JPH0510578Y2 - - Google Patents

Info

Publication number
JPH0510578Y2
JPH0510578Y2 JP1986117206U JP11720686U JPH0510578Y2 JP H0510578 Y2 JPH0510578 Y2 JP H0510578Y2 JP 1986117206 U JP1986117206 U JP 1986117206U JP 11720686 U JP11720686 U JP 11720686U JP H0510578 Y2 JPH0510578 Y2 JP H0510578Y2
Authority
JP
Japan
Prior art keywords
culm
culm length
grain
length
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986117206U
Other languages
Japanese (ja)
Other versions
JPS6323934U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986117206U priority Critical patent/JPH0510578Y2/ja
Publication of JPS6323934U publication Critical patent/JPS6323934U/ja
Application granted granted Critical
Publication of JPH0510578Y2 publication Critical patent/JPH0510578Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Harvester Elements (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は脱穀部に送給される穀稈の扱深さを、
その稈長の検出結果に基づいて調節する収穫機の
扱深さ自動調節装置に関する。
[Detailed description of the invention] [Field of industrial application] The present invention improves the handling depth of the grain culm fed to the threshing section.
The present invention relates to an automatic handling depth adjustment device for a harvester that adjusts the handling depth based on the detection result of the culm length.

〔従来技術〕[Prior art]

収穫機における扱深さ自動調節装置は、短稈を
検出するための短稈センサと長稈を検出するため
の長稈センサとを穀稈の送給方向と直交する方向
に並設してなる長稈センサを、脱穀部の入口側に
設け、該稈長センサが短稈を検出した場合には縦
搬送チエインを深扱ぎ側へ、また長稈を検出した
場合には浅扱ぎ側へ夫々傾動させて、扱深さを自
動調節する。
The automatic handling depth adjustment device in a harvesting machine includes a short culm sensor for detecting short culms and a long culm sensor for detecting long culms, which are arranged side by side in a direction perpendicular to the feeding direction of grain culms. A long culm sensor is installed on the entrance side of the threshing section, and when the culm length sensor detects a short culm, the vertical conveyance chain is moved to the deep handling side, and when a long culm is detected, it is moved to the shallow handling side. Automatically adjusts handling depth by tilting.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

このような従来の扱深さ自動調節装置において
は、脱穀部に送給される穀稈中に短稈と長稈とが
混在し、その稈長が大きく変動する場合には例え
ば長稈を検出してその長稈に対する扱深さ調節動
作が行われている間に短稈が検出された場合に、
前記長稈に対する扱深さ調節が不十分なままに、
前記短稈に対する扱深さ調節動作が開始されてし
まうことがあり、そこで稈長の大きい変動に対応
できるよう扱深さ調節の速度を大きくすると、稈
長変動が小さい場合に扱深さ調節動作が過度に行
われてしまうという難点があつた。
In such a conventional automatic handling depth adjustment device, if short culms and long culms are mixed in the grain culms fed to the threshing section, and the culm length fluctuates greatly, for example, the long culms are detected. If a short culm is detected while the handling depth adjustment operation is being performed for that long culm,
The treatment depth for the long culm was not fully adjusted,
The handling depth adjustment operation may be started for the short culm, and if the speed of the handling depth adjustment is increased to cope with large fluctuations in the culm length, the handling depth adjustment operation may be excessive when the culm length fluctuation is small. The problem was that it was carried out on the same day.

本考案は斯かる事情に鑑みてなされたものであ
り、脱穀部に送給される穀稈の稈長の変動の大小
に拘らず、常に適正な扱深さで脱穀処理が行える
扱深さ自動調節装置を提供することを目的とす
る。
The present invention was developed in view of the above circumstances, and is an automatic handling depth adjustment system that allows threshing to be performed at an appropriate handling depth at all times, regardless of the magnitude of fluctuations in the culm length of grain culms fed to the threshing section. The purpose is to provide equipment.

