JP3563416B2 - Combine - Google Patents

Combine Download PDF

Info

Publication number
JP3563416B2
JP3563416B2 JP35599091A JP35599091A JP3563416B2 JP 3563416 B2 JP3563416 B2 JP 3563416B2 JP 35599091 A JP35599091 A JP 35599091A JP 35599091 A JP35599091 A JP 35599091A JP 3563416 B2 JP3563416 B2 JP 3563416B2
Authority
JP
Japan
Prior art keywords
engine
vehicle speed
load
sensor
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35599091A
Other languages
Japanese (ja)
Other versions
JPH05172223A (en
Inventor
川 渉 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanma Agricultural Equipment Co Ltd
Original Assignee
Yanma Agricultural Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanma Agricultural Equipment Co Ltd filed Critical Yanma Agricultural Equipment Co Ltd
Priority to JP35599091A priority Critical patent/JP3563416B2/en
Publication of JPH05172223A publication Critical patent/JPH05172223A/en
Priority to JP31400698A priority patent/JPH11227501A/en
Application granted granted Critical
Publication of JP3563416B2 publication Critical patent/JP3563416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は穀稈を刈取って脱穀する収穫作業を連続的に行うコンバインに関する。
【0002】
【従来の技術】
従来、特開昭63−308255号公報に示す如く、作業負荷変化によってエンジン負荷が変化してエンジン回転数が変化したとき、自動的に車速を変更してエンジンの回転数を略一定維持する技術がある。また、実開昭56−153653号公報に示す如く、脱穀部の脱穀負荷を検出して自動的に車速を変更させる技術がある。
【0003】
【発明が解決しようとする課題】
前記従来技術は、エンジンの回転数が負荷変動によって変化した後、車速を制御してエンジンの回転数を一定範囲に戻すから、脱穀負荷が増大して車速が減速されてエンジン回転が低下したとき、低速側に走行変速させて脱穀負荷を減少させるが、エンジンが適正回転に戻るまでの時間を容易に短縮し得ず、穀稈が不均 一に成育した圃場ではエンジンの回転数が波形に変動する不具合があり、脱穀負荷変動と車速制御の不特定な時間的ずれにより、不適正な負荷でのエンジンの運転時間が長くなり易く、エンジン負荷に基づく自動車速制御機能の向上などを容易に図り得ない等の問題がある。
【0004】
【課題を解決するための手段】
然るに、本発明は、エンジン負荷及び車速センサに基づき車速制御を行う走行変速部材を設け、エンジン回転数を略一定維持する制御を行い乍ら自動車速制御を行わせるコンバインにおいて、穀稈量を検出する供給量センサを刈取部の刈取り穀稈搬送系路に設け、車速センサに基づく刈取部の刈取り穀稈搬送速度と前記供給量センサの穀稈量とに基づき、脱穀部に送られる穀稈供給量を算出し、該穀稈供給量とエンジン負荷とに基づいて自動車速制御を行わせるように構成したもので、車速と同調して変化させる刈取部の刈取り穀稈搬送速度と刈取り穀稈量とにより、脱穀部の負荷が変化するのと時期を合せて車速を変更し得、脱穀負荷が増大するときに略同一タイミングで車速を減速させて走行負荷を低減させ得、エンジンの負荷変動幅を容易に縮少し得、穀稈が不均一に成育した圃場であってもエンジン負荷が不適正に変化するのを未然に防止し得、エンジン負荷に基づく自動車速制御機能の向上などを容易に図り得るものである。
【0005】
【発明の実施の形態】
以下本発明の一実施例を図面に基づいて詳述する。図1は車速制御回路図、図2はコンバインの全体側面図、図3は同平面図であり、図中(1)は走行クローラ(2)を装設するトラックフレーム、(3)は前記トラックフレーム(1)上に架設する機台、(4)はフィードチェン(5)を左側に張架し扱胴(6)及び処理胴(7)を内蔵している脱穀部、(8)は刈刃及び穀稈搬送機構などを備える刈取部、(9)は排藁チェン(10)(11)終端を臨ませる排藁処理部、(12)は運転席(13)及び運転操作部(14)を備える運転台、(15)はエンジン(16)を内設するエンジン部、(17)は前記エンジン部(15)前方に配設して脱穀部(4)からの穀粒を揚穀筒(18)を介し溜める穀粒タンク、(19)は前記穀粒タンク(17)内の穀粒を外側に取出す上部排出オーガであり、連続的に刈取り・脱穀作業を行うように構成している。
