている。
The positive terminal of the constant current control circuit 13 is the current detector 1
Between 1 and 12, the negative electrode is connected between the current detector 12 and the positive terminal P, respectively. Further, a constant potential control circuit 1
7 has a positive electrode connected to the potential detection positive terminal D and a negative electrode connected to the potential detection negative terminal R.

【0016】この様な構成にあって、海水電解防汚を行
うときは、極性切替えスイッチ20を接点21P、21
Nに接触させ、不溶性電極5を電解用直流電源装置9の
正極端子Pに、鉄電極6を電解用直流電源装置9の負極
端子N1 にそれぞれ接続して該不溶性電極5から発生す
る電解電流I0 により海水を電解して次亜塩素酸塩を生
成させる。また、鉄イオンを発生させる際には、極性切
替えスイッチ20を切り替えて、接点22P、22Nに
接触させ、鉄電極6を電解用直流電源装置9の正極端子
Pに、不溶性電極5を電解用直流電源装置9の負極端子
1 にそれぞれ接続して、該鉄電極6を陽極として電解
電流I0 により鉄電極を電解して鉄イオンを溶出させ
る。
In such a configuration, when performing seawater electrolytic antifouling, the polarity switch 20 is set to the contacts 21P, 21P.
N, the insoluble electrode 5 is connected to the positive terminal P of the DC power supply 9 for electrolysis, and the iron electrode 6 is connected to the negative terminal N 1 of the DC power supply 9 for electrolysis. The seawater is electrolyzed by I 0 to generate hypochlorite. When iron ions are generated, the polarity switch 20 is switched to contact the contacts 22P and 22N, the iron electrode 6 is connected to the positive electrode terminal P of the DC power supply 9 for electrolysis, and the insoluble electrode 5 is connected to DC for electrolysis. The iron electrode is connected to the negative electrode terminal N 1 of the power supply device 9, and the iron electrode is electrolyzed by the electrolytic current I 0 using the iron electrode 6 as an anode to elute iron ions.

【0017】海水電解防汚を行う際および鉄イオンを発
生させる際のいずれの場合にも、復水器1の冷却管2の
管端、管板3および水室4の電位は、照合電極7で検出
し、これら冷却管2の管端、管板3および水室4の電位
を所定の値に保つように電気防食用直流電源装置14の
定電位制御回路17で防食電流I2 を制御している。さ
らに、海水電解防汚を行う際および鉄イオンを発生させ
る際のいずれの場合にも、電流検出器12で検出された
電解電流I0 は定電流制御回路13にフィードバックさ
れ、該定電流制御回路13から信号S1 が常時発せら
れ、定電流整流回路10から出力される陰極流入電流I
1 が制御されて、該陰極流入電流I1 と防食電流I2
の和、すなわちI1 +I2 =電解電流I0 は所定の電流
値に保たれる。
In both the case of performing seawater electrolytic antifouling and the case of generating iron ions, the potential of the pipe end of the cooling pipe 2 of the condenser 1, the pipe sheet 3 and the water chamber 4 is determined by the reference electrode 7 The corrosion prevention current I 2 is controlled by the constant potential control circuit 17 of the DC power supply for cathodic protection 14 so as to keep the potentials of the pipe end of the cooling pipe 2, the tube plate 3 and the water chamber 4 at predetermined values. ing. Further, the electrolytic current I 0 detected by the current detector 12 is fed back to the constant current control circuit 13 in both cases of performing seawater electrolytic antifouling and generating iron ions. 13, a signal S 1 is constantly generated, and the cathode inflow current I output from the constant current rectifier circuit 10 is output.
1 is controlled, and the sum of the cathode inflow current I 1 and the anticorrosion current I 2 , that is, I 1 + I 2 = electrolysis current I 0 is maintained at a predetermined current value.

【0018】この様にして復水器1の冷却管2の管端、
管板3および水室4を適正な防食電位に維持しつつ、電
解電流I0 を所定の電流値に制御することにより、海水
電解防汚作用と鉄イオン発生による酸化鉄皮膜形成を行
うことのできる電気防食を行うことができる。
Thus, the end of the cooling pipe 2 of the condenser 1
By controlling the electrolytic current I 0 to a predetermined current value while maintaining the tube sheet 3 and the water chamber 4 at an appropriate anticorrosion potential, it is possible to form a seawater electrolytic antifouling action and form an iron oxide film by generating iron ions. Can be performed cathodic protection.