〔問題点を解決するための手段〕[Means for solving problems]

本考案に係る収穫機の扱深さ自動調節装置は脱
穀部に送給される穀稈の稈長を検出し、その検出
結果に基づいて扱深さを自動調節する収穫機の扱
深さ自動調節装置において、イメージセンサを用
いた稈長センサと、該稈長センサの画像信号を2
値化して得た2値画像データに基づき背景部と穀
稈部との境界位置を検出して稈長及びその稈長平
均値を算出し、これらに基づいて稈長の標準偏差
を算出する手段と、これに基づいて、扱深さ調節
の速度を変更する手段とを具備することを特徴と
する。
The automatic handling depth adjustment device for a harvester according to the present invention detects the culm length of the grain culm fed to the threshing section, and automatically adjusts the handling depth based on the detection result. In the device, a culm length sensor using an image sensor and an image signal of the culm length sensor are
A means for detecting the boundary position between the background part and the grain culm based on the binary image data obtained by converting it into a value, calculating the culm length and the average value of the culm length, and calculating the standard deviation of the culm length based on these; and means for changing the speed of handling depth adjustment based on the processing depth.

〔実施例〕〔Example〕

以下本考案をその実施例を示す図面に基づいて
詳述する。第1図は、本考案に係る扱深さ自動調
節装置(以下本案装置という)を備えた収穫機の
外観斜視図であり、第2図は縦搬送チエインの駆
動機構の略示正面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on drawings showing embodiments thereof. FIG. 1 is an external perspective view of a harvesting machine equipped with an automatic handling depth adjustment device according to the present invention (hereinafter referred to as the proposed device), and FIG. 2 is a schematic front view of the drive mechanism of the vertical conveyance chain. .

図において1は、脱穀部2を搭載してなる本体
部であり、該本体部1の前側には刈刃3、穀稈引
起装置4等にて構成された刈取部5が昇降自在に
取付けられている。該刈取部5の後側には、刈取
られた穀稈を後上方へ搬送する縦搬送チエイン1
0が、その終端部を、脱穀部2の扱口に沿つて延
設された穀稈挟扼移送装置11の始端部に臨ませ
て設けられている。
In the figure, reference numeral 1 denotes a main body section equipped with a threshing section 2, and a reaping section 5 composed of a cutting blade 3, a grain culm lifting device 4, etc. is attached to the front side of the main body section 1 so as to be movable up and down. ing. On the rear side of the reaping section 5, there is a vertical conveyance chain 1 for conveying the harvested grain culms rearward and upward.
0 is provided with its terminal end facing the starting end of the grain culm pincher transfer device 11 extending along the handling opening of the threshing section 2.

そして、刈取部5にて刈取られた穀稈は、図示
しない下部搬送装置を経て縦搬送チエイン10に
て脱穀部2の前部まで搬送されて穀稈挟扼移送装
置11に受継がれ、該装置11にて、その穂先側
を扱口から脱穀部2の扱室2a内に挿入した状態
で移送される間に、扱室2aに設けた扱胴2bに
て脱穀処理されるようになつている。
The grain culm harvested by the reaping section 5 is then conveyed to the front part of the threshing section 2 by the vertical conveyance chain 10 via a lower conveyance device (not shown), and then transferred to the grain culm pinching transfer device 11. In the device 11, while being transferred with the tip side inserted into the handling chamber 2a of the threshing section 2 through the handling port, the grain is threshed in the handling cylinder 2b provided in the handling chamber 2a. There is.

前記縦搬送チエイン10は、第2図に示す如
く、本体部1の前部に立設した支柱12の上端部
に、その左側(第2図においては右側)中央部を
回動自在に枢支して取付けられており、その右側
下部に突設されたブラケツト10aには、駆動モ
ータ13の回転に応じて進退する駆動アーム14
の先端部が回動自在に枢支されている。
As shown in FIG. 2, the vertical conveyance chain 10 has its left (right side in FIG. 2) central portion rotatably supported on the upper end of a column 12 erected at the front of the main body 1. The bracket 10a protruding from the lower right side of the bracket 10a has a drive arm 14 that moves forward and backward according to the rotation of the drive motor 13.
The tip is rotatably supported.

而して駆動モータ13が正転(又は逆転)し
て、駆動アーム14が進出(又は退入)した場合
には、縦搬送チエイン10は支柱12の枢支点を
枢軸として、前方より見て反時計廻り(又は時計
廻り)に傾動されるようになつている。
When the drive motor 13 rotates forward (or reversely) and the drive arm 14 advances (or retracts), the vertical conveyance chain 10 pivots around the pivot point of the support column 12 and rotates in reverse when viewed from the front. It is designed to be tilted clockwise (or clockwise).

