JP3089330B2 - Combine speed controller - Google Patents

Combine speed controller

Info

Publication number
JP3089330B2
JP3089330B2 JP03276812A JP27681291A JP3089330B2 JP 3089330 B2 JP3089330 B2 JP 3089330B2 JP 03276812 A JP03276812 A JP 03276812A JP 27681291 A JP27681291 A JP 27681291A JP 3089330 B2 JP3089330 B2 JP 3089330B2
Authority
JP
Japan
Prior art keywords
vehicle speed
speed
engine
control
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03276812A
Other languages
Japanese (ja)
Other versions
JPH0584013A (en
Inventor
川 渉 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanma Agricultural Equipment Co Ltd
Original Assignee
Yanma Agricultural Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanma Agricultural Equipment Co Ltd filed Critical Yanma Agricultural Equipment Co Ltd
Priority to JP03276812A priority Critical patent/JP3089330B2/en
Publication of JPH0584013A publication Critical patent/JPH0584013A/en
Application granted granted Critical
Publication of JP3089330B2 publication Critical patent/JP3089330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Combines (AREA)
  • Harvester Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はエンジン負荷の増減より
車速制御を行うコンバインの車速制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combine speed control device for controlling a speed of a vehicle based on an increase or decrease of an engine load.

【0002】[0002]

【従来の技術】従来、特開平2−295410号公報に
示す如く、刈取穀稈層の厚みを検出して車速を自動制御
する技術がある
2. Description of the Related Art Conventionally, Japanese Patent Application Laid-Open No. 2-295410 discloses
As shown, the thickness of the cut culm layer is detected and the vehicle speed is automatically controlled.
There is technology to do .

【0003】[0003]

【発明が解決しようとする課題】前記従来技術は、穀稈
層の厚みが増大することによって車速が減速され、エン
ジン負荷が増大するのを防止しているが、穀稈供給量が
大きく変化するとき、例えば穀稈の生育が不均一な圃場
で収穫作業を行うとき、一時的に穀稈供給量が少なくな
ることによって車速が増速されることにより、車速が増
速される前の作業に比べて穀稈供給量が急増して脱穀負
荷が過大になる不具合があり、穀稈供給量が変化し易い
圃場での車速制御の簡略化並びにエンジン過負荷防止な
どを容易に図り得ない等の問題がある
SUMMARY OF THE INVENTION The prior art is based on grain culm.
The increase in layer thickness slows down the vehicle speed,
Although the gin load is prevented from increasing,
When there is a large change, for example, in a field where the growth of cereals is uneven
When harvesting is performed, the supply of cereal stems is temporarily low.
The vehicle speed is increased by the
The supply of cereal stems increased sharply compared to the work before the
There is a problem that the load becomes excessive, and the supply of grain stalks is likely to change
Simplify vehicle speed control in the field and prevent engine overload
There is a problem that it cannot be easily achieved .

【0004】[0004]

【課題を解決するための手段】したがって本発明は、
ンジン負荷と穀稈供給量の検出結果に基づいて車速制御
を行コンバインの車速制御装置において、穀稈供給量
の変化量が一定以上の とき、増速制御を禁止する増速禁
止手段を設けたもので、穀稈供給量が一時的に大きく減
少しても車速が増速されることがなく、穀稈供給量の回
復により、穀稈供給量が減少する前の作業よりもさらに
穀稈供給量が増加するのを容易に防止し得、穀稈供給量
の急増によって脱穀負荷が過大になる不具合を容易にな
くし得、エンジン過負荷運転及び穀稈詰り事故などを未
然に阻止し得、車速制御機能の向上並びに適応作業条件
の拡大などを容易に図り得るものである
SUMMARY OF THE INVENTION Accordingly, the present invention is the vehicle speed control device row cormorants combine the vehicle speed control based on the detection result of the error <br/> engine load and the culms supply, culms supply amount
Speed increase prohibition when the change amount of
The provision of stop means has resulted in a temporary large decrease in the supply of cereal stems.
The vehicle speed is not increased at all, and
The reinstatement will provide more work than before the culm supply was reduced.
An increase in the supply of cereal stalk can be easily prevented,
Increase the threshing load due to the rapid increase in
It is possible to prevent engine overload operation and grain clogging accidents.
The vehicle speed control function can be improved and adaptive working conditions
Can be easily achieved .

