JPS5899801A - Automatic controller of agricultural machine - Google Patents

Automatic controller of agricultural machine

Info

Publication number
JPS5899801A
JPS5899801A JP19895281A JP19895281A JPS5899801A JP S5899801 A JPS5899801 A JP S5899801A JP 19895281 A JP19895281 A JP 19895281A JP 19895281 A JP19895281 A JP 19895281A JP S5899801 A JPS5899801 A JP S5899801A
Authority
JP
Japan
Prior art keywords
frequency
control
sensor
dead zone
physical quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19895281A
Other languages
Japanese (ja)
Inventor
Tetsuya Inada
稲田 哲哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Agricultural Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Agricultural Equipment Co Ltd filed Critical Yanmar Agricultural Equipment Co Ltd
Priority to JP19895281A priority Critical patent/JPS5899801A/en
Publication of JPS5899801A publication Critical patent/JPS5899801A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B5/00Anti-hunting arrangements
    • G05B5/01Anti-hunting arrangements electric

Landscapes

  • Harvester Elements (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Guiding Agricultural Machines (AREA)

Abstract

PURPOSE:To elevate stability of control, and control accuracy, by counting the frequency by which the physical quantity to be controlled is deviated from a blind sector, and varying a range of the blind sector in accordance with its frequency. CONSTITUTION:When the physical quantity to be controlled is detected by a detecting circuit 19, its detection voltage VX is supplied to comparators 25, 27 having a blind sector of a range between voltages VS1, VS2, respectively. An integration circuit 33 for receiving outputs of both these comparators outputs voltage being proportion to frequency by which the physical quantity has been deviated from the blind sector. Subsequently, the output of the integration circuit 33 is supplied to comparators 39, 41, respectively, and when it exceeds the upper limit value of the frequency decided in advance, a servomotor M rotates forward, a resistance value of a resistance R2 increases, and width of the blind sector expands. As a result, stability of control is elevated. Also, when said output becomes less than the lower limit frequency, the motor rotates backward, the width of the blind sector is narrowed, and accuracy of control is elevated. In this way, stability of control, and control accuracy can be elevated.

Description

【発明の詳細な説明】 本発明は、コンバイン、トラクタ、田植機等の自動制御
装置に係り、特に、制御の安定性と、制御精度の向上を
一挙に図らんとする制御装置に関するものである。
[Detailed Description of the Invention] The present invention relates to automatic control devices for combine harvesters, tractors, rice transplanters, etc., and particularly relates to a control device that aims to improve control stability and control accuracy all at once. .

コンバインは、従来より、自動扱深さ調節装置、自動走
行装置、自動刈高さ調節装置、自動車速制御装置、その
他の自動制御装置を1又は2以上具備し、これらによっ
て円滑且つ確実な収一作業を行っているが、かかる自動
制御においては、制御の安定化を図るために、各物思量
の制御領域に不感帯を設け、過敏な制御によるノ・ンチ
ングを防止している。
Combine harvesters have conventionally been equipped with one or more automatic handling depth adjustment devices, automatic travel devices, automatic cutting height adjustment devices, vehicle speed control devices, and other automatic control devices, which allow for smooth and reliable harvesting. In such automatic control, in order to stabilize the control, a dead zone is provided in the control area of each amount of thought to prevent knocking due to oversensitive control.

そして、従来この不感帯の嘱は、一定とされているが、
コンバインの場合、収穫対象が場等のような農産物で、
その生育条件や作置条件、雑草等の混入等によシ、制御
装置に入力する信号のノ(ラツキが大きく、不感帯の―
は簡単には決定することができない。 しかし、そのた
めに不感帯の−を6まシ広く決定した場合には、ハンチ
ング等は防止されて制−′は安定化するが、制御値その
もののバラツキが大きくな〕、制御精度が着るしく低下
する。 コンバイン以外の農作業機械(例えばトラクタ
、田植機等)についても同様の問題点を包蔵している。
Conventionally, the width of this dead zone is considered to be constant, but
In the case of a combine harvester, the target for harvesting is agricultural products such as fields,
Due to the growth conditions, cropping conditions, contamination of weeds, etc., the signal input to the control device may be unstable and have a dead zone.
cannot be determined easily. However, if the dead band - is set to be wider than -6, hunting etc. will be prevented and the control will be stabilized, but the control value itself will vary greatly] and the control accuracy will deteriorate considerably. . Agricultural machinery other than combines (for example, tractors, rice transplanters, etc.) also have similar problems.

