JP2003183866A - Method for preventing organism fouling and corrosion in water conveyance line, and device therefor - Google Patents

Method for preventing organism fouling and corrosion in water conveyance line, and device therefor

Info

Publication number
JP2003183866A
JP2003183866A JP2001386891A JP2001386891A JP2003183866A JP 2003183866 A JP2003183866 A JP 2003183866A JP 2001386891 A JP2001386891 A JP 2001386891A JP 2001386891 A JP2001386891 A JP 2001386891A JP 2003183866 A JP2003183866 A JP 2003183866A
Authority
JP
Japan
Prior art keywords
water
electrode
iron
copper
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001386891A
Other languages
Japanese (ja)
Inventor
Harunobu Akaishi
治信 赤石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumiko Eco Engineering Co Ltd
Original Assignee
Sumiko Eco Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumiko Eco Engineering Co Ltd filed Critical Sumiko Eco Engineering Co Ltd
Priority to JP2001386891A priority Critical patent/JP2003183866A/en
Publication of JP2003183866A publication Critical patent/JP2003183866A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preventing organism fouling and corrosion which can simply, economically and reliably prevent both of fouling caused by adhesion and growth of organisms and corrosion of metal parts, in a water conveyance line such as a seawater cooling line on a power plant or ironworks, and a device therefor. <P>SOLUTION: This method is characterized by simultaneously or alternately supplying ferrous ions from an iron electrode 1 into water and supplying copper ions from a copper electrode 2 into the water, at a part of the water conveyance line, by electrolysis by using of the iron electrode 1, the copper electrode 2, and a cathode material 3, to prevent fouling due to adhesion of organisms and corrosion of the metal parts, on the downstream side of the water conveyance line. An electrolysis between the iron electrode 1 and the copper electrode 2 by alternately changing the polarity, eliminates the need for the cathode material 3, which enables an easier and more economical implementation. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、発電所や製鉄所に
おける海水冷却ライン等の導水ラインにおいて、熱交換
器や復水器等の金属部の防食と同時に、生物の付着によ
る汚損を防止する方法、及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention prevents corrosion of metal parts such as heat exchangers and condensers in water transmission lines such as seawater cooling lines in power plants and steelworks, and at the same time prevents stains due to adhesion of living organisms. A method and an apparatus thereof.

【0002】[0002]

【従来の技術】火力発電所や水力発電所、製鉄所等にお
ける海水冷却ラインでは、熱交換器や復水器等の金属部
の腐食と共に、配管等の内面に海洋生物が付着成長する
生物汚損が発生しやすい。この問題は、湖や川から淡水
を取り入れる場合でも同じである。そして、この腐蝕や
生物汚損を放置すれば、プラントの運転管理に重大な損
害をもたらすことになる。
2. Description of the Related Art In seawater cooling lines of thermal power plants, hydroelectric power plants, steel mills, etc., along with corrosion of metal parts such as heat exchangers and condensers, marine organisms adhere to and grow on the inner surfaces of pipes, etc. Is likely to occur. This problem is the same when taking freshwater from lakes and rivers. If this corrosion or biofouling is left untreated, it will cause serious damage to the operation management of the plant.

【0003】従来から、熱交換器や復水器の伝熱管や管
板を防食する方法として、一般的に電気防食法が利用さ
れている。即ち、陽極である鉄電極から陰極に通電し、
鉄電極の電解により水中に鉄イオンを供給することによ
って、銅合金等からなる熱交換器や複水器等の表面に耐
食性の鉄系保護皮膜を形成し、耐食性の向上を図るもの
である。
Conventionally, an electrocorrosion method has been generally used as a method for preventing corrosion of heat transfer tubes and tube plates of heat exchangers and condensers. That is, electricity is applied to the cathode from the iron electrode that is the anode,
By supplying iron ions into water by electrolysis of an iron electrode, a corrosion-resistant iron-based protective coating is formed on the surface of a heat exchanger, a compound water container, or the like made of a copper alloy or the like to improve the corrosion resistance.

【0004】この鉄イオンの供給により金属部の腐食を
防止する電気防食法は、既に多くの実績があり、効果的
な防食方法の一つである。しかしながら、この電気防食
法には、生物防汚効果、即ち海や湖等から取り入れる水
中に含まれている生物が機器や配管の内面に付着成長す
ることを防止する効果は全くない。
The cathodic protection method for preventing the corrosion of the metal part by supplying the iron ions has already been used in many cases and is one of the effective anticorrosion methods. However, this cathodic protection method has no biological antifouling effect, that is, an effect of preventing organisms contained in water taken in from the sea or lake from adhering to and growing on the inner surfaces of equipment and piping.

【0005】一方、熱交換器、復水器、及び配管等の内
面に生物が付着成長することによる生物汚損を防止する
方法としては、(1) 作業員が付着した海洋生物を定期
的に清掃除去する方法、(2) 配管等の内面に防汚塗料
を塗布して海洋生物の付着を防止する方法、(3) 配管
内に球体を通過させることにより、付着した海洋生物を
除去する方法、(4) 水の電気分解により亜塩素酸ソー
ダを発生させて海洋生物の付着を防止する方法等が知ら
れいる。
On the other hand, as a method for preventing biofouling due to the adherence and growth of organisms on the inner surfaces of heat exchangers, condensers, pipes, etc., (1) workers regularly clean marine organisms attached to them. A method of removing, (2) a method of applying an antifouling paint to the inner surface of a pipe or the like to prevent the adhesion of marine organisms, (3) a method of removing marine organisms adhered by passing a sphere inside the pipe, (4) There are known methods for preventing the adhesion of marine organisms by generating sodium chlorite by electrolysis of water.