【0005】[0005]

【実施例】以下本発明の一実施例を図面に基づいて詳述
する。図1は車速制御回路図、図2はコンバインの全体
側面図、図3は同平面図であり、図中(1)は走行クロ
ーラ(2)を装設するトラックフレーム、(3)は前記
トラックフレーム(1)上に架設する機台、(4)はフ
ィードチェン(5)を左側に張架し扱胴(6)及び処理
胴(7)を内蔵している脱穀部、(8)は刈刃及び穀稈
搬送機構などを備える刈取部、(9)は排藁チェン(1
0)(11)終端を臨ませる排藁処理部、(12)は運
転席(13)及び運転操作部(14)を備える運転台、
(15)はエンジン(16)を内設するエンジン部、
(17)は前記エンジン部(15)前方に配設して脱穀
部(4)からの穀粒を揚穀筒(18)を介し溜める穀粒
タンク、(19)は前記穀粒タンク(17)内の穀粒を
外側に取出す上部排出オーガであり、連続的に刈取り・
脱穀作業を行うように構成している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a vehicle speed control circuit diagram, FIG. 2 is an overall side view of the combine, and FIG. 3 is a plan view of the combine, where (1) is a track frame on which a traveling crawler (2) is mounted, and (3) is the truck. (4) is a threshing unit which has a feed chain (5) stretched to the left and has a built-in handling cylinder (6) and a processing cylinder (7), and (8) is a mowing machine. A cutting unit equipped with a blade and a grain stalk transport mechanism.
0) (11) a straw processing unit facing the end, (12) a cab provided with a driver's seat (13) and a driving operation unit (14),
(15) is an engine part in which the engine (16) is installed,
A grain tank (17) is disposed in front of the engine section (15) and stores grains from the threshing section (4) through a fryer cylinder (18). (19) is a grain tank (17). An upper discharge auger that takes out the grains inside,
It is configured to perform threshing work.

【0006】図4に示す如く、このコンバインの車速の
変速はHSTである無段変速機構(20)を構成する可
変容量形油圧ポンプ(21)と油圧モータ(22)とで
行うもので、エンジン(16)の出力軸(16a)にベ
ルト及びギヤ伝達機構(23)を介し前記油圧ポンプ
(21)の入力軸(21a)を連動連結させ、前記走行
クローラ(2)の駆動スプロケット(24)を有するミ
ッションケース(25)に前記油圧モータ(22)の出
力軸(22a)を連動連結させる一方、前記扱胴(6)
の扱胴入力軸(6a)をベルト及びギヤ伝達機構(2
6)を介しエンジン(16)の出力軸(16a)に連動
連結させている。
As shown in FIG. 4, the vehicle speed of the combine is changed by a variable displacement hydraulic pump (21) and a hydraulic motor (22) constituting a continuously variable transmission mechanism (20) which is an HST. The input shaft (21a) of the hydraulic pump (21) is operatively connected to the output shaft (16a) of (16) via a belt and a gear transmission mechanism (23), and the drive sprocket (24) of the traveling crawler (2) is connected. The output shaft (22a) of the hydraulic motor (22) is operatively connected to the transmission case (25) having the
The input shaft (6a) of the cylinder is connected to the belt and gear transmission mechanism (2).
6) and is linked to the output shaft (16a) of the engine (16) through the interlock.

【0007】また、前記エンジン(16)には燃料噴射
ポンプの燃料噴射量を噴射量調整用ラックで制御して回
転数を一定保持する電子ガバナ(27)を有すると共
に、前記油圧ポンプ(21)には斜板角を制御して油圧
吐出量の調整を行うDC形サーボモータ(28)を有し
て、該モータ(28)の正逆駆動でもって車速の増減速
制御を行うように構成している。
The engine (16) has an electronic governor (27) for controlling a fuel injection amount of a fuel injection pump by an injection amount adjustment rack to maintain a constant rotation speed, and the hydraulic pump (21). Has a DC-type servomotor (28) for controlling the swash plate angle to adjust the hydraulic discharge amount, and controls the vehicle speed to be increased or decreased by forward / reverse drive of the motor (28). ing.