本発明は、かかる点に鑑みてなされたものであって、制
御される物塩量が不感帯から逸脱する頻度を計数し、こ
の頻度に応じて不感帯の範囲を変化させることくより、
穀物の生育条件等によってバラツキが〆きく、従って上
記頻度が高い場合には不感帯の範囲を広げて制御の安定
化を図シ、逆に頻度が低い、即ちバラツキが小さい場合
には不感帯の範囲金狭くして、III制御の高精度化を
図らんとするものであ夛、その要旨とする拠が、制御す
べき物理量が所定の不感帯の範囲から逸脱し走時、同物
理量を不感帯の範囲内に戻すように自動制御しつつ自走
するコンバイン等の農業機械において、上記物理量が不
感帯から逸脱する頻度をttaし、この頻度に応じて不
感帯の範囲を変化させる如くなした点にある農業機械の
自動111jlll城置を提供するものである。
The present invention has been made in view of the above points, and includes counting the frequency at which the amount of salt to be controlled deviates from the dead zone, and changing the range of the dead zone according to this frequency.
Variations are limited depending on grain growth conditions, etc. Therefore, when the frequency mentioned above is high, the range of the dead zone is widened to stabilize control, and conversely, when the frequency is low, that is, the variation is small, the range of the dead zone is expanded. The idea behind this is that when the physical quantity to be controlled deviates from the range of a predetermined dead band and the same physical quantity falls within the range of the dead band, In an agricultural machine such as a combine harvester that runs on its own while automatically controlling it to return to the dead zone, the frequency at which the above-mentioned physical quantity deviates from the dead zone is determined, and the range of the dead zone is changed according to this frequency. It provides automatic 111jllll location.

続いて、添付し九図面を参照しつつ、本発明をコンバイ
ンに適用した実施例について詳しく説明する。 ここに
第1図は、本発明の基礎となるコンバイン全体の斜視図
、第2図は、本発明の一実施例である自動操向装置の回
路図、第3図は同装置における分草板と0操センサの関
係を示す概路上−図である。
Next, an embodiment in which the present invention is applied to a combine harvester will be described in detail with reference to the attached nine drawings. Here, Fig. 1 is a perspective view of the entire combine harvester that is the basis of the present invention, Fig. 2 is a circuit diagram of an automatic steering device that is an embodiment of the present invention, and Fig. 3 is a weed divider plate in the same device. FIG. 3 is a schematic diagram showing the relationship between the 0 operation sensor and the 0 operation sensor.

第1図に示す如く、コンバイン(1)は、左右一対のク
ローラL21によって圃場内を走行し、機台前方に植立
した穀稈(3)、(3)、・・・を上昇運動するメイン
(41,14)で挾んで引き起しつつその根元をカッタ
ー(団によって切断し、たて搬送チェーン(61によっ
て把持し横方向に寝かせつつ上部の脱穀装置+7)の方
向へ移送する0 脱穀装置入口部(8)近傍まで移送さ
れ一#:、殻桿は、脱穀装置側部を走行するフィードチ
ェーン(9)に受は継がれ、フィードチェーン+91に
運ばれて、その穂先部が脱穀装置(7)内を通過し、脱
a装置(7)円で回転する扱胴によって脱穀される0 
(至)は運転者が座る塊a部である。
As shown in Fig. 1, the combine harvester (1) is driven in the field by a pair of left and right crawlers L21, and is a main machine that moves upwardly the grain stalks (3), (3), etc. planted in front of the machine. (41, 14) and pull it up, cut the root by a cutter (group), and transfer it to the upper threshing device +7 while holding it by 61 and laying it horizontally 0 Threshing device After being transferred to the vicinity of the inlet (8), the husk is connected to the feed chain (9) running on the side of the threshing device, and is carried to the feed chain +91, where the tip of the husk is transferred to the threshing device (91). 7) The grains pass through the threshing device (7) and are threshed by a handling drum that rotates in a circle.
(to) is block a where the driver sits.

以下、本発1Jit−コンバインの走行方向を自llh
制御する自動操向装置に適用した実施例について説明す
る。
The following is the running direction of the original 1Jit-combine harvester.
An embodiment applied to an automatic steering device to be controlled will be described.

コンバインの走行方向の制御は、第1図及び第3図に示
した分草杆止部に堰シ付けた自操セ/す@の回動角度と
いう物理量に応じて行われる。
The direction of travel of the combine harvester is controlled in accordance with a physical quantity, ie, the rotation angle of a self-operating center, which is attached to the weir stopper shown in FIGS. 1 and 3.