【0006】しかし、(1)の方法は多くの人力を要し、
回収した生物の廃棄処分費が多額になるうえ、運転停止
による休止損失も発生するため、経済性に劣っている。
(2)の方法は生物防汚効果の持続期間が3〜4年と短い
ため、定期的な塗料の塗り替えが必要となり、経済性並
びに防汚性能に難点がある。(3)の方法は除去した海洋
生物や投入したボールが、熱交換器の伝熱管や配管等を
閉塞させるという問題がある。また、(4)の方法による
次亜塩素酸ソーダでは十分な防汚効果を得るのは難し
く、生物の付着成長を確実に防ぐためには塩素濃度を高
める必要があるため、環境的な見地から望ましい方法と
は云えない。
However, the method (1) requires a lot of human power,
The cost of disposing of the collected organisms is large, and there is also a loss due to suspension of operation, resulting in poor economic efficiency.
Since the method (2) has a short duration of the biological antifouling effect of 3 to 4 years, it requires regular repainting of the paint, which is disadvantageous in economic efficiency and antifouling performance. The method (3) has a problem that the removed marine organisms and the introduced balls block the heat transfer tubes and pipes of the heat exchanger. In addition, it is difficult to obtain a sufficient antifouling effect with sodium hypochlorite by the method of (4), and it is necessary to increase the chlorine concentration in order to reliably prevent adherent growth of organisms, which is desirable from an environmental point of view. It cannot be called a method.

【0007】[0007]

【発明が解決しようとする課題】このように、海水冷却
ライン等の導水ラインにおいては、有効な防食方法は知
られていたが、生物の付着成長による生物汚損を防ぐこ
とは難しかった。そのため、生物の付着成長が進行し
て、熱交換器や復水器等の効率低下や、配管の詰まり等
の障害が発生しやすかった。
As described above, although an effective anticorrosion method has been known in a water guiding line such as a seawater cooling line, it is difficult to prevent biofouling due to adherent growth of organisms. Therefore, the adhered growth of organisms is likely to progress, and the efficiency of heat exchangers, condensers, etc., and obstacles such as clogging of pipes are likely to occur.

【0008】本発明は、このような従来の事実に鑑み、
発電所や製鉄所における海水冷却ライン等の導水ライン
において、生物の付着成長による汚損と金属部の腐食の
両方を、簡単且つ経済的に、しかも長期にわたって確実
に防止することができる生物防汚・防食方法、及びその
ための装置を提供することを目的とする。
The present invention has been made in view of such conventional facts.
Biological antifouling that can easily and economically and reliably prevent both fouling due to adherent growth of organisms and corrosion of metal parts in water transmission lines such as seawater cooling lines in power plants and steelworks over a long period of time. It is an object to provide an anticorrosion method and an apparatus therefor.

【0009】[0009]

【問題を解決するための手段】上記の目的を達成するた
め、本発明が提供する第1の生物防汚・防食方法は、海
水や淡水を取り入れる導水ラインの一部で水中に鉄電
極、銅電極、及び陰極材を浸漬し、鉄電極から陰極材に
直流電流を流して水中に鉄イオンを供給する工程と、銅
電極から陰極材に直流電流を流して水中に銅イオンを供
給する工程とを有し、両工程を同時又は交互に行うこと
により、その下流側の導水ラインにおいて生物付着によ
る汚損及び金属部の腐食を防止することを特徴とする。
In order to achieve the above object, the first biofouling prevention / corrosion prevention method provided by the present invention is an iron electrode, copper in water in a part of a water conveyance line for taking in seawater or freshwater. An electrode, and a step of immersing the cathode material, supplying a DC current from the iron electrode to the cathode material to supply iron ions into the water, and a step of supplying a DC current from the copper electrode to the cathode material to supply the copper ions into the water, By performing both steps simultaneously or alternately, it is possible to prevent fouling due to biofouling and corrosion of metal parts in the water guiding line on the downstream side.

【0010】また、本発明が提供する第2の生物防汚・
防食方法は、海水や淡水を取り入れる導水ラインの一部
で水中に鉄電極と銅電極を浸漬し、鉄電極から銅電極に
直流電流を流して水中に鉄イオンを供給する工程と、銅
電極から鉄電極に直流電流を流して水中に銅イオンを供
給する工程とを有し、両工程を交互に行うことにより、
その下流側の導水ラインにおいて生物付着による汚損及
び金属部の腐食を防止することを特徴とする。
A second biological antifouling provided by the present invention
The anticorrosion method is a step of immersing the iron electrode and the copper electrode in water in a part of the water conveyance line that takes in seawater or fresh water, supplying a direct current from the iron electrode to the copper electrode to supply iron ions into the water, and Having a step of supplying a direct current to the iron electrode to supply copper ions into the water, by performing both steps alternately,
A feature of the present invention is that it prevents fouling due to biofouling and corrosion of metal parts in the water guide line on the downstream side.

【0011】上記した本発明による第1及び第2の生物
防汚・防食方法においては、水中に供給する鉄イオンの
濃度を5〜40ppbに、及び銅イオンの濃度を10〜
40ppbに維持することを特徴とする。
In the above-mentioned first and second biological antifouling and anticorrosion methods according to the present invention, the concentration of iron ions supplied to water is 5 to 40 ppb, and the concentration of copper ions is 10 to 10.
It is characterized by maintaining at 40 ppb.

【0012】本発明が提供する第1の生物防汚・防食装
置は、海水や淡水を取り入れる導水ライン中に、絶縁材
により相互に絶縁された鉄電極、銅電極、及び陰極材
と、直流電源装置とを備え、直流電源装置から鉄電極及
び/又は銅電極を介して陰極材に電流を流すことによ
り、その下流側の導水ラインにおいて生物付着による汚
損及び金属部の腐食を防止することを特徴とする。
The first biological antifouling / corrosion preventive apparatus provided by the present invention is a DC power supply, which includes an iron electrode, a copper electrode, and a cathode material, which are mutually insulated by an insulating material, in a water conduit for taking in seawater or fresh water. And a device for supplying electric current from the DC power supply device to the cathode material via the iron electrode and / or the copper electrode, thereby preventing the contamination and the corrosion of the metal part due to the biological adhesion in the water guiding line on the downstream side. And

【0013】また、本発明が提供する第2の生物防汚・
防食装置は、海水や淡水を取り入れる導水ライン中に、
絶縁材により相互に絶縁された鉄電極及び銅電極と、直
流電源装置と、鉄電極と銅電極との間で直流電源装置の
接続を切り替える電源切替手段とを備え、直流電源装置
から鉄電極を介して銅電極に、又は銅電極を介して鉄電
極に電流を流すことにより、その下流側の導水ラインに
おいて生物付着による汚損及び金属部の腐食を防止する
ことを特徴とする。
The second biological antifouling provided by the present invention
The anticorrosion device is installed in the water conveyance line that takes in seawater and fresh water.
An iron electrode and a copper electrode mutually insulated by an insulating material, a DC power supply device, and a power supply switching means for switching the connection of the DC power supply device between the iron electrode and the copper electrode are provided, and the iron electrode is removed from the DC power supply device. By flowing an electric current to the copper electrode via the copper electrode or to the iron electrode via the copper electrode, it is possible to prevent fouling due to biological attachment and corrosion of the metal part in the water guiding line on the downstream side.