【0019】なお、電解用直流電源装置9、電気防食用
直流電源装置14および極性自動切替え機能を備えた極
性切替え器19を定電流定電位電源装置18として一体
的に構成すれば、電源装置が全体としてコンパクトにな
り、より運転やメンテナンスなどが簡易な海水電解防汚
作用と鉄イオン発生による酸化鉄皮膜形成を行うことの
できる電気防食とを兼ね備えた電気防食を行うことがで
きる。
If the DC power supply 9 for electrolysis, the DC power supply 14 for cathodic protection, and the polarity switch 19 having an automatic polarity switching function are integrally configured as a constant current / constant potential power supply 18, the power supply can be provided. As a whole, it is possible to perform a cathodic protection having both a seawater electrolytic antifouling action that is simpler in operation and maintenance and a cathodic protection capable of forming an iron oxide film by generating iron ions.

【0020】[0020]

【作用】通常は、復水器の容量によって海洋生物の付着
繁殖を抑制するために必要な次亜塩素酸ソーダの必要量
や銅合金製冷却管内部を防食するために必要な鉄イオン
発生量が決定されるため、海水電解防汚および鉄イオン
発生のための電解電流I 0 は一定となる。しかし、一般
に海洋生物の付着繁殖は夏場に多く冬場に少ないという
傾向にあり、夏場には極性切替えスイッチ20を接点2
1P、21Nに接触させ、不溶性電極5を電解用直流電
源装置9の正極端子Pに、鉄電極6を電解用直流電源装
置9の負極端子N1 にそれぞれ接続して該不溶性電極5
から発生する電解電流I0 により海水を電解して次亜塩
素酸塩を生成させる操作を長持間行う必要がある。この
場合に極性切替えスイッチ20を切り替える操作は信号
により行うことが便利である。
[Action] Normally, marine organisms are attached by the capacity of the condenser.
Required quantity of sodium hypochlorite required to control breeding
Ions required to protect the inside of copper and copper alloy cooling tubes
Since the amount of generation is determined, seawater electrolytic antifouling and iron ion
Electrolytic current I for generation 0Is constant. But general
It is said that marine organisms attach and reproduce in summer and less in winter
In summer, the polarity switch 20 is set to contact 2
1P, 21N, and contact the insoluble electrode 5 with a direct current
The iron electrode 6 is connected to the positive terminal P of the power source device 9 by a DC power supply for electrolysis.
Negative terminal N of the terminal 91To the insoluble electrode 5
Current I generated from0Electrolyze seawater by
It is necessary to perform the operation for generating the citrate for a long time. this
The operation of switching the polarity changeover switch 20 is a signal
It is convenient to do this.

【0021】また、照合電極7は、復水器の銅合金製冷
却管2、銅合金製管板3および水室4の電位を検知し、
これらを電気防食するためのセンサーとして設置されて
おり、照合電極7で検出される電位が、所定の値から外
れないように、定電位制御回路17から信号S2 が常時
発せられ、定電位整流回路15から流れ出る防食電流I
2 が制御されるとともに、陰極流入電流I1 と防食電流
2 との和である海水電解電流I0 が定電流制御回路1
3で制御されて所定の電流値に保たれるようになってい
る。
The reference electrode 7 detects the potential of the copper alloy cooling pipe 2, the copper alloy tube sheet 3 and the water chamber 4 of the condenser,
These are installed as a sensor for cathodic protection, the potential detected by the reference electrode 7 is, so as not to deviate from a predetermined value, the signal S 2 is emitted at all times from the constant voltage control circuit 17, the constant potential rectifier Corrosion protection current I flowing out of circuit 15
With 2 are controlled, the cathode inflow current I 1 and the seawater electrolysis current I 0 is the constant current control circuit 1 is the sum of the protective current I 2
3 and is maintained at a predetermined current value.

【0022】なお、海水下流に残留塩素計(図示せず)
を設置し、これに、この発明の海水電解防汚と鉄イオン
発生を行うことができる電気防食装置を組み合わせるこ
とにより残留塩素濃度を一定に制御して一層適切な海水
電解防汚を達成することができ、また、冷却管2の内面
に形成された酸化鉄皮膜の表面抵抗を測定するための分
極抵抗測定装置(図示せず)とこの発明の海水電解防汚
と鉄イオン発生を行うことができる電気防食装置を組み
合わせることにより、かかる酸化鉄皮膜の表面抵抗を一
定に制御して一層適切に冷却管2の内面の防食を達成す
ることができる。
A residual chlorine meter (not shown) is provided downstream of the seawater.
To achieve a more appropriate seawater electrolytic antifouling by controlling the residual chlorine concentration at a constant level by combining the electrolytic antifouling apparatus capable of performing iron ion generation with the seawater electrolytic antifouling of the present invention. In addition, a polarization resistance measuring device (not shown) for measuring the surface resistance of the iron oxide film formed on the inner surface of the cooling pipe 2 and the seawater electrolytic antifouling and iron ion generation of the present invention can be performed. By combining the anticorrosion devices that can be used, the surface resistance of the iron oxide film can be controlled to be constant, and the corrosion of the inner surface of the cooling pipe 2 can be more appropriately achieved.