即ち第3−図に示すように、矢印a3方向への機台の走
行に伴って穀稈13)がセンサ@に当接し、センサ(至
)が矢印0番の方向へ回動すZカ≦、機台が穀稈L3)
K対して必要以上に左へ偏った位置を走行しているとセ
ンナ叫の回動角度は小さく、逆に右に偏って走行すると
、セ/すは大きく回動する。 そして、これらのコンバ
インの位置の偏りを修正するため、クローラ(2)又は
(2Yを断続的に停止させて走行方向の調節を行う。 
進行方向に向って右側(又は左側)のクローラt2)(
又a (2)’ )を停止させるとコンバインは右方間
(又は左方向)へ走行することになる。 このような自
動操向装置において、0操センサ@の作動頻度に応じて
巨像センサの不感帯の範囲を変化させるために、第3図
示の回路を用いる。
That is, as shown in Figure 3, as the machine moves in the direction of arrow a3, the grain culm 13) comes into contact with the sensor @, and the sensor rotates in the direction of arrow 0. , the machine base is grain culm L3)
If the vehicle is traveling more to the left than necessary with respect to K, the rotation angle of the Senna will be small, and conversely, if the vehicle is traveling to the right, the center will rotate significantly. In order to correct the positional deviation of these combine harvesters, the crawler (2) or (2Y) is intermittently stopped to adjust the traveling direction.
The crawler t2) on the right side (or left side) in the direction of travel
Also, when a (2)') is stopped, the combine harvester will run to the right (or to the left). In such an automatic steering system, the circuit shown in the third diagram is used in order to change the range of the dead zone of the colossal image sensor according to the operating frequency of the zero operation sensor @.

第2図において、(至)、129.(2)は電源111
に直列に投入したキースイッチ、自動スイッチ、脱穀ス
イッチである。 検出回路傭はポテンショメータ等角度
に応じて抵抗値が変化する。 脱穀スイッチ(2)に直
列接続された抵抗(iLl )は、更に可変抵抗(艮2
)及び抵抗(λ3)と直列に接続され、抵抗(it’s
)は接地されている。 脱穀スイッチdηに接続された
パルス回路面の出力端は、2人力のANDゲート回路の
及び−に夫々接続されている。 また、ポテンショメー
タ等角度の可変抵抗jと抵抗−の閾よシ取シ出された電
気1d号Vxは比較器−の測定電圧入力端(至)と、比
較器(至)の標準電圧入力端(至)に入力されており、
比較t#ac)11準電圧入力端凶は、抵抗(ILL)
と可変抵抗(爬2)のl!lに、ま九比紋器@の測定電
圧入力!(至)は、可変抵抗(lt2)と抵抗(iL3
)との間に夫々接続されている。 そして各比較器−及
び@の出力4@及び(2)は、でれぞれアンドゲート乃
及びのの各入力端に接続されていると共に、同時に積分
回路(至)にも接続されているうアンドゲート(2)又
はΩは、スイッチング回路(至)又は(至)を介して左
行コイル(至)又は右行コイル面を励磁する。 左行コ
イル(至)又は右行コイル面は、夫々左側又は右側のク
ローラを停止させて、コンバインを左旋回又は右旋回さ
せるための電磁クラッチを作動させるためのものである
。 上記積分回路(至)は、比較器(ハ)及び@からの
出力パルスの回数の合計を積算し、一定周期毎にその周
期中に入力し九パルス数に比例した電圧を出力するもの
で、その出力端(至)は、比較器(至)の測定電圧入力
4−及び比較器−の標準電圧入力端一に接続されている
。 又比較器(至)の標準電圧入力端−及び比較器−の
測置電圧入力端−には、直列に挿入された抵抗(rl)
、(r2)、(r3)によって一義的に決定式れる標準
電圧vS1及び測定電圧”I m 2が印加されている
In FIG. 2, (to), 129. (2) is the power supply 111
A key switch, an automatic switch, and a threshing switch are connected in series. The resistance value of the detection circuit changes depending on the angle of the potentiometer. The resistor (iLl) connected in series with the threshing switch (2) is further connected to the variable resistor (2).
) and a resistor (λ3), the resistor (it's
) is grounded. The output ends of the pulse circuit plane connected to the threshing switch dη are connected to and - of the two-man power AND gate circuit, respectively. In addition, the electric No. 1d Vx taken out from the threshold of the variable resistance j and the resistance of the potentiometer is connected to the measurement voltage input terminal (to) of the comparator and the standard voltage input terminal (to) of the comparator (to). ) has been entered, and
Comparison t#ac) 11 The quasi-voltage input terminal fault is the resistor (ILL)
and l of variable resistance (ret2)! Input the measurement voltage of Makuhimonki@ to l! (to) is the variable resistor (lt2) and the resistor (iL3
) are connected to each other. The outputs 4@ and (2) of each comparator and @ are connected to the input terminals of the AND gate and, respectively, and are also connected to the integrating circuit (to) at the same time. The AND gate (2) or Ω excites the left-hand coil (to) or right-row coil surface via the switching circuit (to) or (to). The left-hand coil (to) or right-hand coil surface is for stopping the left or right crawler, respectively, and operating an electromagnetic clutch for turning the combine to the left or to the right. The above-mentioned integrating circuit (to) integrates the total number of output pulses from the comparator (c) and @, inputs it every fixed period during that period, and outputs a voltage proportional to the number of nine pulses. Its output is connected to the measuring voltage input 4 of the comparator and to the standard voltage input 4 of the comparator. Also, a resistor (rl) inserted in series is connected to the standard voltage input terminal of the comparator (to) and the stationary voltage input terminal of the comparator.
, (r2), (r3) and the measurement voltage "I m 2" are applied.