【0014】上記した本発明による第1及び第2の生物
防汚・防食装置においては、前記鉄電極及び銅電極が、
導水ラインに設置した開閉可能な電極函又はタンク内に
交換可能に取り付けられているか、又は、取水設備の取
水路内に海水や淡水に接する状態で設置されていること
を特徴とする。
In the above-mentioned first and second biological antifouling / corrosion preventing devices according to the present invention, the iron electrode and the copper electrode are
It is characterized in that it is replaceably installed in an openable / closable electrode box or tank installed in a water conveyance line, or installed in an intake channel of a water intake facility in contact with seawater or fresh water.

【0015】[0015]

【発明の実施の形態】本発明は、導水ラインにおける金
属部の腐食と生物付着による汚損の両方を、同じ電気化
学的手法により同時に防止するものである。即ち、電解
により鉄電極から水中に鉄イオンを供給する電気防食法
と、同じく電解により銅電極から水中に銅イオンを供給
することによって生物汚損を防止する手法とを組み合わ
せて、同様な操作により簡単且つ経済的に、しかも長期
にわたって確実な効果を得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention simultaneously prevents both corrosion of metal parts in a water conduit and fouling due to biofouling by the same electrochemical method. That is, by combining the cathodic protection method of supplying iron ions into water from the iron electrode by electrolysis and the method of preventing biological fouling by supplying copper ions into water from the copper electrode by electrolysis, the same operation is simple. In addition, a reliable effect can be obtained economically and over a long period of time.

【0016】本発明による方法及び装置について、図面
を参照して具体的に説明する。図1及び図2は、海水冷
却ラインに設置した電極函式(配管型)による第1の生
物防汚・防食装置である。この装置では、海水冷却ライ
ンの導水管(図示せず)の途中に開閉可能な蓋部6を有
する電極函5を設け、その蓋部6に絶縁材4を介して固
定した鉄電極1、銅電極2及び陰極材3が電極函5内に
配置してある。尚、鉄電極1、銅電極2及び陰極材3の
各接続端子は、それぞれ各接続箱7内で外部の直流電源
装置(図示せず)の2次側端子に接続されている。
The method and apparatus according to the present invention will be described in detail with reference to the drawings. 1 and 2 show a first biofouling / corrosion preventive device of an electrode box type (pipe type) installed in a seawater cooling line. In this device, an electrode box 5 having an openable / closable lid 6 is provided in the middle of a water conduit (not shown) of a seawater cooling line, and an iron electrode 1 and a copper electrode 6 fixed to the lid 6 via an insulating material 4 are provided. The electrode 2 and the cathode material 3 are arranged in the electrode box 5. Each connection terminal of the iron electrode 1, the copper electrode 2 and the cathode material 3 is connected to the secondary side terminal of an external DC power supply device (not shown) in each connection box 7.

【0017】鉄電極1及び銅電極2の純度並びに形状は
特に制限されるものではなく、市販されている鉄板や鉄
棒、銅板や銅棒等を用いることができる。陰極材3の材
質も導電性であれば特に制限されないが、不通電時に腐
食しないようステンレス鋼を用いることが望ましい。ま
た、電極函5が陰極材を兼ねることもでき、その場合に
は別途独立した陰極材を設置する必要がない。鉄電極1
と銅電極2は、使用することにより徐々に消耗するが、
一定期間使用後に電極函5の蓋部6を開け、電極の交換
を簡便に行うことができる。
The purity and shape of the iron electrode 1 and the copper electrode 2 are not particularly limited, and commercially available iron plate or iron rod, copper plate or copper rod or the like can be used. The material of the cathode material 3 is also not particularly limited as long as it is conductive, but it is desirable to use stainless steel so as not to corrode when power is not supplied. Further, the electrode box 5 can also serve as the cathode material, in which case it is not necessary to install a separate cathode material. Iron electrode 1
And the copper electrode 2 is gradually consumed by using,
The electrode 6 can be easily replaced by opening the lid 6 of the electrode box 5 after use for a certain period of time.

【0018】尚、鉄電極1と銅電極2の位置は、図1で
は海水入口側を鉄電極及び出口側を銅電極としている
が、特に制限されるものではなく、入口側を銅電極及び
出口側を鉄電極としたり、銅電極と鉄電極とを並列にし
ても良い。
Although the positions of the iron electrode 1 and the copper electrode 2 are the iron electrode on the seawater inlet side and the copper electrode on the outlet side in FIG. 1, they are not particularly limited, and the copper electrode and the outlet are located on the inlet side. The side may be an iron electrode, or the copper electrode and the iron electrode may be arranged in parallel.

【0019】上記の装置を用いる第1の生物防汚・防食
方法においては、直流電源装置から鉄電極1及び/又は
銅電極2を経由して陰極材3に直流電流を流し、電解に
より海水中に鉄イオン及び/又は銅イオンを供給する。
鉄イオンの供給によって、その下流に配置された熱交換
器や復水器その他の銅合金等からなる金属部の表面に耐
食性の鉄系保護皮膜が形成され、金属部の耐食性を向上
させることができる。また同時に、海水中に供給された
銅イオンは生物に対して毒性を有するため、海水冷却ラ
イン内での生物の成長並びに繁殖を防止することができ
る。尚、鉄イオン及び銅イオンの濃度は、通電する電流
量により制御することができる。
In the first biological antifouling / corrosion prevention method using the above apparatus, a direct current is passed from the DC power supply through the iron electrode 1 and / or the copper electrode 2 to the cathode material 3 to electrolyze the seawater. Supply iron ions and / or copper ions.
By supplying iron ions, a corrosion-resistant iron-based protective coating is formed on the surface of the metal parts made of copper alloy or other heat exchangers, condensers, etc. located downstream of the iron ions, which can improve the corrosion resistance of the metal parts. it can. At the same time, since copper ions supplied to seawater are toxic to living organisms, it is possible to prevent the growth and reproduction of living organisms in the seawater cooling line. The concentrations of iron ions and copper ions can be controlled by the amount of current passed.