そして、縦搬送チエイン10が反時計廻り(又
は時計廻り)に傾動されると、該チエイン10に
て搬送された穀稈は、穀稈挟扼移送装置11に受
継がれる際、該装置11にて、より株本側(又は
穂先側)を挟扼されることになり、扱室2a内へ
の挿入長が長く(又は短く)なつて、深扱ぎ(又
は浅扱ぎ)状態にて脱穀処理されることになる。
Then, when the vertical conveyance chain 10 is tilted counterclockwise (or clockwise), the grain stalks conveyed by the chain 10 are transferred to the grain stalk pinching transfer device 11. As a result, the main side of the stock (or the tip side) becomes more pinched, and the length of insertion into the handling chamber 2a becomes longer (or shorter), making it possible to thresh in a deep (or shallow) condition. It will be processed.

第3図は収穫機前部の略示平面図、第4図は本
案装置の制御系のブロツク図である。イメージセ
ンサを用いてなる稈長センサ6は、縦搬送チエイ
ン10にて搬送される穀稈をその一部に含み、該
穀稈の搬送方向と平行な、第3図に2点鎖線にて
示す如き矩形の撮像視野A内を撮像すべく、脱穀
部2の前部にやや前下方に向けて取付けられてい
る。
FIG. 3 is a schematic plan view of the front part of the harvester, and FIG. 4 is a block diagram of the control system of the proposed device. The culm length sensor 6 using an image sensor includes a part of the grain culm transported by the vertical transport chain 10, and is parallel to the transport direction of the grain culm, as shown by the two-dot chain line in FIG. In order to image the inside of the rectangular imaging field A, it is attached to the front part of the threshing section 2 so as to face slightly forward and downward.

前記稈長センサ6は、例えばn×mの画素数を
有するCCD(Charge Coupled Device、電荷結合
素子)60及び該CCD60の感光面上に対象物
の像を結像させるための光学レンズ61等にて構
成されており、その出力信号は、A/D変換器7
0と、ビデオメモリ71a,71bと、演算制御
部72とからなる画像信号処理部7に与えられて
いる。
The culm length sensor 6 includes, for example, a CCD (Charge Coupled Device) 60 having n×m pixels and an optical lens 61 for forming an image of an object on the photosensitive surface of the CCD 60. The output signal is sent to the A/D converter 7.
0, video memories 71a and 71b, and an arithmetic control section 72.

CCD60は、光学レンズ61を通過してその
各画素上に照射される光の強さ及び照射時間に応
じた電荷を蓄積しており、前記演算制御部72か
ら所定の時間間隔にてクロツクパルスが与えられ
る都度、各画素における電荷に応じたレベルを有
する画像信号を、撮像視野Aにおける穀稈の搬送
方向を主走査方向とする順に画像信号処理部7の
A/D変換器70に出力する。
The CCD 60 accumulates charges corresponding to the intensity and irradiation time of light that passes through the optical lens 61 and irradiates each pixel, and receives clock pulses from the calculation control section 72 at predetermined time intervals. Each time, an image signal having a level corresponding to the charge in each pixel is outputted to the A/D converter 70 of the image signal processing unit 7 in the order in which the transport direction of the grain culm in the imaging field of view A is the main scanning direction.

この画像信号は、A/D変換器70において、
所定のしきい値を基準として明暗2値化された
後、前記クロツクパルスに対応してビデオメモリ
71aに与えられ、これに明部を表す“1”を暗
部を表す“0”とからなる2値画像データとして
格納される。ビデオメモリ71aに1フレームの
格納を終えると、次なるクロツクパルスに対応し
てビデオメモリ71bに同様に格納され、以後前
記2値画像データはビデオメモリ71a,71b
に交互に格納される。
This image signal is sent to the A/D converter 70.
After being converted into bright and dark binarized data based on a predetermined threshold value, it is applied to the video memory 71a in response to the clock pulse, and a binary value consisting of "1" representing a bright area and "0" representing a dark area is added to the video memory 71a. Stored as image data. When one frame has been stored in the video memory 71a, it is similarly stored in the video memory 71b in response to the next clock pulse, and thereafter the binary image data is stored in the video memories 71a, 71b.
are stored alternately.

マイクロコンピユータを用いてなる演算制御部
72は、ビデオメモリ71a又は同71bから画
像データを読込み、後述する如く、この画像デー
タから撮像視野A内の穀稈の稈長を算出するとと
もに、該稈長の変動を稈長算出値の標準偏差とし
て算出し、稈長の算出値に応じてハイ又はローレ
ベルとなり、標準偏差の算出値に応じてそのデユ
ーテイー比が変更されるパルス信号V1,V2を、
縦搬送チエイン10を前述の如く傾動させる駆動
モータ13の駆動回路8に出力する。
The arithmetic control unit 72 using a microcomputer reads image data from the video memory 71a or 71b, and calculates the culm length of the grain culm within the imaging field of view A from this image data, as will be described later. is calculated as the standard deviation of the calculated value of the culm length, and the pulse signals V 1 and V 2 have a high or low level depending on the calculated value of the culm length, and the duty ratio thereof is changed according to the calculated value of the standard deviation,
The signal is output to the drive circuit 8 of the drive motor 13 that tilts the vertical conveyance chain 10 as described above.