上記比較器(至)(又はU)の出力端は、リレー−(又
はa)を作動させるスイッチング回路(ロ)(又は−)
に接続さnておプ、これらのリレー−及び−の接点−及
び団は、夫々電源ライン6υとサーボモータ(ハ)の間
に挿入されておシ、接点団が閉じるとサーボモータ(ロ
)が正転し、接点−が閉じるとサーボモータ(ハ)が逆
転する。:)  サーボモーターの駆動軸は、前記可変
抵抗(iL2)のスライダ關に連結され、サーボモータ
轡が正転するとスライダーが矢印−の方向に回動して可
変抵抗(R2)の抵抗値が増大し、比較器(2)又は(
財)が出力する基準となる電圧VslとVllの幅、即
ち不感帯の範囲が広くなる。
The output terminal of the comparator (to) (or U) is connected to the switching circuit (b) (or -) which operates the relay - (or a).
These relays and contacts are inserted between the power line 6υ and the servo motor (c), respectively, and when the contacts close, the servo motor (b) rotates in the forward direction, and when the contact - closes, the servo motor (c) rotates in the reverse direction. :) The drive shaft of the servo motor is connected to the slider of the variable resistor (iL2), and when the servo motor rotates forward, the slider rotates in the direction of the arrow - and the resistance value of the variable resistor (R2) increases. and comparator (2) or (
The width of the reference voltages Vsl and Vll output by the product, that is, the range of the dead zone, becomes wider.

続いて上記実施例の作動について説明する。Next, the operation of the above embodiment will be explained.

電源ライン6υに設けた3個のスイッチ叩、ue、αη
を投入してコンバインが走行中に、右側に偏って走行し
九場合を考える。 コンバインが右へ偏りすぎると、第
3図示のように穀稈(3)の接触によシ自操センサ(至
)が大きく回動するので、可変抵抗霞の抵抗値が増大′
する。 従って、比較器−及び1に入力式れる電圧Vx
が低下する。 一方比較器一の標準電圧入力端(2)及
び、比較″a@の測定電圧入力端−には、抵抗(ILI
)、可Ra抗(R2)、抵抗(is)の各抵抗値によシ
決定される砿準電圧(Vs l)及び測定電圧(Vsz
)が印加されておl)、Vsl(Vs2であるから、電
圧■!が上記のように低下して(コンバインが右へ偏ブ
て)、Vllよシ小さくなると、比較器側の出力が高レ
ベルとなり、この信号とパルス回路(2)からのパルス
信号とがANDゲート(2)に入力され、スイッチング
回路(至)を介して左行コイル(至)が断続的に作動さ
れて、コンバインが左方向へ旋回走行する。 このよう
な機台の左行によシ、センサ(2)の回動角度が減少し
、やがて電圧Vxが上昇するため比較器の出力が停止す
る。
Hit the three switches installed on the power line 6υ, ue, αη
Let's consider a case where the combine harvester is running with a load biased to the right side. If the combine harvester leans too far to the right, the self-operation sensor (to) will rotate greatly due to contact with the grain culm (3) as shown in Figure 3, and the resistance value of the variable resistance haze will increase.
do. Therefore, the voltage Vx input to the comparator and 1
decreases. On the other hand, a resistor (ILI
), the resistance (R2), and the resistance (is).
) is applied and Vsl (Vs2), so when the voltage ■! decreases as above (the combine shifts to the right) and becomes smaller than Vll, the output of the comparator becomes high. This signal and the pulse signal from the pulse circuit (2) are input to the AND gate (2), and the left coil (to) is intermittently operated via the switching circuit (to), and the combine is activated. As the machine moves to the left, the rotation angle of the sensor (2) decreases, and the voltage Vx eventually rises, so that the output of the comparator stops.