【0008】そして図1に示す如く、前記サーボモータ
(28)をファジイ推論に基づいて駆動制御するファジ
ィ車速制御手段である車速制御回路(29)に、車速の
自動制御を行う自動スイッチ(30)と、車速を検出す
る車速センサ(31)と、HST油圧センサ(32)と
を入力接続させると共に、前記刈取部(8)の縦搬送装
置(33)の挾扼ガイド杆に設けて搬送される穀稈の層
厚より脱穀部(4)に送り込まれる穀稈供給量を検出す
る穀稈センサでもある供給量センサ(34)と、刈取作
業クラッチ(35a)の入操作時にこれを検出する作業
クラッチスイッチ(35)とを前記制御回路(29)に
入力接続させている。そして、燃料噴射ポンプの噴射量
を調整する電子ガバナ(27)のラック位置調節機構
(36)を駆動制御するガバナ制御回路(37)に、前
記エンジン(16)での回転を検出するエンジン回転セ
ンサ(38)と、前記ガバナ(27)での噴射量調整用
ラックの位置を検出するガバナラック位置センサ(3
9)とを入力接続させ、前記制御回路(29)(37)
間を通信接続させて、これら各センサ(31)(32)
(34)(38)(39)の検出に基づいてエンジン回
転数の一定制御やファジィ推論に基づく車速制御を行う
ように構成している。
As shown in FIG. 1, an automatic switch (30) for automatically controlling the vehicle speed is provided to a vehicle speed control circuit (29) which is a fuzzy vehicle speed control means for driving and controlling the servo motor (28) based on fuzzy inference. And a vehicle speed sensor (31) for detecting the vehicle speed, and an HST oil pressure sensor (32), are input and connected, and are provided on a pinching guide rod of a vertical transfer device (33) of the reaper (8) to be conveyed. A supply amount sensor (34) which is also a cereal stalk sensor for detecting an amount of cereal stalk supplied to the threshing unit (4) based on the thickness of the cereal stalk, and a work clutch for detecting the input operation of the reaping work clutch (35a). A switch (35) is connected to the control circuit (29). A governor control circuit (37) for driving and controlling a rack position adjusting mechanism (36) of an electronic governor (27) for adjusting the injection amount of the fuel injection pump is provided with an engine rotation sensor for detecting rotation of the engine (16). (38) and a governor rack position sensor (3) for detecting the position of the injection amount adjusting rack in the governor (27).
9) and the control circuits (29) and (37)
Between these sensors (31), (32)
(34) Based on the detection of (38) and (39), constant control of the engine speed and vehicle speed control based on fuzzy inference are performed.

【0009】なお、(40)は前記制御回路(29)に
出力接続させるオーバロードモニタである。
An overload monitor (40) is connected to the control circuit (29) for output connection.

【0010】本実施例は上記の如く構成するものにし
て、以下図5のエンジン最大出力マップデータ線図、図
6乃至図10のフローチャートを参照してこの車速制御
を説明する。
This embodiment is configured as described above, and the vehicle speed control will be described below with reference to the engine maximum output map data diagram of FIG. 5 and the flowcharts of FIGS. 6 to 10.