【0023】[0023]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施例 この発明の外部電源方式による陰極防食を行いつつ海水
電解防汚と鉄イオン発生による酸化鉄皮膜形成を行うこ
とのできる電気防食方法およびその装置の実施例を図4
を用いて一層具体的に説明する。図4はこの発明の海水
電解防汚と鉄イオン発生による酸化鉄皮膜形成を行うこ
とのできる電気防食装置をモデルコンデンサーに適用し
た状態を示す概略図である。モデルコンデンサーは水室
4に軟鋼にゴムライニングしたものを用い、管板3は真
鍮製とし、海水入口水室と出口水室の間に内径:23m
m、長さ:1200mmの銅合金製冷却管2を22本並
列に配置し、実機とほぼ同じ構成にしたものを2基作製
した。
Embodiment FIG. 4 shows an embodiment of an electrolytic protection method and apparatus capable of performing seawater electrolytic antifouling and forming an iron oxide film by generating iron ions while performing cathodic protection using an external power supply system according to the present invention.
This will be described more specifically with reference to FIG. FIG. 4 is a schematic view showing a state in which the electrolytic protection device capable of forming an iron oxide film by the generation of iron ions by seawater electrolytic antifouling of the present invention is applied to a model capacitor. The model condenser uses a water chamber 4 with rubber lining made of mild steel, the tube sheet 3 is made of brass, and the inner diameter between the seawater inlet water chamber and the outlet water chamber is 23 m.
22 cooling pipes 2 made of copper alloy having a length of 1200 mm and a length of 1200 mm were arranged in parallel, and two cooling pipes having almost the same configuration as the actual machine were produced.

【0024】各モデルコンデンサーの水室4には海水送
水用の配管23を取り付け、水中ポンプで汲み上げた実
海水を冷却管2内の流速が約2.0m/sになるように
流量を約65m3 /時に調整して海水入口水室41に流
し、海水出口水室42から排出した。
A pipe 23 for feeding seawater is attached to the water chamber 4 of each model condenser, and the flow rate of the actual seawater pumped by the submersible pump is set to about 65 m so that the flow velocity in the cooling pipe 2 becomes about 2.0 m / s. At 3 / h, the water was flowed into the seawater inlet water chamber 41 and discharged from the seawater outlet water chamber 42.

【0025】モデルコンデンサーの内の1基にこの発明
の海水電解防汚と鉄イオン発生による酸化鉄皮膜形成を
行うことのできる電気防食装置を取り付け、海水入口水
室42に4台の不溶性電極5と2台の鉄電極6を設置
し、さらに管板3の中心部に塩化銀照合電極7´を1組
設置し、管板3および塩化銀照合電極7´を電解用直流
電源装置と電気防食用直流電源装置を一体に構成した定
電流定電位電源装置18に接続すると共に、不溶性電極
5および鉄電極6と定電流定電位電源装置18との間に
極性切替え装置19を接続した。
One of the model condensers is provided with an anticorrosion device capable of forming an iron oxide film by electrolytically contaminating seawater and generating iron ions according to the present invention, and four insoluble electrodes 5 are provided in a seawater inlet water chamber 42. And two iron electrodes 6, and further, a set of silver chloride reference electrodes 7 ′ is installed at the center of the tube sheet 3, and the tube sheet 3 and the silver chloride reference electrodes 7 ′ are connected to the DC power supply for electrolysis and the electric protection. The edible DC power supply was connected to a constant current constant potential power supply 18 integrally formed, and a polarity switching device 19 was connected between the insoluble electrode 5 and the iron electrode 6 and the constant current constant potential power supply 18.