【0020】海水中に供給する鉄イオンの濃度は、5〜
40ppbに維持する。ただし、熱交換器を洗浄した場
合には保護皮膜が失われてしまうので、洗浄後の約1ヶ
月間程度は、鉄系保護皮膜の再形成のために鉄イオンを
25〜35ppbの濃度で供給することが好ましい。そ
の後は、鉄電極の消耗を抑え、コストの上昇を防ぐため
にも、5〜10ppb程度の鉄イオン濃度とすることが
が好ましい。
The concentration of iron ions supplied to seawater is 5 to 5.
Keep at 40 ppb. However, when the heat exchanger is washed, the protective film is lost, so iron ions are supplied at a concentration of 25 to 35 ppb for the reformation of the iron-based protective film for about one month after cleaning. Preferably. After that, it is preferable to set the iron ion concentration to about 5 to 10 ppb in order to suppress the consumption of the iron electrode and prevent the cost from increasing.

【0021】また、海水中に供給する銅イオンの濃度
は、10〜40ppbに維持する。ただし、特に海洋生
物が成長する夏季(4月〜9月)は25〜30ppb程
度と高濃度で供給し、ほとんど成長のない冬季(10月
〜3月)には、銅電極の消耗を少なくするためと、環境
への負荷を抑えるためにも、10〜15ppb程度と低
濃度にすることが好ましい。
The concentration of copper ions supplied to seawater is maintained at 10 to 40 ppb. However, especially in the summer (April-September) when the marine life grows, it is supplied at a high concentration of about 25-30 ppb, and in winter (October-March) when there is almost no growth, the consumption of the copper electrode is reduced. Therefore, in order to suppress the load on the environment, it is preferable to set the concentration as low as about 10 to 15 ppb.

【0022】第1の生物防汚・防食方法では、防食のた
めの鉄イオンの供給と生物防汚のための銅イオンの供給
とを、同時に行うことも、交互に行うこともできる。更
に、鉄イオンの供給と銅イオンの供給を同時に又は交互
に行いながら、その操作を通常は連続的に行うが、間欠
的に行っても良い。間欠的とは、例えば、鉄イオンと銅
イオンを同時に供給しながら、所定の時間間隔で両方の
イオンの供給を一次的に停止するような場合である。
In the first biofouling / corrosion prevention method, the supply of iron ions for corrosion protection and the supply of copper ions for biofouling can be carried out simultaneously or alternately. Further, while the iron ion supply and the copper ion supply are performed simultaneously or alternately, the operation is usually performed continuously, but may be performed intermittently. Intermittently means, for example, a case where iron ions and copper ions are simultaneously supplied, but the supply of both ions is temporarily stopped at a predetermined time interval.

【0023】次に、第2の生物防汚・防食装置として、
図3及び図4に、海水冷却ラインに設置した電極函式
(配管型)による電極切替式の装置を示す。この電極切
替式の装置では、海水冷却ラインの導水管(図示せず)
の途中に開閉可能な蓋部6を有する電極函5を設け、そ
の蓋部6に絶縁材4を介して固定した鉄電極1と銅電極
2が電極函5内に配置してある。また、電極の極性を切
り替えるために、鉄電極1と銅電極2との間で直流電源
装置(図示せず)の接続を切り替える電源切替手段(図
示せず)を備えている。
Next, as a second biological antifouling / corrosion prevention device,
FIG. 3 and FIG. 4 show an electrode switching type device by an electrode box type (pipe type) installed in a seawater cooling line. In this electrode switching type device, a water pipe (not shown) of the seawater cooling line
An electrode box 5 having a lid 6 that can be opened and closed is provided in the middle of the box, and an iron electrode 1 and a copper electrode 2 fixed to the lid 6 via an insulating material 4 are arranged in the electrode box 5. Further, in order to switch the polarities of the electrodes, a power supply switching means (not shown) for switching the connection of the DC power supply device (not shown) between the iron electrode 1 and the copper electrode 2 is provided.

【0024】尚、鉄電極1及び銅電極2の接続端子は、
それぞれ各接続箱7内で外部の直流電源装置の2次側端
子に接続されている。また、鉄電極1及び銅電極2の材
質並びに配置、電極の交換に関しては、上記第1の装置
の場合と同様である。
The connection terminals of the iron electrode 1 and the copper electrode 2 are
Each is connected to the secondary side terminal of the external DC power supply device in each connection box 7. The material and arrangement of the iron electrode 1 and the copper electrode 2 and the replacement of the electrodes are the same as in the case of the first device.

【0025】この第2の装置を用いる生物防汚・防食方
法では、電源切替手段により鉄電極1と銅電極2の極性
を切り替えて、即ち鉄イオンを供給する時には鉄電極1
を陽極及び銅電極2を陰極とし、また、銅イオンを供給
する時には銅電極2を陽極及び鉄電極1を陰極として、
それぞれ通電する。従って、防食のための鉄イオンの供
給と生物防汚のための銅イオンの供給は、必ず交互に行
い、同時に行うことはできない。また、鉄イオンの供給
と銅イオンの供給を交互に行いながら、その操作を連続
的に又は間欠的に行うことができる。
In the biological antifouling / corrosion prevention method using the second device, the polarities of the iron electrode 1 and the copper electrode 2 are switched by the power source switching means, that is, when iron ions are supplied, the iron electrode 1
As the anode and the copper electrode 2 as the cathode, and when supplying copper ions, the copper electrode 2 as the anode and the iron electrode 1 as the cathode,
Energize each. Therefore, the supply of iron ions for anticorrosion and the supply of copper ions for biofouling must always be performed alternately and cannot be performed simultaneously. Further, the operation can be performed continuously or intermittently while alternately supplying the iron ions and the copper ions.