モータ駆動回路8は、電磁リレー81,82及
びスイツチングトランジスタ83,84を第4図
に示す如く接続して構成されており、前記パルス
信号V1及び同V2は、スイツチングトランジスタ
83及び同84に夫々与えられている。そしてパ
ルス信号V1(又は同V2)が与えられると、スイツ
チングトランジスタ83(又は同84)が断続的
に動作して、電磁リレー81(又は同82)が励
磁、非励磁を繰り返し、電磁リレー81(又は同
82)が励磁されている間だけ駆動モータ13が
電源に接続され、該モータ13が逆転(又は正
転)し、縦搬送チエイン10が浅扱ぎ(又は深扱
ぎ)側に断続的に傾動される。
The motor drive circuit 8 is constructed by connecting electromagnetic relays 81, 82 and switching transistors 83, 84 as shown in FIG . 84 respectively. When the pulse signal V 1 (or the same V 2 ) is applied, the switching transistor 83 (or the same 84) operates intermittently, and the electromagnetic relay 81 (or the same 82) repeats energization and de-energization, and the electromagnetic The drive motor 13 is connected to the power source only while the relay 81 (or 82) is energized, the motor 13 rotates in reverse (or forward), and the vertical conveyance chain 10 is placed on the shallow handling (or deep handling) side. It is tilted intermittently.

さて、以上の如く構成された本案装置の動作に
ついて説明する。収穫機は刈取部5を動作させつ
つ圃面上を走行し、該圃面に植立する穀稈を刈刃
3にて刈取る。刈取られた穀稈は、縦搬送チエイ
ン10にて、脱穀部2の前部まで搬送された後、
穀稈挟扼移送装置11に受継がれ、該装置11に
てその穂先側を扱室2a内に挿入された状態で後
方に移送される間に扱室2aに内設した扱胴2b
にて脱穀処理される。
Now, the operation of the present device configured as above will be explained. The harvester travels over the field while operating the reaping section 5, and uses the cutting blade 3 to harvest the grain culms planted on the field. After the harvested grain culms are conveyed to the front part of the threshing section 2 by the vertical conveyance chain 10,
The handling barrel 2b is transferred to the handling chamber 2a while being transferred to the grain handling chamber 2a with the tip side inserted into the handling chamber 2a.
The grain is threshed at

稈長センサ6は、この間、縦搬送チエイン10
にて搬送される穀稈を、その撮像視野A内におい
て撮像し、その撮像結果から得られる画像信号
を、画像信号処理部7に出力している。
During this period, the culm length sensor 6
The grain culm being transported is imaged within the imaging field of view A, and an image signal obtained from the imaging result is output to the image signal processing section 7.

第5図及び第6図は稈長センサ6の撮像結果を
示す模式図である。これらの図において、ハツチ
ングを施して示す部分は、穀稈の存在する部分で
あり、その他の部分は穀稈とともに撮像された機
体の一部等の背景部である。稈長センサ6にて撮
像視野A内を撮像した場合に、穀稈の存在する部
分は背景に比較して明るく撮像されるため、稈長
センサ6からの画像信号を、A/D変換器70に
て明暗2値化すると、穀稈部は明部を表す“1”
に、背景部“0”に夫々2値化され、ビデオメモ
リ71a又は同71bに格納される。
5 and 6 are schematic diagrams showing the imaging results of the culm length sensor 6. FIG. In these figures, the hatched portion is the portion where the grain culm is present, and the other portions are background portions such as a part of the aircraft body imaged together with the grain culm. When the culm length sensor 6 captures an image within the imaging field of view A, the part where the grain culm is present is imaged brighter than the background. When converted into light/dark binarization, the grain culm is “1” representing the bright part.
Then, the background part is binarized to "0" and stored in the video memory 71a or 71b.