機台が左へ偏りすぎた場合には、逆にセンサ@の回動角
度が過少となシ、電圧Vxが大きくなって比較器@が作
動して右行コイル(至)が励磁され、機台が右旋回する
。 このように電圧Vxが電圧VIAとVs2の範囲を
逸脱すると機台の旋回が行われ、逆に電圧V!がVsl
とVsQの間にあれは左右のクローラが等速で(ロ)転
し、機普が直進するので、このような電圧vslとVs
2の間の領域、乃至はこのような電圧を生成するセンサ
の同転角度範囲を不感帯と称す。 しかし、るる一定時
間内のコンバインの右又は左旋回する頻度がめtn多す
ぎると制御が追従しきれなくなシ、ハンチングを起す。
If the machine base is too far to the left, the rotation angle of the sensor @ is too small, and the voltage Vx becomes large, the comparator @ is activated, the right-hand coil (to) is energized, and the machine The platform turns to the right. In this way, when voltage Vx deviates from the range of voltages VIA and Vs2, the machine rotates, and conversely, voltage V! is Vsl
Between and VsQ, the left and right crawlers rotate at the same speed, and the machine moves straight, so the voltages vsl and Vs
The region between 2 and 2 or the rotation angle range of the sensor that generates such a voltage is called a dead zone. However, if the frequency of turning the combine harvester to the right or left within a certain period of time is too high, the control will not be able to keep up with it and hunting will occur.

これは、作動頻度に対して不感帯の幅が狭すぎることに
よシ生じるもので、このような場合には不感帯の幅を広
げる必要がある。
This occurs because the width of the dead zone is too narrow relative to the operating frequency, and in such cases it is necessary to widen the width of the dead zone.

そのため、両比較器−及び@からの出力パルスは積分回
路(至)に入力され、両パルスの合計数に比例した電圧
vxが比較器(至)及び曲に印加される。
Therefore, the output pulses from both comparators - and @ are input to the integrating circuit (to), and a voltage vx proportional to the total number of both pulses is applied to the comparator (to) and the music.

どの印加電圧マ8が比較器−に入力された測定電圧マ、
2よシ大きくなる(作動頻度が一定回数を超える)と、
比較器(2)の出力が高レベルとなシ″、スイッチング
回路−、リレー−が作動して接点−が閉じサーボモータ
的か正転し、可変抵抗(λ2)の抵抗値が増大し、比較
器−1面の作動基準となる電圧Vslが減少、Vs2が
増大するので、不感帯の幅が広がシ、ハンチングが防止
される。 又逆に、作動頻度が下@回数以下となると、
電圧マエがマ、□より小さくなシ、比較器(至)からの
出力によシサーボモータ(ハ)が逆転し、不感帯の範囲
が狭められ、制御の精度が向上する。
Which applied voltage ma8 is the measured voltage ma inputted into the comparator?
When it becomes larger than 2 (operation frequency exceeds a certain number of times),
When the output of the comparator (2) reaches a high level, the switching circuit and relay operate, the contacts close, and the servo motor rotates in the normal direction, increasing the resistance value of the variable resistor (λ2) and Since the voltage Vsl, which is the operating reference for the device-1 side, decreases and Vs2 increases, the width of the dead zone widens and hunting is prevented. Conversely, when the operating frequency becomes lower than the number of times,
When the voltage is smaller than M and □, the servo motor (C) is reversed by the output from the comparator (to), narrowing the range of the dead zone and improving control accuracy.

上記の実施例は、コンバインの自動操向装置に本発明を
適用した場合につ艷て述べたが、本発明はこれに限らず
、自動刈高さ調節装置、自動扱深さ調節装置、車速調整
装置等についても適用可能である。
Although the above embodiments have been described with reference to the case where the present invention is applied to an automatic steering device of a combine harvester, the present invention is not limited to this, but includes an automatic cutting height adjustment device, an automatic handling depth adjustment device, a vehicle speed adjustment device, etc. It is also applicable to adjustment devices and the like.

例えば、自動刈高さ調節装置の場合には、第1図に示す
ハイドセンサ6g)Kよって刈取部(至)と地表面との
間隙を検出し、地表面の上下変化に応じて刈取部を上下
動させ、刈高さを一定に揃えるものであるが、この場合
のハイドセンナの原理は前記実施例に示した自機センサ
ーのそれと同様で、地表に接触するハイド七/すの回動
角度によって刈高さを調節する。
For example, in the case of an automatic cutting height adjustment device, the gap between the cutting part (to) and the ground surface is detected by the hide sensor 6g)K shown in Fig. 1, and the cutting part is adjusted according to vertical changes in the ground surface. The principle of the hide senna in this case is the same as that of the own machine sensor shown in the above embodiment, and the height is adjusted by the rotation angle of the hide 7/s in contact with the ground surface. Adjust cutting height.

従って、第2図に示したポテンショメータα窃の可変抵
抗Aをハイド七/すに連結し、左行、右行のコイル(至
)、−を、刈取部5!9を上下動させる油圧シリンダ作
動用の電磁バルブのコイルに置も換えれは、この回路に
よって刈高さ調節の不感帯幅を、作動頻度に応じて変化
させることができる。
Therefore, the variable resistor A of the potentiometer α shown in FIG. This circuit can be used to change the width of the dead zone for mowing height adjustment in accordance with the operating frequency.