【0026】第2の方法においても、鉄イオンの供給に
よって下流に配置された金属部の耐食性を向上させるこ
とができ、銅イオンの供給により生物の生長並びに繁殖
を防止することができる。鉄イオン及び銅イオンの濃度
に関しては、前記第1の方法の場合と同様であって、通
電する電流量により制御することができる。また、極性
切り替えの期間は特に限定されず、鉄イオン及び銅イオ
ンをそれぞれの有効性に照らし合わせ適切な濃度で供給
することで、防食と生物防汚の効果を経済的、効果的に
発揮することが可能となる。
Also in the second method, the corrosion resistance of the metal portion arranged downstream can be improved by supplying iron ions, and the growth and reproduction of organisms can be prevented by supplying copper ions. The concentrations of iron ions and copper ions are the same as in the case of the first method, and can be controlled by the amount of current to be applied. In addition, the period of polarity switching is not particularly limited, and iron ions and copper ions are supplied at an appropriate concentration in view of their respective effectiveness, so that the anticorrosion and biological antifouling effects are economically and effectively exhibited. It becomes possible.

【0027】このような電極切替式による第2の装置及
び第2の方法によれば、非切替式の第1の装置及び第1
の方法に比べて、陰極材が不要で装置が簡単になるう
え、鉄電極1と銅電極2の極性を交互に切替えて使用す
るため電極の消耗が少なく、消費電力を節約することが
できる等の利点がある。
According to the electrode switching type second device and the second method, the non-switching type first device and the first method are used.
Compared with the method described above, the device is simpler because no cathode material is required, and since the polarities of the iron electrode 1 and the copper electrode 2 are alternately switched and used, the consumption of the electrode is small and the power consumption can be saved. There are advantages.

【0028】また、図5は本発明の生物防汚・防食装置
の他の具体例であって、タンク型の電極函式による装置
である。この装置では、導水ラインにおける導水管8の
途中に鉄用電極函5aと銅用電極函5bが並列に設置し
てあり、鉄用電極函5aには鉄電極1が及び銅用電極函
5bには銅電極2と陰極材3が配置してある。電極が消
耗した場合には、それぞれの電極函5a、5bに設置し
た蓋部6a、6bを開けて、鉄電極1及び銅電極2を簡
単に交換することができる。
FIG. 5 shows another specific example of the biological antifouling / corrosion preventive apparatus of the present invention, which is an apparatus of a tank type electrode box type. In this device, an iron electrode box 5a and a copper electrode box 5b are installed in parallel in the middle of the water conduit 8 in the water guiding line, and the iron electrode box 5a includes the iron electrode 1 and the copper electrode box 5b. Is provided with a copper electrode 2 and a cathode material 3. When the electrodes are consumed, the iron electrodes 1 and the copper electrodes 2 can be easily replaced by opening the lids 6a and 6b installed on the respective electrode boxes 5a and 5b.

【0029】尚、図5の装置では鉄用電極函5aを銅用
電極函5bよりも上流側に配置しているが、両者の配置
は特に制限されるものではなく、どちらが上流側となっ
ても良い。また、このタンク型の電極函の場合にも、銅
用電極函5bで陰極材を兼用することができる。更に、
一つの電極函内に鉄電極と銅電極を配置し、電源切替手
段を設けることによって、両電極の極性を切り替えて使
用する電極切替式の装置とすることもできる。
In the apparatus shown in FIG. 5, the iron electrode box 5a is arranged upstream of the copper electrode box 5b, but the arrangement of both is not particularly limited, and either of them is the upstream side. Is also good. Also in the case of this tank type electrode box, the copper electrode box 5b can also serve as the cathode material. Furthermore,
By arranging the iron electrode and the copper electrode in one electrode box and providing the power source switching means, the electrode switching type device can be used in which the polarities of both electrodes are switched and used.

【0030】また、図6及び図7は、本発明の生物防汚
・防食装置の他の具体例であって、取水路式の装置であ
る。取水路式の装置では、取水路全体を示す図6から分
るように、鉄電極や銅電極等からなる電極板集合体10
を取水設備の取水路11内に設置してあるため、下流側
に広く効果を及ぼすことができる。尚、取水路11の取
水口12近くには、海水中のゴミや流木等を除去するバ
ースクリーン13やトラベリングスクリーン14が配置
され、その下流側に導水管8に海水を送るための取水ポ
ンプ15が取り付けてある。電極板集合体10は、好ま
しくはバースクリーン13とトラベリングスクリーン1
4の間に配置する。
FIGS. 6 and 7 show another specific example of the biological antifouling / corrosion preventive apparatus of the present invention, which is an intake channel type apparatus. In the intake channel type device, as can be seen from FIG. 6 showing the entire intake channel, an electrode plate assembly 10 composed of iron electrodes, copper electrodes, etc.
Since it is installed in the intake channel 11 of the intake facility, it is possible to exert a wide range of effects on the downstream side. A bar screen 13 and a traveling screen 14 for removing dust, driftwood, etc. in seawater are arranged near the water intake 12 of the water intake passage 11, and an intake pump 15 for sending seawater to the water conduit 8 is provided downstream thereof. Is attached. The electrode plate assembly 10 is preferably a bar screen 13 and a traveling screen 1.
Place between 4.

【0031】電極板集合体10は、例えば図7に示すよ
うに、複数の鉄電極1と銅電極2とを交互に配置し、更
に各鉄電極1と銅電極2の間に陰極板3を配置して、そ
れぞれを絶縁材4を介して固定板9で保持した構造とな
っている。上側の固定板9には、鉄電極1、銅電極2及
び陰極材3の各接続端子をそれぞれ外部の直流電源装置
(図示せず)の2次側端子に接続する各接続箱7が設け
てある。各鉄電極1と銅電極2と陰極材3の間は、取水
の妨げにならない程度の間隔をあけておく必要がある。
また、この電極板集合体10は、取水路11内に海水の
流れに対してほぼ直角方向に設置する。
In the electrode plate assembly 10, for example, as shown in FIG. 7, a plurality of iron electrodes 1 and copper electrodes 2 are alternately arranged, and a cathode plate 3 is provided between each iron electrode 1 and copper electrode 2. They are arranged and held by the fixing plate 9 via the insulating material 4 respectively. The upper fixing plate 9 is provided with connection boxes 7 for connecting the respective connection terminals of the iron electrode 1, the copper electrode 2 and the cathode material 3 to the secondary side terminals of an external DC power supply device (not shown). is there. It is necessary to leave a space between each iron electrode 1, the copper electrode 2, and the cathode material 3 to such an extent that water intake is not hindered.
Further, the electrode plate assembly 10 is installed in the intake channel 11 in a direction substantially perpendicular to the flow of seawater.