第7図は演算制御部72の制御内容を示すフロ
ーチヤートである。演算制御部72は、ビデオメ
モリ71a又は同71bに格納されている2値画
像データを読込み、これらを穀稈の搬送方向と直
交する方向、即ち第5図、第6図における上下方
向のm本の副走査線に沿つて夫々調べ、画像デー
タが“0”から“1”に遷移する位置、即ち背景
部と穀稈部との境界の位置を検出することによ
り、各副走査線上における稈長li(i=1…m)を
算出する。例えば、第5図に示す如くiライン目
の副走査線上を上側(穂先側)から下側(株本
側)に向かつて調べた場合に、副走査線上に並ぶ
CCD60のn個の内、j番目の画素に相当する
位置において、前記遷移が生じたとすると、該副
走査線上における穀稈liは次式によつて算出され
る。
FIG. 7 is a flowchart showing the control contents of the arithmetic control section 72. The arithmetic control unit 72 reads the binary image data stored in the video memory 71a or 71b, and converts the data into m images in a direction perpendicular to the conveying direction of the grain culms, that is, in the vertical direction in FIGS. 5 and 6. The culm length l on each sub-scanning line is determined by detecting the position where the image data transitions from "0" to "1", that is, the position of the boundary between the background and the grain culm. Calculate i (i=1...m). For example, when examining the i-th sub-scanning line from the upper side (head side) to the lower side (stock side) as shown in Figure 5, if the
Assuming that the transition occurs at a position corresponding to the j-th pixel among n pixels of the CCD 60, the grain culm l i on the sub-scanning line is calculated by the following equation.

li=m−j …(1) 次いで演算制御部72は、撮像視野A全域にわ
たる、前記稈長liの平均値と、撮像視野Aの限
定された範囲、例えば、最終mライン目から前方
k本の副走査線上における稈長liの平均値として
代表稈長lとを夫々次式により算出する。
l i =m−j (1) Next, the calculation control unit 72 calculates the average value of the culm length l i over the entire imaging field of view A and the average value of the culm length l i over the entire imaging field of view A, and the average value of the culm length l i over the entire imaging field of view A, for example, the forward k The representative culm length l is calculated as the average value of the culm length l i on the sub-scanning line of the book using the following formula.

=1/mni=1 li …(2) l=1/kni=m-(k+1) li …(3) その後演算制御部72は次式(1)にて算出される
各稈長liと、式(2)にて算出される稈長平均値と
により、撮像視野A内における稈長の標準偏差S
を次式により算出する。
=1/m ni=1 l i …(2) l=1/k ni=m-(k+1) l i …(3) After that, the arithmetic control unit 72 uses the following equation (1) The standard deviation S of the culm length within the imaging field of view A is determined by each calculated culm length l i and the average culm length calculated using equation (2).
is calculated using the following formula.

このようにして求めた標準偏差Sの値は、稈長
センサ6にて撮像された穀稈の稈長の変動を示
し、第5図に示す如く撮像視野A全域にわたつて
稈長の変動が小さい場合には小さく、逆に第6図
に示す如く稈長の変動が大きい場合には大きくな
る。式(4)により標準偏差Sを算出した後、演算制
御部72は、これを予め設定された標準偏差の上
限値Snax及び同下限値Snioと比較し、SがSnax
上である場合にはS=Snaxとし、またSがSnio
下である場合には、S=Snioとし、更にSがSnax
よりも小であり、且つSnioよりも大である場合に
は、式(4)にて求めた標準偏差Sの値をそのまま用
いて、これに所定の定数Cを乗じて前記パルス信
号V1,V2に与えるべきデユーテイ比Dを算出す
る。
The value of the standard deviation S obtained in this way indicates the fluctuation in the culm length of the grain culm imaged by the culm length sensor 6, and when the fluctuation in the culm length is small over the entire imaging field A as shown in FIG. is small, and conversely becomes large when the variation in culm length is large as shown in FIG. After calculating the standard deviation S using formula (4), the arithmetic control unit 72 compares it with the preset upper limit value S nax and lower limit value S nio of the standard deviation, and if S is greater than or equal to S nax . If S is less than or equal to S nio , S = S nio , and S is S nax.
If it is smaller than S nio and larger than S nio , the value of standard deviation S obtained by equation (4) is used as is, and it is multiplied by a predetermined constant C to obtain the pulse signal V 1 , V 2 is calculated.