自動扱深さ調節装置は、第4図に示す如く、脱穀装置(
7)の入口部(8)に、Mセンサ(ロ)及びHセンサ(
へ)を設けて、たて搬送チェーン(6)によって入口部
(8)に搬送されて来た殻稈(アの脱穀装置(7)への
挿入長を調節するものであり、Hセンナに)が感知すれ
ば深扱き状態を、またMセンサ台が感知しなければ浅扱
き状態を示す。 従って、深扱き時には、たて搬送チェ
ーン田)を矢印(へ)の方向へ、浅扱き時には、たて搬
送チェーン(6)を矢印(イ)の方向へ回動させ、穂先
、がHセンサとMセンすの間に来るように調節する。 
Hセンサ■がOFFで、Mセンサー)がONの状態、即
ち穂先がHセンサMセンサの間にある状態では、たて搬
送チェーン(6)は回動されない。 即ち、Mセンサ(
ハ)とHセンサ(へ)の間の領域C)が不感帯であり、
HセンすとMセンサの作動頻度があまシに大きい場合に
は、やはシハンチングを起す虞れがあるので、例えばH
センサ(へ)を不感帯を広げる方向、即ち矢印(至)の
方向へ移動する必要がある。 この場合、第5図に示す
ようにHセンナ轡のホルダーにネジローラ(至)を螺合
し、このネジローラーをサーボモータ絆によって回転さ
せて、Hセンサ■を矢印げの方向へ移動させる如くなし
てもよい。 サーボモータの駆動は、Hセンサ■及びM
センサ搏の作動回数を積分して、単位時間jりの積分値
(頻度)が、−室以上又は、一定板下となった時に行わ
れる。 この場合の制御回路としては、第2図示の回路
において、比較器(2)及び(至)からの出力をHセン
サ及びMセン−サからの信号と置き換えると共に、コイ
ル(至)、(至)を九て搬送チェーン迅)を回動させる
油圧シリング(至)を作動させる電磁パルプに、またサ
ーボモータ輔をサーボモータ韓に置きかえることによっ
て実現される。 脱穀装置入口部に設けた殻稈検出セン
サ■は、穀稈が搬送状JIKあることを検出するもので
、えて搬送チェーン部(6)に設けてもよい。
As shown in Fig. 4, the automatic handling depth adjustment device is a threshing device (
7), an M sensor (b) and an H sensor (
) is installed to adjust the insertion length of the husk transported to the entrance section (8) by the vertical conveyance chain (6) (to adjust the length of insertion into the threshing device (7) in A). If it is detected by the M sensor, it indicates a deep handling condition, and if it is not detected by the M sensor, it indicates a shallow handling condition. Therefore, for deep handling, the vertical conveyance chain (6) is rotated in the direction of the arrow (a), and for shallow handling, the vertical conveyance chain (6) is rotated in the direction of the arrow (a), so that the tip of the head is connected to the H sensor. Adjust so that it is between M sen.
When the H sensor (2) is OFF and the M sensor (M sensor) is ON, that is, when the tip is between the H sensor and the M sensor, the vertical conveyance chain (6) is not rotated. That is, M sensor (
The area C) between C) and H sensor (H) is a dead zone,
If the operating frequency of the M sensor is too high when the H sensor is used, there is a risk of sea hunting.
It is necessary to move the sensor in the direction of widening the dead zone, that is, in the direction of the arrow. In this case, as shown in Fig. 5, a screw roller (to) is screwed into the holder of the H sensor, and this screw roller is rotated by a servo motor to move the H sensor ■ in the direction of the arrow. It's okay. The servo motor is driven by H sensor ■ and M
This is done when the number of times the sensor is activated is integrated and the integral value (frequency) per unit time j is greater than or equal to - or below a certain level. In this case, in the circuit shown in the second diagram, the outputs from the comparators (2) and (to) are replaced with the signals from the H sensor and the M sensor, and the coils (to) and (to) are replaced with signals from the H sensor and the M sensor. This is achieved by replacing the servo motor with an electromagnetic pulp that operates the hydraulic cylinder that rotates the conveyor chain, and by replacing the servo motor with a servo motor. The culm detection sensor (2) provided at the inlet of the threshing device detects whether the grain culm is in the conveyance state, and may be provided in the conveyance chain section (6).

更に、本発明を、扱胴の負荷に応じて車速を制御する装
置に適用し九場合について説明する。
Further, nine cases will be described in which the present invention is applied to a device for controlling vehicle speed according to the load on a handling cylinder.