【0011】刈取作業中にあって前記電子ガバナ(2
7)よりエンジン負荷(燃料噴射量)に対応するラック
位置データが入力されると、ラック位置とエンジン回転
数の関係を最大負荷曲線で表わす図5に示す如き最大出
力マップデータ(RMAX)とに基づいて目標車速が推
論され、該目標車速とこの車速の変化率より現在車速よ
りどの程度増減させるかの車速偏差をファジイ推論し、
前記変速機構(20)をシフト駆動するサーボモータ
(28)の駆動パルスの決定が行われるもので、具体的
には実際の出力データ(ラック位置)をA、そのときエ
ンジン回転数の一定制御によりガバナコントローラであ
る制御回路(46)から出力される制御最大噴射量をB
とすると、目標ラック値C、最大目標値Dとから算出さ
れるラック偏差値RE(=A−C)最大目標偏差値RM
(=C−D)と、一定時間のラック偏差値(RE)の変
化率(RD)をファジィ推論の入力値として入力させ、
出力値として現在の車速に対する目標車速偏差(Ve)
を出力させるようにしたものである。
During the mowing operation, the electronic governor (2
7) When the rack position data corresponding to the engine load (fuel injection amount) is input from the above, the maximum output map data (RMAX) as shown in FIG. 5 expressing the relationship between the rack position and the engine speed by a maximum load curve. A target vehicle speed is inferred based on the target vehicle speed, and a vehicle speed deviation of how much the current vehicle speed is increased or decreased from the target vehicle speed and the rate of change of the vehicle speed is fuzzy inferred,
A drive pulse of a servomotor (28) for shifting and driving the transmission mechanism (20) is determined. Specifically, the actual output data (rack position) is set to A, and the engine speed is controlled by a constant control at that time. The control maximum injection amount output from the control circuit (46) which is the governor controller is represented by B
Then, a rack deviation value RE (= A−C) maximum target deviation value RM calculated from the target rack value C and the maximum target value D
(= CD) and the rate of change (RD) of the rack deviation value (RE) for a certain period of time are input as input values for fuzzy inference,
Target vehicle speed deviation (Ve) with respect to the current vehicle speed as an output value
Is output.

【0012】斯る車速制御中にあって、前記供給量セン
サ(34)の検出に基づく供給量制御でもって増速禁止
フラグがオン状態となるとき増速データは全てクリアさ
れて低速側のみ車速制御が行われるもので、供給量制御
は図7のサブルーチンに示す如く、前記センサ(34)
でもって検出される供給量の絶対値が設定値以上で、こ
の供給量変化率が設定値以上のとき増速禁止フラグをオ
ン、またこのフラグオン時にあって供給量変化率が設定
値以下になるとき、タイマでの一定時間(T)計時後こ
の禁止フラグをオフとして増速禁止フラグをリセットす
る一方、このリセット時間の計時中に増速禁止フラグが
オンとなるときリセット時間の計時をクリアする。つま
り禁止フラグがリセットされるまでの時間(T)は、縦
搬送装置(33)で搬送される穀稈が供給量センサ(3
4)位置を通過した時点より脱穀部(4)に供給される
までの搬送時間に設定されていて、前記センサ(34)
で供給量変化率の設定値以上から以下を検出したときに
は、このときの穀稈が脱穀部(4)に実際に供給される
状態となるときに禁止フラグをリセットとするものであ
る。
During the vehicle speed control, when the speed increase inhibition flag is turned on by the supply amount control based on the detection of the supply amount sensor (34), all the speed increase data is cleared and only the vehicle speed on the low speed side is cleared. The supply amount control is performed by the sensor (34) as shown in the subroutine of FIG.
When the absolute value of the detected supply amount is equal to or greater than the set value and the supply amount change rate is equal to or greater than the set value, the speed increase inhibition flag is turned on. When the flag is on, the supply amount change rate becomes equal to or less than the set value. At this time, after a certain time (T) is measured by the timer, the prohibition flag is turned off to reset the speed increase prohibition flag, and when the speed increase prohibition flag is turned on during the measurement of the reset time, the time measurement of the reset time is cleared. . That is, the time (T) until the prohibition flag is reset is determined by the feed amount sensor (3)
4) The transport time is set from the point in time of passing the position to the time of supply to the threshing unit (4), and the sensor (34)
When the following is detected from the set value of the change rate of the supply amount to the following, the prohibition flag is reset when the cereal stem at this time is actually supplied to the threshing unit (4).