【0006】
図4に示す如く、このコンバインの車速の変速はHSTである無段変速機構(20)を構成する可変容量形油圧ポンプ(21)と油圧モータ(22)とで行うもので、エンジン(16)の出力軸(16a)にベルト及びギヤ伝達機構(23)を介し前記油圧ポンプ(21)の入力軸(21a)を連動連結させ、前記走行クローラ(2)の駆動スプロケット(24)を有するミッションケース(25)に前記油圧モータ(22)の出力軸(22a)を連動連結させる一方、前記扱胴(6)の扱胴入力軸(6a)をベルト及びギヤ伝達機構(26)を介しエンジン(16)の出力軸(16a)に連動連結させている。
【0007】
また、前記エンジン(16)には燃料噴射ポンプの燃料噴射量を噴射量調整用ラックで制御して回転数を一定保持する電子ガバナ(27)を有すると共に、前記油圧ポンプ(21)には斜板角を制御して油圧吐出量の調整を行うDC形サーボモータ(28)を有して、該モータ(28)の正逆駆動でもって車速の増減速制御を行うように構成している。
【0008】
そして図1に示す如く、前記サーボモータ(28)を駆動制御するファジィ推論車速演算回路である車速制御回路(29)に、車速の自動制御を行う自動スイッチ(30)と、前記刈取部(8)での刈取負荷の一定以上を検出する刈取負荷センサ(31)と、前記脱穀部(4)での扱胴(5)など脱穀負荷の一定以上を検出する脱穀負荷センサ(32)と、排藁カッタでの切断負荷の一定以上を検出する排藁切断負荷センサ(33)と、車速を検出する車速センサ(34)と、HST油圧センサ(35)と、前記刈取部(8)の縦搬送装置(36)の挾扼ガイド杆に設けて搬送される穀稈の層厚より脱穀部(4)に送り込まれる穀稈供給量を検出する供給量センサ(37)とを入力接続させる一方、燃料噴射ポンプの噴射量を調整するガバナ(27)のラック位置調節機構(27a)を駆動制御するガバナ制御回路(38)に、前記エンジン(16)での回転を検出するエンジン回転センサ(39)と、前記ガバナ(27)での噴射量調整用ラックの位置を検出するガバナラック位置センサ(40)とを入力接続させ、前記制御回路(29)(38)間を通信接続させて、これら各センサ(31)(32)(33)(34)(35)(37)(39)(40)の検出に基づいてエンジン回転数の一定制御やエンジンの緊急停止やファジィ推論に基づく車速制御を行うように構成している。
【0009】
また自動制御時での目標車速の設定や手動変速操作を行う主変速レバー(41)の回動量を検出してこの回動量に応じ前記サーボモータ(28)を駆動制御するポテンショメータ型変速レバー位置センサ(42)を設けるもので、該位置センサ(42)を前記制御回路(29)に入力接続させると共に、前記変速レバー(41)を中立或いは高低速側に駆動制御する変速レバーモータ(43)に前記制御回路(29)を出力接続させて、前記エンジン(16)の緊急停止時には駆動モータ(43)を介し変速レバー(41)を中立位置に戻すように構成している。
【0010】
上記から明らかなように、エンジン(16)負荷及び車速センサ(34)に基づき車速制御を行う走行変速部材であるサーボモータ(28)を設け、エンジン(16)回転数を略一定維持させる自動車速制御を行わせるコンバインにおいて、穀稈量を検出する供給量センサ(37)を刈取部(8)の刈取り穀稈搬送系路である縦搬送装置(36)に設け、車速センサ(34)に基づく刈取部(8)の刈取り穀稈搬送速度と前記供給量センサ(37)の穀稈量によって脱穀部(4)に送られる穀稈供給量を算出し、該穀稈供給量とエンジン(16)負荷とに基づいて自動車速制御を行わせる。そして、車速と同調して変化させる刈取部(8)の刈取り穀稈搬送速度と刈取り穀稈量とにより、脱穀部(4)の負荷が変化するのと時期を合せて車速を変更させ、脱穀負荷が増大するときに略同一タイミングで車速を減速させて走行負荷を低減させ、また脱穀負荷が減少するときに略同一タイミングで車速を増速させて走行負荷を増加させ、エンジン(16)の負荷変 動幅を縮少し、穀稈が不均一に成育した圃場であってもエンジン(16)負荷が不適正に変化するのを未然に防止し、エンジン(16)負荷に基づく自動車速制御機能の向上などを図る。
【0011】
本実施例は上記の如く構成するものにして、以下図5のフローチャートを参照してこの車速制御を説明する。
【0012】
今各モジュールである基準値や検出値が初期化され、各センサ(31)〜(35)(37)(39)(40)での検出値が入力され、刈取部(8)や脱穀部(4)や排藁カッタ部や走行部での異常作業時にあって、緊急信号が出力されるときエンジン(16)の緊急停止が行われると共に、正常作業時各センサ(34)(39)(40)の検出に基づくエンジンデータの受信や車速データのカウントが行われる。
【0013】
そしてエンジン(16)の入力データから現在の車速に対する増減速を必要とする目標の車速偏差値(VE)をファジィ推論に基づき演算出力させて目標の車速に制御しての走行を行うものである。
【0014】
次に図6乃至図7を参照して車速偏差値(VE)を算出するうえでのファジィ推論制御を説明する。