次いで演算制御部72は先に式(3)にて算出した
代表稈長lを予め設定された稈長の上限値lnax
び同下限値lnioと比較し、lがlnax以上である場
合、換言すれば、稈長センサ6の撮像結果から算
出される稈長が、lnaxにて代表される稈長よりも
長い場合には、縦搬送チエイン10を浅扱ぎ側し
て傾動せしめるべく先に算出したデユーテイー比
Dを有するパルス信号V1を、一方lがlnio以下で
ある場合、換言すれば稈長センサ6の撮像結果か
ら算出される稈長がlnioにて代表される稈長より
も短い場合には縦搬送チエイン10を深扱ぎ側に
傾動せしめるべく、同様のパルス信号V2をモー
タ駆動回路8に出力する。更にlがlnioよりも大
であり、且つlnaxよりも小である場合、即ち稈長
センサ6の撮像結果から算出される稈長が、適正
な範囲内にある場合には、駆動モータ13が回転
されないよう、パルス信号V1及び同V2の出力を
停止する。その結果、縦搬送チエイン10にて脱
穀部2に送給される穀稈は、稈長センサ6の撮像
結果から、式(3)にて算出される前記代表稈長l
が、稈長の上限値lnaxと同下限値lnioとの間の値と
なるように、その扱深さを自動調節されることに
なる。
Next, the arithmetic control unit 72 compares the representative culm length l previously calculated using equation (3) with the preset upper limit l nax and lower limit l nio of the culm length, and if l is greater than or equal to l nax , in other words Then, if the culm length calculated from the imaging result of the culm length sensor 6 is longer than the culm length represented by l nax , the previously calculated duty is adjusted to tilt the vertical conveyance chain 10 to the shallow handling side. A pulse signal V 1 having a ratio D is transmitted vertically when l is less than l nio , in other words, when the culm length calculated from the imaging result of the culm length sensor 6 is shorter than the culm length represented by l nio . A similar pulse signal V 2 is output to the motor drive circuit 8 in order to tilt the conveyance chain 10 toward the deep handling side. Further, when l is larger than l nio and smaller than l nax , that is, when the culm length calculated from the imaging result of the culm length sensor 6 is within an appropriate range, the drive motor 13 rotates. To prevent this, the output of pulse signals V1 and V2 is stopped. As a result, the grain culm fed to the threshing section 2 in the vertical conveyance chain 10 has the representative culm length l calculated by equation (3) from the imaging result of the culm length sensor 6.
The depth of treatment is automatically adjusted so that the value falls between the upper limit l nax and the lower limit l nio of culm length.

この時、駆動モータ13の単位時間当たりの回
動量、換言すれば縦搬送チエイン10の単位時間
当たりの傾動量は、前記パルス信号V1又は同V2
のデユーテイー比Dの大小に応じて増減され、該
デユーテイー比Dは、前述の如く式(4)にて算出さ
れる標準偏差Sの算出結果に応じて、Sが大なる
程大きくなるので、稈長の変動が小さい第5図に
示す撮像結果と、稈長の変動が大きい第6図に示
す撮像結果とから、式(3)により夫々算出された代
表稈長lが相等しい場合においても、式(4)により
夫々算出される標準偏差Sは、第6図の場合の方
が当然大となり、その結果パルス信号V1又は同
V2のデユーテイー比Dも第6図の場合の方が大
となるため、縦搬送チエイン10はより短時間に
て所定の位置まで傾動されることになる。即ち、
稈長センサ6にて撮像される撮像視野A内の稈長
の変動が大きい場合には、これが小さい場合と比
較して、扱深さ調節動作がより迅速に行われ、稈
長の変動に忠実に追随する扱深さ調節が可能とな
る。
At this time, the amount of rotation of the drive motor 13 per unit time, in other words, the amount of tilting of the vertical conveyance chain 10 per unit time is determined by the pulse signal V 1 or the pulse signal V 2 .
The duty ratio D is increased or decreased depending on the magnitude of the duty ratio D, and the duty ratio D becomes larger as S increases according to the calculation result of the standard deviation S calculated by equation (4) as described above. Even if the representative culm lengths l calculated by Equation (3) are equal from the imaging results shown in FIG. 5 where the fluctuations in culm length are small and the imaging results shown in FIG. 6 where the fluctuations in culm length are large, the equation (4 ) is naturally larger in the case of Fig. 6, and as a result, the pulse signal V 1 or the same
Since the duty ratio D of V2 is also larger in the case of FIG. 6, the vertical conveyance chain 10 can be tilted to a predetermined position in a shorter time. That is,
When the fluctuation of the culm length within the imaging field of view A captured by the culm length sensor 6 is large, the handling depth adjustment operation is performed more quickly and faithfully follows the fluctuation of the culm length compared to when the fluctuation is small. The handling depth can be adjusted.