【0026】この様に設置されたモデルコンデンサー
に、不溶性電極5を陽極としたときは海水中の有効塩素
濃度が約0.05ppmになるように直流電流を通電
し、また、鉄電極6を陽極としたときは海水中の鉄イオ
ン濃度が約0.04ppmになるように直流電流を通電
し、かつ水室内の電位を−600mVに維持して6か月
間試験を行った。なお、試験中、不溶性電極5と鉄電極
6との極性を2時間ごとに切り替えた。試験終了後、冷
却管内の鉄酸化皮膜の付着状況を観察したところ、赤色
の酸化鉄皮膜が形成されていた。さらに水室を解放して
海洋生物の付着状況を観察し、さらに付着した海洋生物
を採集し、これを乾燥させて重量を測定し、その結果を
表1に示した。
When the insoluble electrode 5 is used as an anode, a DC current is applied to the model condenser thus installed so that the effective chlorine concentration in seawater is about 0.05 ppm, and the iron electrode 6 is used as an anode. The test was conducted for 6 months while applying a direct current so that the iron ion concentration in the seawater was about 0.04 ppm and maintaining the potential in the water chamber at -600 mV. During the test, the polarities of the insoluble electrode 5 and the iron electrode 6 were switched every two hours. After completion of the test, the state of adhesion of the iron oxide film in the cooling pipe was observed, and a red iron oxide film was formed. Further, the water chamber was opened to observe the state of attachment of the marine organisms, the attached marine organisms were collected, dried, and weighed. The results are shown in Table 1.

【0027】従来例 一方、図5に示される陽極に鉄電極を用いた従来の外部
電源防食装置をモデルコンデンサーのの内の他の1基に
取り付け、直流電流を通電し、かつ水室内の電位を−6
00mVに維持して6か月間試験を行った後、冷却管内
の鉄酸化皮膜の付着状況を観察したところ、赤色の酸化
鉄皮膜が形成されていた。さらに水室を解放して海洋生
物付着状況を観察し、さらに付着した海洋生物を採集
し、これを乾燥させて重量を測定し、その結果を表1に
示した。
Conventional Example On the other hand, a conventional external power supply anti-corrosion device using an iron electrode as the anode shown in FIG. 5 is attached to another one of the model capacitors, a direct current is supplied, and the potential in the water chamber is increased. To -6
After conducting the test for 6 months while maintaining the voltage at 00 mV, the state of adhesion of the iron oxide film in the cooling pipe was observed. As a result, a red iron oxide film was formed. Further, the water chamber was opened to observe the state of marine organisms attached, the attached marine organisms were collected, dried, and weighed. The results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】実施例、従来例および表1に示される結
果から、実施例および従来例において共に冷却管内面に
酸化鉄皮膜が形成されているが、この発明の海水電解防
汚と鉄イオン発生による酸化鉄皮膜形成を行うことので
きる電気防食装置を使用することにより、従来よりも海
洋生物の付着量の約1/4以下と大幅に減少していると
ころから、熱交換器または復水器などの海洋生物除去作
業を大幅に減らすことができて熱交換器または復水器の
操業効率が大幅に向上し、また、水室、管板および冷却
管の管端の適正な防食電位を維持しつつ、銅合金製冷却
管内面に酸化鉄皮膜を形成させて該冷却管内面の防食が
達成できるなど優れた効果を奏するものである。
From the results shown in the examples, the conventional examples, and Table 1, the iron oxide film is formed on the inner surface of the cooling pipe in both the examples and the conventional examples. By using an anticorrosion device that can form an iron oxide film by generation, the amount of marine organisms attached is reduced to about one-fourth or less of that of conventional marine organisms. The operation efficiency of heat exchangers or condensers can be greatly improved, and the proper corrosion protection potential of the water chamber, tube plate and cooling pipe end can be greatly reduced. While maintaining the same, an excellent effect is achieved such that an iron oxide film is formed on the inner surface of the cooling pipe made of a copper alloy to prevent corrosion of the inner surface of the cooling pipe.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の海水電解防汚と鉄イオン発生による
酸化鉄皮膜形成を行うことのできる電気防食装置の断面
概略説明図である。
FIG. 1 is a schematic cross-sectional explanatory view of an anticorrosion apparatus capable of forming an iron oxide film by seawater electrolytic antifouling and iron ion generation of the present invention.

【図2】この発明の海水電解防汚と鉄イオン発生による
酸化鉄皮膜形成を行うことのできる他の電気防食装置の
断面概略説明図である。
FIG. 2 is a schematic cross-sectional explanatory view of another electrolytic protection apparatus capable of forming an iron oxide film by seawater electrolytic antifouling and iron ion generation of the present invention.