【0015】
1) 図7に示す如き、入力される電子ガバナ(27)のラック位置(燃料噴射量)とエンジン回転数との関係を最大負荷曲線(RMAX)及び無負荷曲線(RIDL)で表す特性図に基づきラック位置偏差値(RE)と最大出力偏差値(RM)を算出すると共に、前記供給量センサ(37)の検出に基づいて穀稈供給量変化率(ds(n))を算出するもので、定格回転Nrpm、目標の最大噴射量となるラックの最大目標値がA、無負荷時の噴射量となるラックの無負荷値がBとなって、負荷率80%を設定したときの目標噴射量である目標ラック値(RACT)の値Cが、80%=C−B/A−Bの関係式から算出される。つまり実際の出力のデータ(ract)をD、そのときエンジン(16)の回転数の一定制御により電子ガバナコントローラである制御回路(38)から出力される制限最大噴射量値Eとすると、目標ラック値C、最大目標値Aからラック偏差値RE(=D−C)、最大目標偏差値RM(=E−A)と穀稈供給量変化率(ds(n))とをファジィ推論の入力値とさせる。なお、エンジンの回転数の一定制御(例えば2625rpm一定制御)を行っているが、ラック位置調節機構(27a)等の制御遅れや段階的な制御や負荷の急激な変動等により、回転センサ(39)の値が同じでも、最大負荷曲線により決定される最大目標値(例えばA)と電子ガバナコントローラから出力される制限最大噴射量Eは、実際上一致しない。(但し一致する場合もありうる。)また図8に示す如く、供給量変化率の検出は、前記供給量センサ(37)の電圧入力値(Vs)と、車速(v)より算出する刈取搬送速度(vk)(車速と刈取搬送速度とは同調)とから行うもので、供給量(S(n))はS(n)=Vs×vk×α(αは比例定数)の関係式より一定時間毎に算出して、リングカウンタに順次記憶させる一方、一定時間前の供給量(S(m))と現在供給量(S(n))との差ds(n)(ds(n)=S(m)−S(n))を供給量変化率として算出するものであり、この一定時間の設定は縦搬送装置(36)で搬送される穀稈が供給量センサ(37)位置を通過した時点より脱穀部(4)に供給されるまでの搬送時間に設定して、前記センサ(37)位置を通過した穀稈が脱穀部(4)に供給されエンジン負荷として出力されるまでの時間とするものである。
【0016】
そして図9に示す如く、PB(正で大きい)、PS(正で小さい)、ZO(ゼロ)、NS(負で小さい)、NB(負で大きい)の5つファジィ集合で表されるメンバシップ関数に対応するようにこれら値の(RE)(ds(n))(RM)の正規化が行われてファジィ変数(re)(ds)(rm)に変換される。
【0017】
例えばこれに数値をあてはめ説明すると、N=2625rpm、目標負荷率を80%、A=189、B=102とするとき、C=172が算出され、D=176、E=187のとき、RE=4、RM=−2が算出されて、電子ガバナ(27)からの入力データとしてRE=4、RM=−2が、また穀稈供給量変化率としてds(n)=0が入力されるとき、メンバシップ関数に対応するようにre=18、ds=14、rm=12の入力変数に変換が行われる。
【0018】
2) 変数(re)(ds)(rm)の値がこれら5つの集合に含まれる度合(グレード)を図9の三角型のメンバシップ関数の重みとしてそれぞれ求める。
【0019】
例えば、
re=18の場合 NB=0 NS=4 ZO=11 PS=12 PB=5
ds=14の場合 NB=1 NS=8 ZO=15 PS=8 PB=1
rm=12の場合 NB=3 NS=10 ZO=13 PS=6 PB=0
【0020】
3) 各ルールに対してルールの前件部である変数つまり各メンバシップ値(re)(ds)(rm)の適応度を図10などより算出する。
【0021】
例えば、ファジィ制御のif−then型式ルールの0で、「もしreがZOで、dsがZOで、rmがNBならば、目標の車速偏差値veをZOとする」と推論すると、re=18の値がルールの前件部「reがZO」に対する適応度は図10より11、またds=14の値が「rdがZO」に対する適応度は15、さらにrm=12の値が「rmがNB」に対する適応度は3となる。
【0022】
4) 各ルールにおいてそれぞれ算出される前件部の適応度をミニマム合成(各値の中から1番小さな値をとる)して求める。例示の場合min(11、15、3)=3。
【0023】
5) 図11に示す如く、各ルール後件部の出力ファジィを求める。同図はルール0のve=ZOの場合。
【0024】
6) 図12に示す如く、各ルールの前件部の適応度で後件部の出力ファジィ集合の頭をカットする。例示の場合3でカットする。
【0025】
7)8) 各ルールにおけるこのような処理が全て終了すると、図13に示す如く、総てのルールに対する出力ファジィ集合のマキシム合成を行う。
【0026】
9) 合成された出力ファジィ集合より非ファジィ処理でもって重心を求めて、中央値との偏差である出力ファジィ変数veを算出する。
【0027】
10) 出力ファジィ変数(ve)を実際の車速制御出力である車速偏差値(VE)に変換する。
【0028】
このようなファジィ推論を車速制御に用いた場合、容易に多次元の非線型関数が実現できると共に、非線型関数のパラメータをファジィルールによって感覚的に設定・変更でき、適応性を拡大させることができる。