なお、代表稈長のlの算出手順は、本実施例に
示す手順に限らず、例えば所定の副走査線上にお
ける稈長liを代表稈長lとしてもよく、また稈長
平均値及び標準偏差Sを算出する際に本実施例
においては、式(2)及び式(4)に示す如く撮像視野A
全域にわたる稈長の平均値及び標準偏差としてこ
れらの値を算出しているが、撮像視野A内の一部
の領域において算出してもよいことは言うまでも
ない。
Note that the procedure for calculating the representative culm length l is not limited to the procedure shown in this embodiment. For example, the culm length l i on a predetermined sub-scanning line may be used as the representative culm length l, and the culm length average value and standard deviation S may be calculated. In this embodiment, as shown in equations (2) and (4), the imaging field of view A
Although these values are calculated as the average value and standard deviation of the culm length over the entire area, it goes without saying that they may be calculated in a part of the area within the imaging field of view A.

更に、本実施例においては、稈長センサとして
2次元のイメージセンサを用いた場合について述
べたが、1次元のイメージセンサを、その長手方
向を穀稈の搬送方向と直交させて脱穀部2の前側
に設け、該センサにて穀稈を撮像するように構成
した稈長センサを用いてもよい。
Furthermore, in this embodiment, a case has been described in which a two-dimensional image sensor is used as the culm length sensor, but a one-dimensional image sensor is installed at the front side of the threshing section 2 with its longitudinal direction perpendicular to the grain culm conveying direction. A culm length sensor may be used, which is provided in the grain culm and configured to image the grain culm with the sensor.

〔効果〕〔effect〕

以上詳述した如く本案装置においては、脱穀部
に送給される穀稈をイメージセンサで構成された
稈長センサで捉え、該稈長センサの画像信号を2
値化して得た2値画像データに基づき背景部と穀
稈部との境界位置を検出して稈長及びその稈長平
均値を算出し、これらに基づいて稈長の標準偏差
を算出する手段と、該手段により求めた標準偏差
に基づいて扱深さ調節の速度を変更する手段とを
具備するから、稈長を精細に検出し得てこれから
求めた標準偏差に応じて扱深さを適正な調節速度
で変更し得るため、稈長に大きな変動があつても
扱深さ調節が遅れ、また逆に速過ぎる等の不都合
が解消され、円滑で扱残しのない高効率の脱穀処
理が可能となる等、本考案は優れた効果を奏する
ものである。
As detailed above, in the present device, the grain culm fed to the threshing section is captured by the culm length sensor composed of an image sensor, and the image signal of the culm length sensor is
Means for detecting the boundary position between the background part and the grain culm based on the binary image data obtained by digitization, calculating the culm length and the average value of the culm length, and calculating the standard deviation of the culm length based on these; Since the culm length is precisely detected and the handling depth is adjusted at an appropriate speed according to the standard deviation determined by the means, Since it can be changed, it eliminates the inconveniences such as delays in adjusting the handling depth even if there is a large change in culm length, or conversely, the adjustment of the handling depth being too fast. Ideas are highly effective.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本考案の一実施例を示すものであり、第
1図は本案装置を備えた収穫機の外観斜視図、第
2図は縦搬送チエイン駆動機構の略示正面図、第
3図は収穫機の前部の略示平面図、第4図は本案
装置の制御系のブロツク図、第5図及び第6図は
稈長センサの撮像結果を示す模式図、第7図は演
算制御部の制御内容を示すフローチヤートであ
る。 2……脱穀部、5……刈取部、6……稈長セン
サ、7……画像信号処理部、8……モータ駆動回
路、10……縦搬送チエイン、72……演算制御
部、A……撮像視野。
The drawings show one embodiment of the present invention, in which Fig. 1 is an external perspective view of a harvester equipped with the proposed device, Fig. 2 is a schematic front view of a vertical conveyance chain drive mechanism, and Fig. 3 is a harvesting machine. A schematic plan view of the front part of the machine, Figure 4 is a block diagram of the control system of the proposed device, Figures 5 and 6 are schematic diagrams showing the imaging results of the culm length sensor, and Figure 7 is the control of the arithmetic control section. This is a flowchart showing the contents. 2... Threshing section, 5... Reaping section, 6... Culm length sensor, 7... Image signal processing section, 8... Motor drive circuit, 10... Vertical conveyance chain, 72... Arithmetic control section, A... Imaging field of view.