【図3】この発明の海水電解防汚と鉄イオン発生による
酸化鉄皮膜形成を行うことのできる電気防食装置の特に
定電流定電位電源装置部分の詳細な説明図である。
FIG. 3 is a detailed explanatory view particularly showing a constant current / constant potential power supply unit of the cathodic protection apparatus capable of forming an iron oxide film by seawater electrolytic antifouling and iron ion generation of the present invention.

【図4】この発明の海水電解防汚と鉄イオン発生による
酸化鉄皮膜形成を行うことのできる電気防食装置の断面
概略説明図である。
FIG. 4 is a schematic cross-sectional explanatory view of an anticorrosion device capable of forming an iron oxide film by seawater electrolytic antifouling and iron ion generation of the present invention.

【図5】従来の外部電源防食装置の断面概略説明図であ
る。
FIG. 5 is a schematic sectional explanatory view of a conventional external power supply anticorrosion device.

【符号の説明】[Explanation of symbols]

1 復水器 2 冷却管 3 管板 4 水室 5 不溶性電極 6 鉄電極 7 照合電極 7´ 塩化銀照合電極 8 交流電源 9 電解用直流電源装置 10 定電流整流回路 11 電流検出器 12 電流検出器 13 定電流制御回路 14 電気防食用直流電源装置 15 定電位整流回路 16 電流検出器 17 定電位制御回路 18 定電流定電位電源装置 19 極性切替え装置 20 極性切替えスイッチ 21P 接点 21N 接点 22P 接点 22N 接点 23 海水送水用配管 24 陰極 25 接続切替えスイッチ 26P 接点 27P 接点 28 接続切替え装置 P 正極端子 N1 負極端子 N2 負極端子 D 電位検出正端子 R 電位検出負端子 I0 海水電解電流 I1 陰極流入電流 I2 防食電流 41 海水入口水室 42 海水出口水室DESCRIPTION OF SYMBOLS 1 Condenser 2 Cooling pipe 3 Tube sheet 4 Water chamber 5 Insoluble electrode 6 Iron electrode 7 Reference electrode 7 'Silver chloride reference electrode 8 AC power supply 9 DC power supply for electrolysis 10 Constant current rectifier circuit 11 Current detector 12 Current detector DESCRIPTION OF SYMBOLS 13 Constant current control circuit 14 DC power supply for cathodic protection 15 Constant potential rectification circuit 16 Current detector 17 Constant potential control circuit 18 Constant current constant potential power supply 19 Polarity switching device 20 Polarity changeover switch 21P contact 21N contact 22P contact 22N contact 23 Seawater water supply pipe 24 Cathode 25 Connection changeover switch 26P contact 27P contact 28 Connection changeover device P Positive terminal N1 Negative terminal N2 Negative terminal D Potential detection positive terminal R Potential detection negative terminal I 0 Seawater electrolysis current I 1 Cathode inflow current I 2 Corrosion protection I 2 Current 41 Seawater inlet water chamber 42 Seawater outlet water chamber