【0029】
一方図14に示す如く、作業中に排藁カッタ部などからの緊急信号でもってエンジン(16)の駆動が停止したことを前記ラック位置センサ(40)により検出したとき、主変速を中立に戻すもので、前記電子ガバナ(27)のラック位置であるラック値(RACT)がラック最小値(RMIN)より以下(RACT<RMIN)を一定カウント数(A0)つまり一定時間以上検出するとき、エンジン停止フラグをオンとして、中立以外に変速レバー(41)があるときには前記レバーモータ(43)を駆動して該レバー(41)を中立位置に戻すと共に、前記ガバナ(27)での燃料噴射を停止させるエマージェンシー出力を出力させ、前記レバー(41)が中立位置に戻ったときエマージェンシー出力を解除する。この結果エンジン(16)が緊急停止して次にエンジン(16)を始動する場合には、主変速が中立位置以外では始動せず、中立位置にあるときにのみ始動するもので、したがってエンジン(16)緊急停止後の急発進が防止できて安全性を向上させることができる。
【0030】
また図15に示す如く、急激的にエンジン(16)負荷が変化して、目標負荷を越えてしまったときには、前記レバー位置センサ(42)によりそのエンジン負荷に応じた車速となるレバー位置を換算決定して、この換算位置となるレバー位置にモータ(43)でもって変速レバー(41)を駆動制御して、急激な負荷変動に対し車速を対応させるもので、したがって緊急時には無段変速機構(20)及びミッションケース(25)を介して応答する車速センサ(34)のフィードバックに比べ制御遅れなどのない迅速的な対応が行えて、より一層適正な車速制御が可能にできる。
【0031】
【発明の効果】
以上実施例から明らかなように本発明は、エンジン(16)負荷及び車速センサ(34)に基づき車速制御を行う走行変速部材(28)を設け、エンジン(16)回転数を略一定維持する制御を行い乍ら自動車速制御を行わせるコンバインにおいて、穀稈量を検出する供給量センサ(37)を刈取部(8)の刈取り穀稈搬送系路(36)に設け、車速センサ(34)に基づく刈取部(8)の刈取り穀稈搬送速度と前記供給量センサ(37)の穀稈量とに基づき、脱穀部(4)に送られる穀稈供給量を算出し、該穀稈供給量とエンジン(16)負荷とに基づいて自動車速制御を行わせるように構成したもので、車速と同調して変化させる刈取部(8)の刈取り穀稈搬送速度と刈取り穀稈量とにより、脱穀部(4)の負荷が変化するのと時期を合せて車速を変更でき、脱穀負荷が増大するときに略同一タイミングで車速を減速させて走行負荷を低減させることができ、エンジン(16)の負荷変動幅を容易に縮少でき、穀稈が不均一に成育した圃場であってもエンジン(16)負荷が不適正に変化するのを未然に防止でき、エンジン(16)負荷に基づく自動車速制御機能の向上などを容易に図ることができるものである。
【図面の簡単な説明】
【図1】制御回路図。
【図2】コンバインの全体側面図。
【図3】コンバインの全体平面図。
【図4】エンジン駆動系の部分説明図。
【図5】車速制御のフローチャート。
【図6】ファジィ制御のフローチャート。
【図7】エンジンとラック位置の関係を示す特性図。
【図8】穀稈供給量検出のフローチャート。
【図9】三角型ファジィ変数を表す説明図。
【図10】ファジィ変数の各ルールに対する適応度を表す説明図。
【図11】出力ファジィ集合の説明図。
【図12】出力ファジィ集合のカット説明図。
【図13】出力ファジィ集合のマキシム合成説明図。
【図14】エンジン緊急停止時のフローチャート。
【図15】エンジン負荷急激変動時のフローチャート。
【符号の説明】
(4) 脱穀部
(8) 刈取部
(16) エンジン
(28) サーボモータ(走行変速部材)
(34) 車速センサ
(36) 縦搬送装置(刈取り穀稈搬送系路)
(37) 供給量センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a combine that continuously performs a harvesting operation of cutting and threshing a grain culm.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as disclosed in Japanese Patent Application Laid-Open No. 63-308255, when an engine load changes due to a change in work load and an engine speed changes, a vehicle speed is automatically changed to maintain a substantially constant engine speed. There is. Further, as disclosed in Japanese Utility Model Laid-Open Publication No. 56-153653, there is a technique for detecting a threshing load of a threshing unit and automatically changing the vehicle speed .