Claims (1)

【実用新案登録請求の範囲】 脱穀部に送給される穀稈の稈長を検出し、その
検出結果に基づいて扱深さを自動調節する収穫機
の扱深さ自動調節装置において、 イメージセンサを用いた稈長センサと、 該稈長センサの画像信号を2値化して得た2値
画像データに基づき背景部と穀稈部との境界位置
を検出して稈長及びその稈長平均値を算出し、こ
れらに基づいて稈長の標準偏差を算出する手段
と、 これに基づいて、扱深さ調節の速度を変更する
手段と を具備することを特徴とする収穫機の扱深さ自動
調節装置。
[Scope of claim for utility model registration] An image sensor is used in an automatic handling depth adjustment device for a harvester that detects the culm length of grain culms fed to a threshing section and automatically adjusts the handling depth based on the detection result. Based on the culm length sensor used and the binary image data obtained by binarizing the image signal of the culm length sensor, the boundary position between the background part and the grain culm part is detected, the culm length and the average value of the culm length are calculated, and these are 1. An automatic handling depth adjustment device for a harvester, comprising means for calculating the standard deviation of culm length based on the culm length, and means for changing the speed of handling depth adjustment based on this.
JP1986117206U 1986-07-29 1986-07-29 Expired - Lifetime JPH0510578Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986117206U JPH0510578Y2 (en) 1986-07-29 1986-07-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986117206U JPH0510578Y2 (en) 1986-07-29 1986-07-29

Publications (2)

Publication Number Publication Date
JPS6323934U JPS6323934U (en) 1988-02-17
JPH0510578Y2 true JPH0510578Y2 (en) 1993-03-16

Family

ID=31002504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986117206U Expired - Lifetime JPH0510578Y2 (en) 1986-07-29 1986-07-29

Country Status (1)

Country Link
JP (1) JPH0510578Y2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55114220A (en) * 1979-02-26 1980-09-03 Iseki Agricult Mach Threshing depth control system of combined harvester
JPS585109A (en) * 1981-06-30 1983-01-12 株式会社クボタ Combine
JPS5899801A (en) * 1981-12-09 1983-06-14 Yanmar Agricult Equip Co Ltd Automatic controller of agricultural machine
JPS6219022A (en) * 1985-07-16 1987-01-27 井関農機株式会社 Automatic handling depth controller of combine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124432U (en) * 1983-02-08 1984-08-22 ヤンマー農機株式会社 Harvester handling depth adjustment device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55114220A (en) * 1979-02-26 1980-09-03 Iseki Agricult Mach Threshing depth control system of combined harvester
JPS585109A (en) * 1981-06-30 1983-01-12 株式会社クボタ Combine
JPS5899801A (en) * 1981-12-09 1983-06-14 Yanmar Agricult Equip Co Ltd Automatic controller of agricultural machine
JPS6219022A (en) * 1985-07-16 1987-01-27 井関農機株式会社 Automatic handling depth controller of combine

Also Published As

Publication number Publication date
JPS6323934U (en) 1988-02-17

Similar Documents

Publication Publication Date Title
Kramer An on/off transient imager with event-driven, asynchronous read-out
EP0859509A3 (en) Monitoring method with a CCD imaging device and digital still camera using the same
US7064874B2 (en) Both-side document reading apparatus and both-side document reading method
JPH0510578Y2 (en)
EP1128437A3 (en) Method of storing optically generated charges in a solid state imaging device
JPH0445473Y2 (en)
US6057937A (en) Image reading apparatus
JP4154068B2 (en) Solid-state imaging device, imaging system using the same, and image reading system
JPH11177777A (en) Digital image reader
JPH0445472Y2 (en)
JPH0714299B2 (en) Harvester handling depth automatic adjustment device
JP2000078473A (en) Photoelectric conversion device
JPH0427303Y2 (en)
JPS6322110A (en) Harvester
JPH0714300B2 (en) Harvester handling depth automatic adjustment device
WO1995025418A3 (en) X-ray device
JP3569059B2 (en) Image reading device
JP3907033B2 (en) Image reading device
NL1020333C2 (en) Tilting crib.
EP0769868A3 (en) Image processing system
US20020140995A1 (en) Dynamic document feeder system and method for maximizing scanning throughput
JPH03177156A (en) Picture reader
JPH11187207A (en) Image reader
JP2925558B2 (en) Image reading device
JP2003179731A (en) Image reader