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 防食対象物に不溶性電極と鉄電極を防食
対象物とは絶縁状態に取り付けるとともに、該不溶性電
極と鉄電極とが互に対極となるように電解用直流電源装
置にそれぞれ接続し、且つ、該不溶性電極と鉄電極との
極性を切替えられる構成とするとともに、該防食対象物
を電気防食用直流電源装置の負極に接続し、且つ、該電
気防食用直流電源装置の正極を該電解用直流電源装置の
正極に接続し、 該防食対象物への海洋生物の付着繁殖を抑制するとき
は、該不溶性電極を電解用直流電源装置の正極に接続し
て該不溶性電極から流れ出る直流電流により海水を電解
して次亜塩素酸塩を発生させつつ該直流電流の一部を該
防食対象物に到達せしめて電気防食を行い、 鉄イオンを溶出させて該防食対象物に酸化鉄皮膜を形成
するときは、該鉄電極を該電解用直流電源装置の正極に
接続して該鉄電極から流れ出る直流電流により鉄イオン
を発生させつつ該直流電流の一部を該防食対象物に到達
せしめて電気防食を行うことを特徴とする海水電解防汚
と鉄イオン発生による酸化鉄皮膜形成を行うことのでき
る電気防食方法。
An insoluble electrode and an iron electrode are attached to an anticorrosion target in an insulated state from the anticorrosion target, and the insoluble electrode and the iron electrode are connected to a direct current power supply for electrolysis such that the insoluble electrode and the iron electrode are opposite electrodes to each other. In addition, the configuration is such that the polarity of the insoluble electrode and the polarity of the iron electrode can be switched, and the anticorrosion target is connected to the negative electrode of the DC power supply for cathodic protection, and the positive electrode of the DC power supply for cathodic protection is When connected to the positive electrode of a direct current power supply for electrolysis, to suppress the adhesion and propagation of marine organisms to the anticorrosion target, the direct current flowing from the insoluble electrode by connecting the insoluble electrode to the positive electrode of the direct current power supply for electrolysis By electrolyzing seawater to generate hypochlorite, a part of the direct current reaches the anticorrosion target to perform electrolytic protection, and elutes iron ions to form an iron oxide film on the anticorrosion target. When forming The electrode is connected to the positive electrode of the direct current power supply for electrolysis, and the iron current is generated by the direct current flowing out of the iron electrode, and a part of the direct current reaches the object to be subjected to the anticorrosion to perform the cathodic protection. An anticorrosion method capable of forming an iron oxide film by electrolytically contaminating seawater and generating iron ions.
【請求項2】 防食対象物に不溶性電極と鉄電極と防食
対象物とは別の陰極とを防食対象物と絶縁状態に取り付
け、該陰極を電解用直流電源装置の負極に接続するとと
もに、防食対象物への海洋生物の付着繁殖を抑制すると
きは、該不溶性電極が、鉄イオンを溶出させるときは鉄
電極がそれぞれ電解用直流電源装置の正極に接続される
ように不溶性電極および鉄電極と電解用直流電源装置と
の間に接続切り替え装置を設け、且、防食対象物を電気
防食用直流電源装置の負極に、該電気防食用直流電源装
置の正極を電解用直流電源装置の正極にそれぞれ接続し
て、 該防食対象物への海洋生物の付着繁殖を抑制するとき
は、該不溶性電極から流れ出る直流電流により海水を電
解して次亜塩素酸塩を発生させつつ該直流電流の一部を
該防食対象物に到達せしめて電気防食を行い、 鉄イオンを溶出させるときは該鉄電極から流れ出る直流
電流により鉄イオンを発生させつつ該直流電流の一部を
該防食対象物に到達せしめて電気防食を行うことを特徴
とする海水電解防汚と鉄イオン発生による酸化鉄皮膜形
成を行うことのできる電気防食方法。
2. An insoluble electrode, an iron electrode, and a cathode different from the anticorrosion target are attached to the anticorrosion target in a state insulated from the anticorrosion target, and the cathode is connected to the negative electrode of the DC power supply for electrolysis. When suppressing the adhesion and propagation of marine organisms to the object, the insoluble electrode, when eluting iron ions, the insoluble electrode and the iron electrode so that the iron electrode is connected to the positive electrode of the DC power supply for electrolysis, respectively. A connection switching device is provided between the DC power supply for electrolysis and the anticorrosion target is set to the negative electrode of the DC power supply for cathodic protection, and the positive electrode of the DC power supply for anticorrosion is set to the positive electrode of the DC power supply for electrolysis. When connecting to suppress the adhesion and propagation of marine organisms to the anticorrosion target, a part of the DC current is generated while electrolyzing seawater by DC current flowing from the insoluble electrode to generate hypochlorite. For the anticorrosion target When the corrosion prevention is performed and the iron ions are eluted, it is necessary that a part of the DC current reaches the object to be protected while the iron ions are generated by the DC current flowing out of the iron electrode, thereby performing the electrolytic protection. Characteristic anticorrosion method capable of forming an iron oxide film by the generation of iron ions and seawater electrolytic antifouling.
【請求項3】 不溶性電極と、鉄電極と、該不溶性電極
と鉄電極とが互に対極となるように接続されている海水
電解および鉄イオン溶出用の電源となる電解用直流電源
装置と、不溶性電極と鉄電極との極性切替え装置とを備
え、さらに防食対象物の電位検出用照合電極と、該電位
検出用照合電極と防食対象物と該電解用直流電源装置の
正極とに接続されている電気防食用直流電源装置とを備
えてなる海水電解防汚と鉄イオン発生による酸化鉄皮膜
形成を行うことのできる電気防食装置であって、 該電解用直流電源装置は、定電流整流回路および定電流
制御回路から構成され、 該電気防食用直流電源装置は定電位整流回路および定電
位制御回路から構成されていることを特徴とする海水電
解防汚と鉄イオン発生による酸化鉄皮膜形成を行うこと
のできる電気防食装置。