[0003]
[Problems to be solved by the invention]
According to the conventional technology, after the engine speed changes due to load fluctuation, the vehicle speed is controlled to return the engine speed to a certain range, so when the threshing load increases, the vehicle speed is reduced, and the engine speed decreases. , reduces the threshing load by traveling shift to the low speed side, the engine is easily shorten the time to return to the proper rotational Eze, the field of culms has grown to nonuniform in speed waveform of engine Due to fluctuations, threshing load fluctuations and unspecified time lag between vehicle speed control make it easy to prolong the engine operation time with improper load, and easily improve the vehicle speed control function based on engine load. there is a problem such as that can not aim.
[0004]
[Means for Solving the Problems]
However, the present invention provides a traveling speed change member that performs vehicle speed control based on an engine load and a vehicle speed sensor, and detects a grain culm amount in a combine that performs vehicle speed control while performing control to maintain an engine speed substantially constant . A feed rate sensor to be provided in the cutting grain culm transporting path of the cutting section, and based on the harvesting grain culm transport speed of the cutting section based on the vehicle speed sensor and the grain culm amount of the supply rate sensor, the supply of the grain culm sent to the threshing section. The amount is calculated, and the vehicle speed is controlled based on the supplied amount of culm and the engine load. and, the resulting change the vehicle speed to match the timing to change the load of the threshing section, obtained by reducing the traveling load by decelerating the vehicle speed at substantially the same timing when the threshing load increases, a load fluctuation of the engine Width Even in a field where the grain culm has grown unevenly, it is possible to prevent the engine load from changing improperly, and to easily improve the vehicle speed control function based on the engine load. What you get.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a vehicle speed control circuit diagram, FIG. 2 is an overall side view of the combine, and FIG. 3 is a plan view of the combine, where (1) is a track frame on which a traveling crawler (2) is mounted, and (3) is the truck. A machine stand erected on the frame (1), (4) is a threshing unit in which a feed chain (5) is stretched to the left and a handling cylinder (6) and a processing cylinder (7) are built in, and (8) is a mowing. A reaping unit including a blade and a culm transport mechanism, (9) a straw processing unit (10) facing the end of a straw chain (10), (12) a driver's seat (13) and a driving operation unit (14). A driver's cab, (15) an engine section in which an engine (16) is installed, (17) an engine section (15) disposed in front of the engine section (15), and a grain from the threshing section (4) being lifted ( 18) A grain tank for storing the grains through the tank, and (19) an upper discharge tank for extracting the grains in the grain tank (17) to the outside. , And the is configured to perform continuously reaping-threshing operations.
[0006]
As shown in FIG. 4, the vehicle speed shift of the combine is performed by a variable displacement hydraulic pump (21) and a hydraulic motor (22) constituting a continuously variable transmission mechanism (20), which is an HST, and an engine (16). A transmission case having a drive sprocket (24) for the traveling crawler (2) by interlockingly connecting an input shaft (21a) of the hydraulic pump (21) to an output shaft (16a) of the hydraulic crawler (21) via a belt and a gear transmission mechanism (23). The output shaft (22a) of the hydraulic motor (22) is connected to the engine (16) via the belt and gear transmission mechanism (26) while the output shaft (22a) of the hydraulic motor (22) is operatively connected to the (25). ) Is linked to the output shaft (16a).
[0007]
The engine (16) has an electronic governor (27) for controlling the fuel injection amount of the fuel injection pump with an injection amount adjustment rack to keep the rotation speed constant. A DC servomotor (28) for controlling the plate angle to adjust the hydraulic discharge amount is provided, and the vehicle speed is controlled to increase or decrease by forward / reverse drive of the motor (28).
[0008]
As shown in FIG. 1, a vehicle speed control circuit (29), which is a fuzzy inference vehicle speed calculation circuit for driving and controlling the servo motor (28), includes an automatic switch (30) for automatically controlling the vehicle speed, and the reaper (8). A threshing load sensor (32) that detects a certain level of threshing load, such as a handling cylinder (5) in the threshing unit (4); A straw cutting load sensor (33) for detecting a cutting load of a straw cutter at a certain level or more, a vehicle speed sensor (34) for detecting a vehicle speed, an HST oil pressure sensor (35), and a vertical transport of the cutting unit (8). A feed rate sensor (37) for detecting the feed rate of the cereal stalk fed to the threshing unit (4) based on the thickness of the cereal stalk provided and provided on the clamping guide rod of the device (36) is connected to the input port. Governor to adjust injection volume of injection pump A governor control circuit (38) for driving and controlling a rack position adjusting mechanism (27a) of (27) includes an engine rotation sensor (39) for detecting rotation of the engine (16), and an injection amount of the governor (27). A governor rack position sensor (40) for detecting the position of the adjustment rack is input connected, and the control circuits (29) and (38) are connected for communication, and these sensors (31) (32) (33) ( 34, 35, 37, 39, and 40, based on the detection, the engine speed is controlled and the vehicle speed is controlled based on the emergency stop of the engine and fuzzy inference.