【0032】[0032]

【実施例】電極函式(配管型)による生物防汚・防食装
置として、図1及び図2に示す第1の装置(非切替式)
と、図3及び図4に示す第2の装置(電極切替式)とを
用いて、プラスチック製のホースから循環ポンプによっ
て吸い上げた海水を、上記各生物防汚・防食装置を通し
て銅合金製のモニタリングタンク内へ導水した後、海へ
放水する試験を行った。
[Embodiment] A first apparatus (non-switching type) shown in FIGS. 1 and 2 as a biological antifouling / corrosion preventing apparatus using an electrode box type (pipe type)
And a second device (electrode switching type) shown in FIGS. 3 and 4, seawater sucked up by a circulation pump from a plastic hose is monitored by a copper alloy through the above-mentioned biological antifouling / corrosion preventive devices. After introducing water into the tank, a test was conducted to discharge it into the sea.

【0033】即ち、図1〜2の第1の装置(非切替式)
では、直流電源装置から鉄電極1及び銅電極2を経由し
て陰極材3に直流電流を流し、海水中に鉄イオン及び銅
イオンを同時に供給した。一方、図3〜4の第2の装置
(切替式)では、電源切替手段により鉄電極1と銅電極
2の極性を1週間ごとに切り替えて、鉄電極1を陽極及
び銅電極2を陰極として鉄イオンを供給する操作と、銅
電極2を陽極及び鉄電極1を陰極として銅イオンを供給
する操作を、交互に実施した。
That is, the first device of FIGS. 1 and 2 (non-switching type)
Then, a direct current was made to flow from the DC power supply device to the cathode material 3 via the iron electrode 1 and the copper electrode 2, and iron ions and copper ions were simultaneously supplied into seawater. On the other hand, in the second device (switchable type) of FIGS. 3 to 4, the power source switching means switches the polarities of the iron electrode 1 and the copper electrode 2 every week, and the iron electrode 1 is used as the anode and the copper electrode 2 is used as the cathode. The operation of supplying iron ions and the operation of supplying copper ions using the copper electrode 2 as an anode and the iron electrode 1 as a cathode were alternately performed.

【0034】これらの試験を2月から1年間連続的に実
施し、その際に通電量を変えることにより、海水中に供
給する鉄イオン濃度と銅イオン濃度を下記表1のごとく
制御した。試験終了後、モニタリングタンク内の腐食状
態、及び海洋生物の付着状況を観察し、その結果を下記
表1に併せて示した。尚、表1において、タンクに腐食
の見られなかったものは○、腐食が見られたものは×と
表示した。また、生物の付着が全くなかったものは○、
極少量の生物付着が見られたものは△、大量の生物付着
がみれたものは×で示した。
These tests were continuously carried out for one year from February, and the iron ion concentration and the copper ion concentration supplied to seawater were controlled as shown in Table 1 below by changing the energization amount. After the completion of the test, the corrosion state in the monitoring tank and the adhesion state of marine organisms were observed, and the results are also shown in Table 1 below. In Table 1, those in which no corrosion was observed in the tank were indicated by ◯, and those in which corrosion was observed were indicated by x. In addition, those with no organisms attached were ○,
A sample showing a very small amount of biofouling was shown by Δ, and a sample showing a large amount of biofouling was shown by x.

【0035】[0035]

【表1】 [Table 1]

【0036】第1の装置(非切替式)を用いた試験N
o.1では、試験開始直後の2月のみの1ヶ月間は鉄イ
オン濃度を高くし、また4〜9月の夏季には銅イオン濃
度を高くして操作した結果、モニタリングタンク内面に
は腐食及び生物付着は全く認められなかった。また、同
じく第1の装置(非切替式)を用いた試験No.2は、
鉄イオン濃度と銅イオン濃度の変動を試験No.1より
も小さくしたが、十分な供給があるため、やはりタンク
内面に腐食及び生物付着は認められなかった。
Test N using the first device (non-switching type)
In o.1, as a result of operating by increasing the iron ion concentration for one month only in February immediately after the start of the test and increasing the copper ion concentration in the summer of April to September, the inside of the monitoring tank was corroded. And no biofouling was observed. Also, the test No. 2 using the same first device (non-switching type)
Although the fluctuations in the iron ion concentration and the copper ion concentration were made smaller than those in Test No. 1, corrosion and biofouling were not observed on the inner surface of the tank due to sufficient supply.

【0037】第2の装置(切替式)を用いた試験No.
3では、試験開始直後の2月は鉄電解のみを1ヶ月間行
って鉄イオンだけ供給し、その後は1週間毎に銅イオン
の供給と鉄イオンの供給を交互に行った。供給する鉄イ
オンと銅イオンの濃度は上記試験No.1よりも若干低
いが、銅イオン濃度は4〜9月の夏季には高くして操作
した。その結果、モニタリングタンク内面の腐食及び生
物付着は全く認められなかった。
Test No. using the second device (switchable type)
In No. 3, in February immediately after the start of the test, only iron electrolysis was performed for one month to supply only iron ions, and thereafter, copper ions and iron ions were alternately supplied every week. The iron and copper ion concentrations to be supplied were slightly lower than those of Test No. 1, but the copper ion concentration was increased during the summer months of April to September. As a result, no corrosion or biofouling was observed on the inner surface of the monitoring tank.

【0038】一方、第1の装置(非切替式)を用い、銅
イオンの供給を1年間全く行わなかった比較例の試験N
o.4では、大量の生物付着が見られた。また、同じ装
置を用い、鉄イオン及び銅イオンを同時に供給したが、
それらの濃度を低く設定した比較例の試験No.5で
は、モニタリングタンク内面に腐食が確認され、少量の
生物付着も認められた。
On the other hand, using the first device (non-switching type), the test N of the comparative example in which copper ions were not supplied at all for one year
In o.4, a large amount of biofouling was observed. Also, using the same device, iron and copper ions were supplied simultaneously,
In Test No. 5 of the comparative example in which the concentrations were set low, corrosion was confirmed on the inner surface of the monitoring tank, and a small amount of biofouling was also confirmed.