3. An insoluble electrode, an iron electrode, a direct current power supply for electrolysis serving as a power source for seawater electrolysis and iron ion elution, wherein the insoluble electrode and the iron electrode are connected so as to be counter electrodes to each other, A polarity switching device between an insoluble electrode and an iron electrode, further comprising a reference electrode for detecting the potential of the anticorrosion target, a reference electrode for detecting the potential, the anticorrosion target, and a positive electrode of the DC power supply for electrolysis. An anticorrosion DC power supply, comprising: a seawater electrolytic antifouling and an iron oxide film formation by iron ion generation, comprising: a constant current rectifier circuit; It comprises a constant current control circuit, and the direct current power supply for cathodic protection comprises a constant potential rectification circuit and a constant potential control circuit. thing Cathodic protection device that can.
【請求項4】 不溶性電極と、鉄電極と、防食対象物と
は別の陰極と、該陰極が負極に該不溶性電極および鉄電
極が正極にそれぞれ接続されて海水電解および鉄イオン
溶出用の電源となる電解用直流電源装置と、該不溶性電
極および鉄電極と電解用直流電源装置の正極との間に接
続切り替え装置とを備え、さらに防食対象物の電位検出
用照合電極と、該電位検出用照合電極と防食対象物と該
電解用直流電源装置の正極に接続される電気防食用直流
電源装置とを備えてなる海水電解防汚と鉄イオン発生に
よる酸化鉄皮膜形成を行うことのできる電気防食装置で
あって、 該電解用直流電源装置は、定電流整流回路および定電流
制御回路から構成され、 該電気防食用直流電源装置は定電位整流回路および定電
位制御回路から構成されていることを特徴とする海水電
解防汚と鉄イオン発生による酸化鉄皮膜形成を行うこと
のできる電気防食装置。
4. A power supply for seawater electrolysis and iron ion elution wherein an insoluble electrode, an iron electrode, a cathode separate from the anticorrosion target, the cathode connected to the negative electrode, and the insoluble electrode and the iron electrode connected to the positive electrode, respectively. A DC power supply for electrolysis, and a connection switching device between the insoluble electrode and the iron electrode and the positive electrode of the DC power supply for electrolysis, and a reference electrode for detecting the potential of the anticorrosion target, A seawater electrolytic antifouling comprising a reference electrode, an anticorrosion target, and a cathodic anticorrosive DC power supply connected to the positive electrode of the electrolytic DC power supply and capable of forming an iron oxide film by generating iron ions. A DC power supply for electrolysis, comprising: a constant current rectifier circuit and a constant current control circuit; wherein the DC power supply for cathodic protection comprises a constant potential rectifier circuit and a constant potential control circuit. Special Cathodic protection apparatus capable of seawater electrolysis antifouling iron oxide film formed by the iron ion generator to.
【請求項5】 該電解用直流電源装置と該電気防食用直
流電源装置と該不溶性電極と鉄電極の極性切替え装置と
が、定電流定電位電源装置として一体的に構成されてい
ることを特徴とする請求項3記載の海水電解防汚と鉄イ
オン発生による酸化鉄皮膜形成を行うことのできる電気
防食装置。
5. The DC power supply for electrolysis, the DC power supply for cathodic protection, and the polarity switching device for the insoluble electrode and the iron electrode are integrally formed as a constant current and constant potential power supply. An anticorrosion device capable of forming an iron oxide film by seawater electrolytic antifouling and iron ion generation according to claim 3.
【請求項6】 該電解用直流電源装置と該電気防食用直
流電源装置と該不溶性電極および鉄電極と該電解用直流
電源装置との接続を切替える接続切替え装置とが、定電
流定電位電源装置として一体的に構成されていることを
特徴とする請求項4記載の海水電解防汚と鉄イオン発生
による酸化鉄皮膜形成を行うことのできる電気防食装
置。
6. A constant-current / constant-potential power supply comprising: a DC power supply for electrolysis, a DC power supply for cathodic protection, a connection switching device for switching connection between the insoluble electrode and iron electrode, and a DC power supply for electrolysis. The cathodic protection device capable of forming an iron oxide film by generation of iron ions according to claim 4, wherein the anticorrosion device is formed integrally with the device.
JP9190862A 1997-07-16 1997-07-16 Electrolytic corrosion protection method capable of executing sea water electrolytic fouling prevention and iron oxide film formation by generation of iron ion and apparatus therefor Pending JPH1136088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9190862A JPH1136088A (en) 1997-07-16 1997-07-16 Electrolytic corrosion protection method capable of executing sea water electrolytic fouling prevention and iron oxide film formation by generation of iron ion and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9190862A JPH1136088A (en) 1997-07-16 1997-07-16 Electrolytic corrosion protection method capable of executing sea water electrolytic fouling prevention and iron oxide film formation by generation of iron ion and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH1136088A true JPH1136088A (en) 1999-02-09