[0009]
A potentiometer-type shift lever position sensor for detecting a turning amount of a main shift lever (41) for setting a target vehicle speed and performing a manual shift operation during automatic control and for driving and controlling the servomotor (28) according to the turning amount. (42), the position sensor (42) is input-connected to the control circuit (29), and the shift lever motor (43) that drives and controls the shift lever (41) to the neutral or high / low speed side. The control circuit (29) is connected to output so that the shift lever (41) is returned to the neutral position via the drive motor (43) when the engine (16) is stopped in an emergency.
[0010]
As is apparent from the above description , the servo speed (28), which is a traveling speed change member for controlling the vehicle speed based on the load of the engine (16) and the vehicle speed sensor (34), is provided, and the vehicle speed for maintaining the engine (16) rotation speed substantially constant is provided. In the combine for controlling, a supply amount sensor (37) for detecting a grain culm amount is provided in a vertical conveying device (36) which is a cutting grain culm conveying system path of a cutting unit (8), and based on a vehicle speed sensor (34). The amount of cereal culm supplied to the threshing unit (4) is calculated based on the culm conveying speed of the reaping unit (8) and the amount of cereal culm by the supply amount sensor (37), and the culm supply amount and the engine (16) are calculated. Car speed control is performed based on the load. The speed of the threshing unit (4) is changed at the same time as the load of the threshing unit (4) is changed according to the mowing grain culm transport speed of the mowing unit (8) and the amount of the mowing grain culm which are changed in synchronization with the vehicle speed. When the load increases, the vehicle speed is reduced at substantially the same timing to reduce the traveling load, and when the threshing load decreases, the vehicle speed is increased at substantially the same timing to increase the traveling load, and the engine (16) the load varying Dohaba scaled down, culms are prevented from unevenly growth was even field engine (16) load varies improperly, automatic vehicle speed control function based on the engine (16) load promote and improve.
[0011]
This embodiment is configured as described above, and the vehicle speed control will be described below with reference to the flowchart of FIG.
[0012]
Now, reference values and detection values of the respective modules are initialized, detection values of the sensors (31) to (35), (37), (39), and (40) are input, and the reaper (8) and the threshing unit ( 4) When an abnormal signal is output from the straw cutter unit or the traveling unit, an emergency stop of the engine (16) is performed when an emergency signal is output, and the sensors (34), (39), (40) during normal operation. ), The engine data is received and the vehicle speed data is counted.
[0013]
Then, a target vehicle speed deviation value (VE) requiring acceleration and deceleration with respect to the current vehicle speed is calculated and output based on fuzzy inference from input data of the engine (16), and the vehicle is controlled to the target vehicle speed to perform traveling. .
[0014]
Next, the fuzzy inference control for calculating the vehicle speed deviation value (VE) will be described with reference to FIGS.
[0015]
1) As shown in FIG. 7, the relationship between the input rack position (fuel injection amount) of the electronic governor (27) and the engine speed is represented by a maximum load curve (RMAX) and a no-load curve (RIDL). The rack position deviation value (RE) and the maximum output deviation value (RM) are calculated based on the above, and the grain culm supply amount change rate (ds (n)) is calculated based on the detection of the supply amount sensor (37). , The rated rotation Nrpm, the maximum target value of the rack that becomes the target maximum injection amount is A, and the no-load value of the rack that becomes the injection amount at no load is B, and the target injection when the load ratio is set to 80%. The value C of the target rack value (RACT), which is the amount, is calculated from the relational expression of 80% = CB / AB. That is, assuming that the actual output data (ract) is D, and the limited maximum injection amount value E output from the control circuit (38) which is an electronic governor controller by constant control of the rotation speed of the engine (16) at that time, the target rack The input value of the fuzzy inference from the value C, the maximum target value A, the rack deviation value RE (= DC), the maximum target deviation value RM (= EA), and the rate of change of the grain culm supply amount (ds (n)). And let In addition, although the constant control of the engine speed (for example, constant control at 2625 rpm) is performed, the rotation sensor (39) is controlled due to the control delay of the rack position adjusting mechanism (27a) or the like, the stepwise control, or the rapid fluctuation of the load. ), The maximum target value (for example, A) determined by the maximum load curve and the limited maximum injection amount E output from the electronic governor controller do not actually match. As shown in FIG. 8, the rate of change of the supply amount is detected by the harvesting transfer calculated from the voltage input value (Vs) of the supply amount sensor (37) and the vehicle speed (v). Speed (vk) (the vehicle speed and the mowing transport speed are synchronized), and the supply amount (S (n)) is constant from the relational expression of S (n) = Vs × vk × α (α is a proportional constant). Calculated for each time and sequentially stored in the ring counter, while the difference ds (n) (ds (n) = between the supply amount (S (m)) before a certain time and the current supply amount (S (n)) S (m) -S (n)) is calculated as the change rate of the supply amount. The setting of the fixed time is such that the grain stalks conveyed by the vertical conveyance device (36) pass through the position of the supply amount sensor (37). The transport time from the time when the grain is supplied to the threshing unit (4) is set, and the grain passing through the position of the sensor (37) is set. There it is an time to be output as supplied engine load threshing section (4).