【0013】また図8に示す如く、前記供給量及び供給
量変化率の検出は、前記供給量センサ(34)の電圧入
力値(Vs)と、車速(v)より算出する刈取搬送速度
(vk)(車速と刈取搬送速度とは同調)とから行うも
ので、供給量(S(n))はS(n)=Vs×vk×α
(αは比例定数)の関係式より一定時間毎に算出して、
リングカウンタに順次記憶させる一方、一定時間前の供
給量(S(n−3))と現在供給量(S(n))との差
dS(n)(dS(n)=S(n)−S(n−3))を
供給量変化率として算出するものである。
As shown in FIG. 8, the supply amount and the change rate of the supply amount are detected by the reaping conveyance speed (vk) calculated from the voltage input value (Vs) of the supply amount sensor (34) and the vehicle speed (v). ) (The vehicle speed and the mowing transport speed are synchronized), and the supply amount (S (n)) is S (n) = Vs × vk × α
(Α is a proportional constant) is calculated at regular intervals from the relational expression,
The difference dS (n) (dS (n) = S (n) −) between the supply amount (S (n−3)) before a certain time and the current supply amount (S (n)) is sequentially stored in the ring counter. S (n-3)) is calculated as the supply rate change rate.

【0014】而して、脱穀部(4)に供給される穀稈の
供給量が増大し、脱穀負荷が大となってエンジン負荷も
大となる状態時にあっては、早期に車速の増速制御を禁
止して脱穀負荷がそれ以上に大となるのを未然に防止す
るものであるから、脱穀部(4)での稈詰まり事故など
も未然に回避させることができてこの車速制御を安定あ
るものとさせることができる。
Thus, when the supply amount of the grain culm supplied to the threshing unit (4) increases and the threshing load increases and the engine load increases, the vehicle speed increases at an early stage. Since the control is prohibited to prevent the threshing load from becoming greater, it is possible to prevent culm clogging accidents at the threshing unit (4) and to stabilize this vehicle speed control. It can be.

【0015】上記から明らかなように、エンジン(1
6)負荷と穀稈供給量の検出結果に基づいて車速制御を
行うコンバインの車速制御装置において、穀稈供給量の
変化量が一定以上のとき、増速制御を禁止する増速禁止
手段を設けたもので、穀稈供給量が一時的に大きく減少
しても車速が増速されることがなく、穀稈供給量の回復
により、穀稈供給量が減少する前の作業よりもさらに穀
稈供給量が増加するのを防止し、穀稈供給量の急増によ
って脱穀負荷が過大になる不具合をなくし、エンジン
(16)過負荷運転及び穀稈詰り事故などを未然に阻止
し、車速制御機能の向上並びに適応作業条件の拡大など
を図る。
As is apparent from the above, the engine (1)
6) Vehicle speed control based on load and culm supply detection results
In the combine speed control device,
When the amount of change is greater than a certain value, the speed increase control is prohibited.
Measures have been taken to reduce the supply of cereal stems temporarily.
Even if the vehicle speed does not increase, the supply of cereal stalks recovers
Cereal supply is lower than before
Prevent increase in culm supply, and increase culm supply
The problem that threshing load becomes excessive
(16) Prevent overload operation and culm clogging accidents
To improve vehicle speed control functions and expand applicable working conditions
Plan.

【0016】また刈取走行作業中、エンジン(16)が
過負荷となることをラック位置センサ(38)が検出し
て前記オーバロードモニタ(40)を動作させるとき、
図9のフローチャートに示す如く、オーバロードモニタ
(40)の動作と同時にエンジン(16)の最大出力マ
ップデータ(RMAX)の選択出力を通常時のノーマル
モードより馬力アップモードのものに一定時間変更し
て、この馬力アップモードの選択出力に基づく車速制御
を行って、負荷の急変時などでの対応性を向上させるよ
うにしたものである。
During the harvesting operation, when the rack position sensor (38) detects that the engine (16) is overloaded and operates the overload monitor (40),
As shown in the flowchart of FIG. 9, at the same time as the operation of the overload monitor (40), the selected output of the maximum output map data (RMAX) of the engine (16) is changed from the normal mode at the normal time to the horsepower up mode for a fixed time. Thus, the vehicle speed control based on the selected output of the horsepower up mode is performed to improve the responsiveness when the load suddenly changes.