Family

ID=16265013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9190862A Pending JPH1136088A (en) 1997-07-16 1997-07-16 Electrolytic corrosion protection method capable of executing sea water electrolytic fouling prevention and iron oxide film formation by generation of iron ion and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH1136088A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2356405A (en) * 1999-11-12 2001-05-23 Mott Macdonald Ltd Electrolytic corrosion treatment of articles at low tide
JP2002219468A (en) * 2001-01-26 2002-08-06 Nakabohtec Corrosion Protecting Co Ltd Device and method for electric antifouling
JP2006118915A (en) * 2004-10-20 2006-05-11 Seiko Instruments Inc Flowmeter apparatus with clogging prevention function
CN103963942A (en) * 2014-04-18 2014-08-06 中国人民解放军镇江船艇学院 Control system and control method for preventing marine organism under water line from being attached to ship
WO2017103966A1 (en) * 2015-12-14 2017-06-22 中国電力株式会社 Simulation piping device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2356405A (en) * 1999-11-12 2001-05-23 Mott Macdonald Ltd Electrolytic corrosion treatment of articles at low tide
GB2356405B (en) * 1999-11-12 2004-01-21 Mott Macdonald Ltd ALWC corrosion treatment method and apparatus
JP2002219468A (en) * 2001-01-26 2002-08-06 Nakabohtec Corrosion Protecting Co Ltd Device and method for electric antifouling
JP4605913B2 (en) * 2001-01-26 2011-01-05 株式会社ナカボーテック Electric antifouling device and electric antifouling method
JP2006118915A (en) * 2004-10-20 2006-05-11 Seiko Instruments Inc Flowmeter apparatus with clogging prevention function
CN103963942A (en) * 2014-04-18 2014-08-06 中国人民解放军镇江船艇学院 Control system and control method for preventing marine organism under water line from being attached to ship
WO2017103966A1 (en) * 2015-12-14 2017-06-22 中国電力株式会社 Simulation piping device

Similar Documents

Publication Publication Date Title
JPH1136088A (en) Electrolytic corrosion protection method capable of executing sea water electrolytic fouling prevention and iron oxide film formation by generation of iron ion and apparatus therefor
US3476675A (en) An electrolytic cell for chlorine production
JPH10306390A (en) Method for electrolytically preventing seawater contamination as well as electric corrosion and device therefor
JPH09125341A (en) Corrosion and dirt preventing device for sea water inlet channel
JP4789043B2 (en) Seawater electrolyzer
JPS61177384A (en) Electrolytic corrosion preventive device
JP2594246B2 (en) Anticorrosion method and anticorrosion device
JP4851175B2 (en) Antifouling device and antifouling method for heat exchanger
JPS6318667B2 (en)
US3558465A (en) Electrolytic cell
JP3348633B2 (en) Corrosion protection method and electrolytic protection device for seawater cooling water system equipment by constant potential external power supply system
JP2002219468A (en) Device and method for electric antifouling
JP4069060B2 (en) Electrochemical water quality control method and apparatus
JPH05202510A (en) Dc-power source for marine organism-antifouling device
JP2000017629A (en) Anti-fouling and anti-corrosion device of condenser
JP2003164881A (en) Electrochemical antifouling apparatus for water contact structure and performance degradation monitoring method
SE500491C2 (en) Measuring device comprising at least one measuring electrode and means for cleaning a measuring electrode
JP3009299U (en) Ion water generator
JP2003183866A (en) Method for preventing organism fouling and corrosion in water conveyance line, and device therefor
JPH0196389A (en) Composite electrolytic protection device for heat exchangers
CN205473996U (en) Anticorrosive device of adjustable water pitcher
JPH037394Y2 (en)
JP2004002984A (en) Antifouling and corrosion prevention apparatus for metal entity
WO1992016673A1 (en) Method and arrangement to hinder local corrosion and galvanic corrosion in connection with stainless steels and other passive materials
JPH11310889A (en) Seawater cooler contamination and corrosion preventing device