[0016]
As shown in FIG. 9, membership represented by five fuzzy sets of PB (positive and large), PS (positive and small), ZO (zero), NS (negative and small), and NB (negative and large) These values are normalized to (RE) (ds (n)) (RM) so as to correspond to the function, and are converted into fuzzy variables (re) (ds) (rm).
[0017]
For example, by applying a numerical value to this, when N = 2625 rpm, target load factor is 80%, A = 189, B = 102, C = 172 is calculated, and when D = 176, E = 187, RE = 4. When RM = -2 is calculated, RE = 4 and RM = -2 are input as input data from the electronic governor (27), and ds (n) = 0 is input as the grain culm supply change rate. Are converted to input variables of re = 18, ds = 14 and rm = 12 so as to correspond to the membership function.
[0018]
2) The degree (grade) at which the values of the variables (re), (ds), and (rm) are included in these five sets is determined as the weight of the triangular membership function in FIG.
[0019]
For example,
When re = 18 NB = 0 NS = 4 ZO = 11 PS = 12 PB = 5
When ds = 14 NB = 1 NS = 8 ZO = 15 PS = 8 PB = 1
When rm = 12 NB = 3 NS = 10 ZO = 13 PS = 6 PB = 0
[0020]
3) For each rule, the fitness that is the variable that is the antecedent part of the rule, that is, the fitness of each membership value (re) (ds) (rm) is calculated from FIG.
[0021]
For example, if 0 of the if-then type rule of the fuzzy control is inferred that "if re is ZO, ds is ZO, and rm is NB, then the target vehicle speed deviation ve is ZO", then re = 18 The value of the fitness for the antecedent part “re is ZO” of the rule is 11 from FIG. 10, the value of ds = 14 is 15 for the fitness of “rd is ZO”, and the value of rm = 12 is “rm The fitness for “NB” is 3.
[0022]
4) The fitness of the antecedent part calculated in each rule is obtained by minimum synthesis (take the smallest value from each value). In the example shown, min (11, 15, 3) = 3.
[0023]
5) As shown in FIG. 11, the output fuzzy of each rule consequent is obtained. The figure shows the case where ve = ZO of rule 0.
[0024]
6) As shown in FIG. 12, the head of the output fuzzy set of the consequent part is cut according to the fitness of the antecedent part of each rule. In the case of illustration, it cuts in 3.
[0025]
7) 8) When all such processes for each rule are completed, as shown in FIG. 13, the maximum synthesis of the output fuzzy sets for all the rules is performed.
[0026]
9) The center of gravity is obtained by non-fuzzy processing from the synthesized output fuzzy set, and an output fuzzy variable ve which is a deviation from the median is calculated.
[0027]
10) Convert the output fuzzy variable (ve) into a vehicle speed deviation value (VE) which is an actual vehicle speed control output.
[0028]
When such fuzzy inference is used for vehicle speed control, a multidimensional nonlinear function can be easily realized, and the parameters of the nonlinear function can be intuitively set and changed by fuzzy rules, thereby expanding the adaptability. it can.
[0029]
On the other hand, as shown in FIG. 14, when the rack position sensor (40) detects that the driving of the engine (16) has been stopped by an emergency signal from a straw cutter unit or the like during the work, the main shift is returned to neutral. When the rack value (RACT), which is the rack position of the electronic governor (27), is smaller than the minimum rack value (RMIN) (RACT <RMIN) for a predetermined count (A0), that is, for a predetermined time or more, the engine is stopped. When the flag is turned on and there is a shift lever (41) other than neutral, the lever motor (43) is driven to return the lever (41) to the neutral position, and fuel injection by the governor (27) is stopped. Emergency output is output, and when the lever (41) returns to the neutral position, the emergency output is released. As a result, when the engine (16) is emergency-stopped and the engine (16) is started next, the main shift does not start except in the neutral position, and starts only when the main shift is in the neutral position. 16) A sudden start after an emergency stop can be prevented, and safety can be improved.
[0030]
Further, as shown in FIG. 15, when the load of the engine (16) suddenly changes and exceeds the target load, the lever position sensor (42) converts the lever position corresponding to the vehicle speed according to the engine load. The speed change lever (41) is driven and controlled by the motor (43) to the lever position that is the conversion position to make the vehicle speed correspond to a sudden load change. Therefore, in an emergency, the continuously variable transmission mechanism ( Compared with the feedback from the vehicle speed sensor (34) which responds via the transmission case (20) and the transmission case (25), it is possible to perform a quick response without control delay or the like, thereby enabling more appropriate vehicle speed control.