【0017】また図10のフローチャートに示す如く、
前記作業クラッチスイッチ(35)がオンの刈取作業中
にあって、前記供給量センサ(34)が穀稈非検出状態
のオフとなる例えば機体旋回時にあっては、前記エンジ
ン(16)が過負荷となることをラック位置センサ(3
8)が検出し減速信号が出力されるとき、減速する直前
の車速を記憶後に前記サーボモータ(28)でもって車
速を減速させ、再びエンジン(16)の負荷が低減して
増速信号が出力されるとき記憶されている元の車速まで
車速を増速復帰させるものである。
As shown in the flowchart of FIG.
When the work clutch switch (35) is in the on-cutting state and the supply amount sensor (34) is off in the non-detection state of the grain culm, for example, at the time of turning the body, the engine (16) is overloaded. The rack position sensor (3
8) When the deceleration signal is detected and the deceleration signal is output, the vehicle speed immediately before the deceleration is stored, the vehicle speed is reduced by the servo motor (28), the load on the engine (16) is reduced again, and the acceleration signal is output. Then, the vehicle speed is increased and returned to the original vehicle speed stored.

【0018】図11のものは、車速制御を前記変速機構
(20)と高低2速切換の副変速機構との組合せで行う
場合のフローチャートを示すもので、前記サーボモータ
(28)の操作量(M1)が検出され、副変速機構にお
ける高速側への切換えが例えば車速に対するHST油圧
により判別されると、副変速が高速時のサーボモータ
(28)の操作量(M)をM=K×M1(K<1定数)
の小とさせる状態に変更して、副変速高速時の稈詰り事
故を防止し、副変速の高低の如何にかかわらず常に最適
な車速制御を可能とさせるようにしたものである。
FIG. 11 shows a flowchart in the case where the vehicle speed control is performed by a combination of the speed change mechanism (20) and the sub speed change mechanism for switching between high and low speeds. The operation amount of the servo motor (28) is shown in FIG. M1) is detected, and when switching to the high-speed side in the sub-transmission mechanism is determined, for example, by the HST oil pressure with respect to the vehicle speed, the operation amount (M) of the servo motor (28) when the sub-transmission is at high speed is M = K × M1. (K <1 constant)
Is reduced to prevent a culm clogging accident at the time of high speed of the subtransmission, and always enables the optimum vehicle speed control regardless of the level of the subtransmission.

【0019】図12乃至図14は前記変速機構(20)
の最高速位置の規制を行う手動レバー(41)を設けた
もので、前記レバー(41)を遊転支持するレバー軸
(42)と、該レバー軸(42)基端部に固設して前記
レバー(41)に設けるマイクロスイッチ(43)に当
接動作させる変速レバー(44)と、前記レバー(4
1)に固設して変速レバー(44)の動作規制を行うス
トッパ(45)と、前記レバー軸(42)を回動する変
速レバー駆動モータ(46)と、前記レバー軸(42)
の回動量を検出してこの回動量に応じ前記サーボモータ
(28)を駆動制御するポテンショメータ型変速レバー
位置センサ(47)とを設け、自動制御時にあっては手
動レバー(41)で設定した速度を越えない範囲内でモ
ータ(46)は変速レバー(44)を駆動制御して前記
サーボモータ(28)による車速の変速を行うもので、
ファジィ推論によって算出される目標車速に基づいて増
速或いは減速信号が出力されるとき前記モータ(46)
でもって変速レバー(44)は高速或いは低速側に駆動
制御されると共に、変速レバー(44)の高速側制御時
にあってリミットスイッチ(43)に該レバー(44)
が当接してオンとなるとき、それ以上高速側への制御は
阻止されるものである。また前記手動レバー(41)で
車速の変速を行う手動制御時にあっては、該レバー(4
1)に常に変速レバー(44)を追従させる如く、変速
レバー(44)を高速側に移動させてマイクロスイッチ
(43)を常にオン状態に保持させての車速制御を行う
もので、自動及び手動制御の何れにあっても、前記手動
レバー(41)で設定される車速以上に高速とさせるこ
とのない安全且つ良好な作業が行えるものである。
FIGS. 12 to 14 show the transmission mechanism (20).
Provided with a manual lever (41) for restricting the highest speed position of the lever shaft (41), and a lever shaft (42) for supporting the lever (41) in idle rotation, and fixed to the base end of the lever shaft (42) A shift lever (44) for operating a micro switch (43) provided on the lever (41);
A stopper (45) fixed to 1) for restricting the operation of the shift lever (44), a shift lever drive motor (46) for rotating the lever shaft (42), and the lever shaft (42)
And a potentiometer type shift lever position sensor (47) for detecting the amount of rotation of the servomotor and controlling the driving of the servomotor (28) according to the amount of rotation, and at the time of automatic control, the speed set by the manual lever (41). The motor (46) drives and controls the speed change lever (44) so as to change the vehicle speed by the servo motor (28) within a range not exceeding the range.
The motor (46) when a speed increase or deceleration signal is output based on a target vehicle speed calculated by fuzzy inference;
Thus, the speed change lever (44) is driven and controlled to the high speed or low speed side, and the limit switch (43) is moved to the limit switch (43) when the speed change lever (44) is controlled at the high speed side.
Is turned on upon contact with, the control on the high-speed side is further prevented. In manual control for shifting the vehicle speed with the manual lever (41), the lever (4
The vehicle speed control is performed by moving the shift lever (44) to the high-speed side so that the micro switch (43) is always kept on so that the shift lever (44) always follows the shift lever (1). In any of the controls, safe and favorable work can be performed without increasing the speed higher than the vehicle speed set by the manual lever (41).