通常の車速制御は、扱胴の負荷が増大して回転数が一定
値以下になったときには、車速を低下させて扱胴への穀
稈の供給量を減少させ、負荷の低下を図ることによシ、
三番ロスの減少、エンジンの燃費の向上等を達成するも
のである。 従って予め定められた扱胴回転数の上下限
の間が不感帯である。 このような不感帯の幅を作動頻
度に応じて変化させるための回路としては、第2図にお
いてボテンシミメータ(至)を省略し、比較器(至)及
び(至)に扱胴回転数に応じた電圧レベルの信号を投入
すると共に、コイル(至)及び(支)を変速レバーの位
置を変えるソレノイドや、サーボモータ等と置き換える
ことによシ夾現される。
Normal vehicle speed control is designed to reduce the load by reducing the vehicle speed and reducing the amount of grain culm supplied to the handling drum when the load on the handling drum increases and the rotational speed falls below a certain value. Yosi,
This achieves reduction of third-line loss and improvement of engine fuel efficiency. Therefore, the dead zone is between the predetermined upper and lower limits of the rotation speed of the handling cylinder. As a circuit for changing the width of such a dead zone according to the operating frequency, the potentiometer (to) is omitted in Fig. 2, and the comparator (to) and (to) are used according to the rotation speed of the handling cylinder. This can be achieved by inputting a signal with a certain voltage level and replacing the coil (end) and (support) with a solenoid, servo motor, etc. that changes the position of the speed change lever.

更にまた本発明は、トラクタや田植機の自動操向装置等
にも適用可能であることは言うまでもないO 以上述べた実施例においては、自動扱深さ関節の場合を
除いて、不感帯を上限及び下限の両方の方向へ拡大させ
る場合について述べたが、上限と下限を別々に制御する
ことによって精度の向上を図ってもよい。 例えは、第
2図示の例では、比較器−及び(至)の基準電圧を定め
る抵抗を成立に割御しうる可変抵抗となすと共に、それ
ぞれ別個のサーボモータによって抵抗sit変化させ、
各サーボモータを各比較器−又は−からの信号の積分値
によって別個に作動させることも考えられる。
Furthermore, it goes without saying that the present invention is also applicable to automatic steering devices for tractors and rice transplanters. Although the case where the lower limit is expanded in both directions has been described, the accuracy may be improved by controlling the upper limit and the lower limit separately. For example, in the example shown in the second figure, the resistances that determine the reference voltages of the comparators and (to) are made variable resistances that can be controlled depending on the resistance, and the resistances are varied by separate servo motors.
It is also conceivable to actuate each servomotor separately with the integral value of the signal from each comparator.

本発明は、以上述べ九制御すべき、0操センサの回動角
度、ハイドセンサの回動角度、穂先の挿入長、扱胴の回
転数等の物理量が所定の不感帯の範囲から逸脱した時、
同物理量を不感帯の範囲内に戻すように自動制御しつつ
自走するコンバイン等の農業機械において、上記物理量
が不感帯から逸脱する頻度を計数し、ζOs度に応じて
不感帯の範囲を変化させる如くなしたものであるから、
自動制御装置の作動頻度が大きい場合にもハンチング等
を生じることがなく、正常頻度の場合には、頻度に応じ
て不感帯の−が狭くなるので、制御精度が着るしく向上
する。
The present invention is capable of controlling, when the physical quantities to be controlled as described above, such as the rotation angle of the zero operation sensor, the rotation angle of the hide sensor, the insertion length of the tip, and the rotation speed of the handling cylinder, deviate from the range of a predetermined dead zone.
In an agricultural machine such as a combine harvester that runs on its own while automatically controlling the physical quantity to return it within the dead zone range, the frequency at which the physical quantity deviates from the dead zone is counted, and the range of the dead zone is changed according to the degree of ζOs. Because it was done,
Hunting etc. do not occur even when the automatic control device operates at a high frequency, and when the frequency is normal, the dead zone - becomes narrower depending on the frequency, so the control accuracy is improved considerably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の基礎となる農業機械の一例であるコ
ンバイン全体Ofl+視図、落2図は、本発明の一実施
例である自勅操肉装置の回路図、第3図は、同装置にお
ける分草板と白縁センサの関係を示す概略正面図、51
4図は、脱穀装置の概略正面図、第5図は、扱深さ調節
に用いるH%Mセンサの概略正面図である。 (符号の説明) 19・・・検出回路(ポテンショメータ)、20・・・
可変抵抗、 R2・・・可変抵抗、 25.27・・・
比較器、33・・・積分回路、 36.37・・・左行
、右行コイル、M・・・サーボモータ。
Fig. 1 is an Ofl+ view of the entire combine, which is an example of the agricultural machine that is the basis of the present invention, Fig. 2 is a circuit diagram of an automatic meat handling device which is an embodiment of the present invention, and Fig. 3 is a Schematic front view showing the relationship between the grass dividing board and the white edge sensor in the same device, 51
FIG. 4 is a schematic front view of the threshing device, and FIG. 5 is a schematic front view of the H%M sensor used for adjusting the handling depth. (Explanation of symbols) 19...detection circuit (potentiometer), 20...
Variable resistance, R2... Variable resistance, 25.27...
Comparator, 33... Integral circuit, 36.37... Left row, right row coil, M... Servo motor.