【0039】[0039]

【発明の効果】本発明によれば、発電所や製鉄所の海水
冷却ライン等の導水ラインにおける生物の付着成長によ
る汚損と金属部の腐食の両方を、同じ電解という電気化
学的手法を用いた簡単な装置により、鉄電極から鉄イオ
ン及び銅電極から銅イオンを同時に又は交互に供給し
て、容易に且つ経済的に、しかも長期にわたって確実に
防止することができる。
EFFECTS OF THE INVENTION According to the present invention, both the fouling due to the adherent growth of organisms and the corrosion of metal parts in a water-conducting line such as a seawater cooling line of a power plant or an iron mill are performed by using the same electrolysis electrochemical method. With a simple device, iron ions from the iron electrode and copper ions from the copper electrode can be supplied simultaneously or alternately and can be easily and economically and reliably prevented for a long period of time.

【0040】また、付着生物の除去のために運転停止す
る必要がほとんどなくなり、鉄電極や銅電極等は交換可
能であるうえ、装置を自動化して人手を必要とせずに操
業することも可能である。更に、鉄電極と銅電極を互い
に極性を切り替えて使用することにより、電極の消耗を
少なくし、消費電力を節約し、装置をコンパクトにする
ことができるため、より一層経済的である。
Further, it is almost unnecessary to stop the operation for removing the attached organisms, and the iron electrode, the copper electrode, etc. can be replaced, and the apparatus can be automated to operate without requiring human labor. is there. Furthermore, by switching the polarities of the iron electrode and the copper electrode, the consumption of the electrode can be reduced, the power consumption can be saved, and the device can be made compact, which is more economical.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による非切替式で電極函式(配管型)の
生物防汚・防食装置の一具体例を一部切欠いて示した側
面図である。
FIG. 1 is a partially cutaway side view showing a specific example of a non-switching type electrode box type (piping type) biological antifouling / corrosion preventive apparatus according to the present invention.

【図2】図1の装置の断面図であり、(a)はA−A線
に沿った断面図、(b)はB−B線に沿った断面図であ
る。
2 is a cross-sectional view of the device of FIG. 1, (a) is a cross-sectional view taken along the line AA, and (b) is a cross-sectional view taken along the line BB.

【図3】本発明による切替式で電極函式(配管型)の生
物防汚・防食装置の一具体例を一部切欠いて示した側面
図である。
FIG. 3 is a side view showing a cutaway example of a specific example of the switchable electrode box type (pipe type) biological antifouling / corrosion preventive apparatus according to the present invention.

【図4】図3の装置のA−A線に沿った断面図である。4 is a cross-sectional view of the device of FIG. 3 along the line AA.

【図5】本発明による非切替式で電極函式(タンク型)
の生物防汚・防食装置の一具体例を一部切欠いて示した
側面図である。
FIG. 5 is a non-switching type electrode box type (tank type) according to the present invention.
It is the side view which notched and shown one specific example of the biological antifouling / corrosion prevention apparatus of this.

【図6】本発明による非切替式で取水路式の生物防汚・
防食装置の一具体例を一部切欠いて示した側面図であ
る。
FIG. 6 is a non-switching type intake channel type biological antifouling system according to the present invention.
It is the side view which notched and showed one specific example of the anticorrosion apparatus.

【図7】図6の装置の電極集合体を示す断面図である。7 is a cross-sectional view showing an electrode assembly of the device of FIG.

【符号の説明】[Explanation of symbols]

1 鉄電極 2 銅電極 3 陰極材 4 絶縁材 5 電極函 7 接続箱 8 導水管 10 電極集合体 11 取水路 13 バースクリーン 14 トラベリングスクリーン 15 取水ポンプ 1 Iron electrode 2 Copper electrode 3 Cathode material 4 insulation 5 electrode box 7 connection box 8 water conduit 10 electrode assembly 11 Intake channel 13 bar screen 14 Traveling screen 15 Water intake pump