【0020】図15は前述同様の電子ガバナ(27)を
有するエンジン(16)と、変速機構(20)とをトラ
クタ(48)に搭載させ、該トラクタ(48)に装備す
るロータリ作業機(49)の耕深制御時に、エンジン
(16)を定回転制御すると共に、エンジン(16)が
過負荷状態となるとき、ファジィ推論でもって算出され
る目標車速に車速を制御して、エンジン(16)に過大
な負荷がかかっても一定耕深のままエンストすることな
く円滑良好なトラクタ(48)による耕耘作業を可能と
させるようにしたものである。
FIG. 15 shows a rotary work machine (49) in which an engine (16) having the same electronic governor (27) as described above and a transmission mechanism (20) are mounted on a tractor (48). ), The engine (16) is controlled to rotate at a constant speed, and when the engine (16) is overloaded, the vehicle speed is controlled to a target vehicle speed calculated by fuzzy inference. Even if an excessive load is applied to the tractor, the tractor (48) can smoothly perform the tillage operation without stalling at a constant plowing depth.

【0021】なお、前述実施例にあっては自脱形コンバ
インを用いたが、普通形コンバインを用いても良く同様
の作用効果を奏する。
Although the self-removable combine is used in the above-described embodiment, the same function and effect may be obtained by using a normal combine.

【0022】[0022]

【発明の効果】以上実施例から明らかなように本発明
は、ンジン(16)負荷と穀稈供給量の検出結果に基
づいて車速制御を行コンバインの車速制御装置におい
て、穀稈供給量の変化量が一定以上のとき、増速制御を
禁止する増速禁止手段を設けたもので、穀稈供給量が一
時的に大きく減少しても車速が増速されることがなく、
穀稈供給量の回復により、穀稈供給量が減少する前の作
業よりもさらに穀稈供給量が増加するのを容易に防止で
き、穀稈供給量の急増によって脱穀負荷が過大になる不
具合を容易になくすことができ、エンジン(16)過負
荷運転及び穀稈詰り 事故などを未然に阻止でき、車速制
御機能の向上並びに適応作業条件の拡大などを容易に図
ることができるものである
As apparent from the above embodiment the present invention is engine (16) load and culms supply amount of the vehicle speed control apparatus odor row cormorants combine the vehicle speed control based on the detection result
When the change in the supply of cereal stalk is more than a certain
Provision of speed-up prohibition means to prohibit
Even if it decreases greatly, the vehicle speed does not increase,
The crop before the supply of cereal stem decreased due to the recovery of the supply of cereal stem
It is easy to prevent the supply of grain stalks from increasing more than in the industry
The threshing load is too large
The condition can be easily eliminated, and the engine (16) is overloaded.
Load operation and grain clogging accidents can be prevented beforehand, and vehicle speed control
Easy to improve control functions and expand applicable working conditions
It can be .

【図面の簡単な説明】[Brief description of the drawings]

【図1】車速制御回路図。FIG. 1 is a vehicle speed control circuit diagram.