Claims (1)

【特許請求の範囲】[Claims] 1、制御すべき物理量が所定の不感帯の範囲から逸脱し
た時、同物理量を不感帯の範囲内に戻すように自動−一
しつつ自走する農業機械において、上記物塩量が不感帯
から逸脱する頻度を計数し、この頻度に応じて不感帯の
範囲を変化させる如くなしたことを特徴とする農業機械
の自動制御装置。
1. When a physical quantity to be controlled deviates from a predetermined dead band range, the physical quantity is automatically returned to within the dead band range.In an agricultural machine that runs on its own, the frequency at which the amount of salt mentioned above deviates from the dead band range. An automatic control device for agricultural machinery, characterized in that the range of the dead zone is changed according to the frequency of the dead zone.
JP19895281A 1981-12-09 1981-12-09 Automatic controller of agricultural machine Pending JPS5899801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19895281A JPS5899801A (en) 1981-12-09 1981-12-09 Automatic controller of agricultural machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19895281A JPS5899801A (en) 1981-12-09 1981-12-09 Automatic controller of agricultural machine

Publications (1)

Publication Number Publication Date
JPS5899801A true JPS5899801A (en) 1983-06-14

Family

ID=16399667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19895281A Pending JPS5899801A (en) 1981-12-09 1981-12-09 Automatic controller of agricultural machine

Country Status (1)

Country Link
JP (1) JPS5899801A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232019A (en) * 1983-06-13 1984-12-26 株式会社クボタ Reaming harvester
JPS6323935U (en) * 1986-07-29 1988-02-17
JPS6323934U (en) * 1986-07-29 1988-02-17
JP2006080520A (en) * 2004-09-09 2006-03-23 Eldis Ehmki & Schmid Ohg High-power resistor
JP2006167924A (en) * 2004-12-10 2006-06-29 Konica Minolta Holdings Inc Inkjet printer, feedback control method of recording head in inkjet printer, program and storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124908A (en) * 1980-03-05 1981-09-30 Mitsubishi Electric Corp Set value control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124908A (en) * 1980-03-05 1981-09-30 Mitsubishi Electric Corp Set value control device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232019A (en) * 1983-06-13 1984-12-26 株式会社クボタ Reaming harvester
JPH0363330B2 (en) * 1983-06-13 1991-09-30 Kubota Kk
JPS6323935U (en) * 1986-07-29 1988-02-17
JPS6323934U (en) * 1986-07-29 1988-02-17
JPH0445473Y2 (en) * 1986-07-29 1992-10-26
JPH0510578Y2 (en) * 1986-07-29 1993-03-16
JP2006080520A (en) * 2004-09-09 2006-03-23 Eldis Ehmki & Schmid Ohg High-power resistor
JP2006167924A (en) * 2004-12-10 2006-06-29 Konica Minolta Holdings Inc Inkjet printer, feedback control method of recording head in inkjet printer, program and storage medium

Similar Documents

Publication Publication Date Title
US10420284B2 (en) Slip controller for side conveyors of a draper harvesting head
US20160366821A1 (en) Crop mat measurement through stereo imaging
JPS5899801A (en) Automatic controller of agricultural machine
US11812695B2 (en) Header height control for combine harvester
US7483780B2 (en) Apparatus and method to calibrate the reel of an agricultural windrower
EP0381073B1 (en) Automatic guidance apparatus for a vehicule
JP2547504Y2 (en) Combine direction control device
JP2913097B2 (en) Steering control device
JP2583587B2 (en) Steering control device for automatic traveling machine
JP2006121952A (en) Combine harvester
JP2006121952A5 (en)
JP3089330B2 (en) Combine speed controller
JPH0160203B2 (en)
JP3518924B2 (en) Combine secondmore lift controller
JPH0117975Y2 (en)
JPH11346506A (en) Direction controlling apparatus for combine
JPS6345134Y2 (en)
JPS6337768Y2 (en)
JP3092306B2 (en) Driving direction control device in combine
JPS61128806A (en) Steering controller of reaping harvester
JPH0659123B2 (en) Turn control device of reaper harvester
JPH0517804B2 (en)
JPS6219011A (en) Thrust-in preventing apparatus in combine
JPS6348488B2 (en)
JPH11346525A (en) Combine harvester