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 海水や淡水を取り入れる導水ラインの一
部で水中に鉄電極、銅電極、及び陰極材を浸漬し、鉄電
極から陰極材に直流電流を流して水中に鉄イオンを供給
する工程と、銅電極から陰極材に直流電流を流して水中
に銅イオンを供給する工程とを有し、両工程を同時又は
交互に行うことにより、その下流側の導水ラインにおい
て生物付着による汚損及び金属部の腐食を防止すること
を特徴とする導水ラインの生物防汚・防食方法。
1. A step of immersing an iron electrode, a copper electrode, and a cathode material in water at a part of a water-conducting line for taking in seawater or fresh water, and applying a direct current from the iron electrode to the cathode material to supply iron ions into the water. And a step of supplying a copper current into the water by flowing a direct current from the copper electrode to the cathode material, and by performing both steps simultaneously or alternately, contamination and metal due to biofouling in the water conveyance line on the downstream side thereof. A biofouling / corrosion prevention method for a water conveyance line, which is characterized by preventing corrosion of a part.
【請求項2】 海水や淡水を取り入れる導水ラインの一
部で水中に鉄電極と銅電極を浸漬し、鉄電極から銅電極
に直流電流を流して水中に鉄イオンを供給する工程と、
銅電極から鉄電極に直流電流を流して水中に銅イオンを
供給する工程とを有し、両工程を交互に行うことによ
り、その下流側の導水ラインにおいて生物付着による汚
損及び金属部の腐食を防止することを特徴とする導水ラ
インの生物防汚・防食方法。
2. A step of immersing an iron electrode and a copper electrode in water at a part of a water-conducting line for taking in seawater or fresh water, supplying a direct current from the iron electrode to the copper electrode to supply iron ions into the water,
There is a step of supplying a direct current from the copper electrode to the iron electrode to supply copper ions into the water, and by alternately performing both steps, contamination due to biofouling and corrosion of metal parts in the water conveyance line on the downstream side can be performed. A biofouling / corrosion prevention method for water conduits that is characterized by prevention.
【請求項3】 水中に供給する鉄イオンの濃度を5〜4
0ppbに、及び銅イオンの濃度を10〜40ppbに
維持することを特徴とする、請求項1又は2に記載の導
水ラインの生物防汚・防食方法。
3. The concentration of iron ions supplied to water is 5 to 4
The method for biofouling / corrosion prevention of a water conveyance line according to claim 1 or 2, characterized in that the concentration of copper ion is maintained at 0 ppb and the concentration of copper ion is maintained at 10-40 ppb.
【請求項4】 海水や淡水を取り入れる導水ライン中
に、絶縁材により相互に絶縁された鉄電極、銅電極、及
び陰極材と、直流電源装置とを備え、直流電源装置から
鉄電極及び/又は銅電極を介して陰極材に電流を流すこ
とにより、その下流側の導水ラインにおいて生物付着に
よる汚損及び金属部の腐食を防止することを特徴とする
導水ラインの生物防汚・防食装置。
4. An iron electrode, a copper electrode, and a cathode material, which are insulated from each other by an insulating material, and a direct current power supply device are provided in a water conduit for taking in seawater or fresh water, and the direct current power supply device supplies the iron electrode and / or A biological antifouling / corrosion preventive device for a water guiding line, characterized in that by applying an electric current to a cathode material through a copper electrode, the water guiding line on the downstream side thereof is prevented from being contaminated by living organisms and from corroding metal parts.
【請求項5】 海水や淡水を取り入れる導水ライン中
に、絶縁材により相互に絶縁された鉄電極及び銅電極
と、直流電源装置と、鉄電極と銅電極との間で直流電源
装置の接続を切り替える電源切替手段とを備え、直流電
源装置から鉄電極を介して銅電極に、又は銅電極を介し
て鉄電極に電流を流すことにより、その下流側の導水ラ
インにおいて生物付着による汚損及び金属部の腐食を防
止することを特徴とする導水ラインの生物防汚・防食装
置。
5. An iron electrode and a copper electrode, which are mutually insulated by an insulating material, a direct current power supply device, and a direct current power supply device connected between the iron electrode and the copper electrode in a water conduit for taking in seawater or fresh water. And a power source switching means for switching, and by supplying a current from the DC power supply device to the copper electrode via the iron electrode or to the iron electrode via the copper electrode, contamination and metal parts due to biological attachment in the water guiding line on the downstream side thereof. A biofouling / corrosion preventive device for water transmission lines, which is characterized by preventing corrosion of water.
【請求項6】 前記鉄電極及び銅電極は、導水ラインに
設置した開閉可能な電極函又はタンク内に交換可能に取
り付けられていることを特徴とする、請求項4又は5に
記載の導水ラインの生物防汚・防食装置。
6. The water guiding line according to claim 4, wherein the iron electrode and the copper electrode are replaceably mounted in an openable / closable electrode box or tank installed in the water guiding line. Biological antifouling / corrosion prevention equipment.
【請求項7】 前記鉄電極及び銅電極は、取水設備の取
水路内に海水や淡水に接する状態で設置されていること
を特徴とする、請求項4又は5に記載の導水ラインの生
物防汚・防食装置。
7. The biological protection system for a water conveyance line according to claim 4, wherein the iron electrode and the copper electrode are installed in a water intake channel of a water intake facility so as to be in contact with seawater or fresh water. Antifouling / corrosion protection device.
JP2001386891A 2001-12-20 2001-12-20 Method for preventing organism fouling and corrosion in water conveyance line, and device therefor Pending JP2003183866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001386891A JP2003183866A (en) 2001-12-20 2001-12-20 Method for preventing organism fouling and corrosion in water conveyance line, and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001386891A JP2003183866A (en) 2001-12-20 2001-12-20 Method for preventing organism fouling and corrosion in water conveyance line, and device therefor

Publications (1)

Publication Number Publication Date
JP2003183866A true JP2003183866A (en) 2003-07-03

Family

ID=27595888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001386891A Pending JP2003183866A (en) 2001-12-20 2001-12-20 Method for preventing organism fouling and corrosion in water conveyance line, and device therefor

Country Status (1)

Country Link
JP (1) JP2003183866A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101137A (en) * 2005-10-07 2007-04-19 Chugoku Electric Power Co Inc:The Iron ion implantation method and iron ion implantation quantity control device
JP2015214735A (en) * 2014-05-13 2015-12-03 住江織物株式会社 Plated fiber and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101137A (en) * 2005-10-07 2007-04-19 Chugoku Electric Power Co Inc:The Iron ion implantation method and iron ion implantation quantity control device
JP2015214735A (en) * 2014-05-13 2015-12-03 住江織物株式会社 Plated fiber and production method thereof

Similar Documents

Publication Publication Date Title
KR100389446B1 (en) Heat exchanger comprising soil resisting device
KR101902009B1 (en) Combined maintenance management system of cooling sea water pipe in off-shore plant
KR100246555B1 (en) Method and apparatus for the prevention of fouling and/or corrosion of structures in seawater, brackish and/or fresh water
AU651491B2 (en) Method and device for preventing adhesion of aquatic organisms
CN200957377Y (en) Clean-water circulating reutilizer of wet electric dust collector
CN100564272C (en) Pond intermediate ion rod water treater
CN106830372A (en) Automatic cleaning-type device for electrochemical water preparation and its operation method
JP2003183866A (en) Method for preventing organism fouling and corrosion in water conveyance line, and device therefor
CN211971840U (en) Electrochemical treatment industrial circulating cooling water device
JP3549092B2 (en) Method and apparatus for suppressing marine organism adhesion and growth
JP2004176088A (en) Plate type heat exchanger, and antifouling device therefor
RU201745U1 (en) Anti-fouling device for underwater objects
JP2019002076A (en) Antifouling device of sea water pump and seawater antifouling method
CN210122509U (en) Self-cleaning immersion type electrochemical water treatment device
JP4605913B2 (en) Electric antifouling device and electric antifouling method
CN106630028A (en) Direct-current electrolytic treatment process and equipment for closed circulating water system
CN206570102U (en) Automatic cleaning-type device for electrochemical water preparation
Howell et al. The practical application and innovation of cleaning technology for condensers
JP2003200170A (en) Water treatment method using electrolysis, water treatment apparatus therefor and power supply device for electrolysis by stepless voltage transformation
JPH1136088A (en) Electrolytic corrosion protection method capable of executing sea water electrolytic fouling prevention and iron oxide film formation by generation of iron ion and apparatus therefor
JP2005351549A (en) Cooling tower maintaining control system
US5285162A (en) Galvanic current measuring method and apparatus for monitoring build-up of biological deposits on surfaces of dissimilar metal electrodes immersed in water
JPH07207645A (en) Marine creature insertion preventing screen device and insertion preventing method thereof
CN108483589B (en) Device for treating industrial circulating cooling water
JP2017095892A (en) Antifouling device for seawater utilization structure, antifouling device for seawater pump, and seawater pollution prevention method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129