【図2】コンバインの全体側面図。FIG. 2 is an overall side view of the combine.

【図3】コンバインの全体平面図。FIG. 3 is an overall plan view of the combine.

【図4】エンジン駆動系の説明図。FIG. 4 is an explanatory diagram of an engine drive system.

【図5】エンジンの最大出力マップデータを示す説明線
図。
FIG. 5 is an explanatory diagram showing engine maximum output map data.

【図6】車速の負荷制御を示すフローチャート。FIG. 6 is a flowchart showing load control of vehicle speed.

【図7】供給量制御のフローチャート。FIG. 7 is a flowchart of supply amount control.

【図8】供給量検出のフローチャート。FIG. 8 is a flowchart of supply amount detection.

【図9】過負荷制御のフローチャート。FIG. 9 is a flowchart of overload control.

【図10】旋回制御のフローチャート。FIG. 10 is a flowchart of turning control.

【図11】副変速制御のフローチャート。FIG. 11 is a flowchart of sub-shift control.

【図12】変速レバーの説明図。FIG. 12 is an explanatory view of a shift lever.

【図13】変速レバーの説明図。FIG. 13 is an explanatory view of a shift lever.

【図14】変速レバー制御のフローチャート。FIG. 14 is a flowchart of a shift lever control.

【図15】トラクタにおける説明図。FIG. 15 is an explanatory view of a tractor.

【符号の説明】[Explanation of symbols]

(16) エンジン (16) Engine

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ンジン(16)負荷と穀稈供給量の検
出結果に基づいて車速制御を行コンバインの車速制御
装置において、穀稈供給量の変化量が一定以上のとき、
増速制御を禁止する増速禁止手段を設けたことを特徴と
するコンバインの車速制御装置。
1. A vehicle speed control system of row cormorants combine the vehicle speed control based on the engine (16) of the load and the culms supply amount detection result, when the amount of change culms supply amount is above a certain,
A combine speed control device comprising a speed increase inhibiting means for inhibiting speed increase control.
JP03276812A 1991-09-26 1991-09-26 Combine speed controller Expired - Lifetime JP3089330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03276812A JP3089330B2 (en) 1991-09-26 1991-09-26 Combine speed controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03276812A JP3089330B2 (en) 1991-09-26 1991-09-26 Combine speed controller

Publications (2)

Publication Number Publication Date
JPH0584013A JPH0584013A (en) 1993-04-06
JP3089330B2 true JP3089330B2 (en) 2000-09-18

Family

ID=17574736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03276812A Expired - Lifetime JP3089330B2 (en) 1991-09-26 1991-09-26 Combine speed controller

Country Status (1)

Country Link
JP (1) JP3089330B2 (en)

Also Published As

Publication number Publication date
JPH0584013A (en) 1993-04-06

Similar Documents

Publication Publication Date Title
EP1297734B1 (en) Harvesting machine with an inclination-dependent rate of advance
CA1284369C (en) Crop processing apparatus
JP3013036B2 (en) Combine
JP3089330B2 (en) Combine speed controller
JP2538297Y2 (en) Combine drive controller
JP3831243B2 (en) Combine
JP3138879B2 (en) Combine
JP3601035B2 (en) Combine
JP3138881B2 (en) Vehicle speed control device for mobile agricultural machine
JP3138882B2 (en) Combine speed controller
JP3138880B2 (en) Vehicle speed control device for mobile agricultural machine
JP2736884B2 (en) Harvester vehicle speed control device
JP5040242B2 (en) Combine
JPH0613651Y2 (en) Work vehicle
JP3558594B2 (en) Combine
JP3138883B2 (en) Mobile farm equipment steering system
JP3108167B2 (en) Combine speed controller
JP2613426B2 (en) Harvester
JP3444969B2 (en) Mobile farm equipment steering safety device
JP2516363B2 (en) Vehicle speed control device for work vehicle
JP2000060274A (en) Vehicle speed control system for farm working machine
JP3087372B2 (en) Combine harvesting control device
JP3563416B2 (en) Combine
JP3240444B2 (en) Combine
JP3121004B2 (en) Power detector for working unit in harvester

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 10