[0031]
【The invention's effect】
The present invention As is clear from the above examples, the engine (16) provided with a travel gear member The load and the vehicle speed control based on the vehicle speed sensor (34) (28), the engine (16) control of substantially constant maintaining the rotational speed In the combine for controlling the vehicle speed while performing the cutting operation, a supply amount sensor (37) for detecting the amount of cereal culm is provided in the reaping culm conveying path (36) of the reaping unit (8), and the vehicle speed sensor (34) is provided. Based on the harvested grain culm transport speed of the cutting unit (8) and the grain culm amount of the supply amount sensor (37) based on the culm supply amount, the cereal culm supply amount sent to the threshing unit (4) is calculated. The vehicle speed control is performed based on the load of the engine (16), and the threshing unit is controlled by the harvesting grain culm transport speed of the harvesting unit (8) and the amount of the harvested grain culm, which are changed in synchronization with the vehicle speed. When the load changes in (4) Change speed Te can, then decelerates the vehicle speed at substantially the same timing when the threshing load increases it is possible to reduce the traveling load, can be easily reduced small load variation range of the engine (16), it is culms Even if the field is unevenly grown, it is possible to prevent the engine (16) load from changing improperly, and to easily improve the vehicle speed control function based on the engine (16) load. It is.
[Brief description of the drawings]
FIG. 1 is a control circuit diagram.
FIG. 2 is an overall side view of the combine.
FIG. 3 is an overall plan view of the combine.
FIG. 4 is a partial explanatory view of an engine drive system.
FIG. 5 is a flowchart of vehicle speed control.
FIG. 6 is a flowchart of fuzzy control.
FIG. 7 is a characteristic diagram showing a relationship between an engine and a rack position.
FIG. 8 is a flowchart of the detection of the supply amount of grain stalks.
FIG. 9 is an explanatory diagram showing a triangular fuzzy variable.
FIG. 10 is an explanatory diagram showing the fitness of each rule of a fuzzy variable.
FIG. 11 is an explanatory diagram of an output fuzzy set.
FIG. 12 is an explanatory diagram of a cut of an output fuzzy set.
FIG. 13 is an explanatory diagram of Maxim synthesis of an output fuzzy set.
FIG. 14 is a flowchart at the time of engine emergency stop.
FIG. 15 is a flowchart at the time of a sudden change in engine load.
[Explanation of symbols]
(4) Threshing section (8) Cutting section (16) Engine (28) Servo motor (traveling member)
(34) Vehicle speed sensor (36) Vertical transport device (cutting grain culm transport system)
(37) Supply amount sensor

Claims (1)

エンジン(16)負荷及び車速センサ(34)に基づき車速制御を行う走行変速部材(28)を設け、エンジン(16)回転数を略一定維持する制御を行い乍ら自動車速制御を行わせるコンバインにおいて、穀稈量を検出する供給量センサ(37)を刈取部(8)の刈取り穀稈搬送系路(36)に設け、車速センサ(34)に基づく刈取部(8)の刈取り穀稈搬送速度と前記供給量センサ(37)の穀稈量とに基づき、脱穀部(4)に送られる穀稈供給量を算出し、該穀稈供給量とエンジン(16)負荷とに基づいて自動車速制御を行わせるように構成したことを特徴とするコンバイン。In a combine, a traveling speed change member (28) for controlling the vehicle speed based on the load of the engine (16) and the vehicle speed sensor (34) is provided, and the speed of the engine (16) is controlled while maintaining the rotation speed substantially constant. A supply amount sensor (37) for detecting the amount of grain culm is provided in the reaping grain culm transport system path (36) of the reaper (8), and the harvesting grain culm transport speed of the reaper (8) based on the vehicle speed sensor (34). And calculating the amount of cereal culm supplied to the threshing unit (4) based on the corn culm amount of the supply amount sensor (37) and the vehicle speed control based on the cereal culm supply amount and the engine (16) load. Characterized in that the combine is performed.
JP35599091A 1991-12-20 1991-12-20 Combine Expired - Fee Related JP3563416B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP35599091A JP3563416B2 (en) 1991-12-20 1991-12-20 Combine
JP31400698A JPH11227501A (en) 1991-12-20 1998-10-15 Combine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35599091A JP3563416B2 (en) 1991-12-20 1991-12-20 Combine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP31400698A Division JPH11227501A (en) 1991-12-20 1998-10-15 Combine

Publications (2)

Publication Number Publication Date
JPH05172223A JPH05172223A (en) 1993-07-09
JP3563416B2 true JP3563416B2 (en) 2004-09-08

Family

ID=18446767

Family Applications (2)

Application Number Title Priority Date Filing Date
JP35599091A Expired - Fee Related JP3563416B2 (en) 1991-12-20 1991-12-20 Combine
JP31400698A Pending JPH11227501A (en) 1991-12-20 1998-10-15 Combine

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP31400698A Pending JPH11227501A (en) 1991-12-20 1998-10-15 Combine

Country Status (1)

Country Link
JP (2) JP3563416B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105549484A (en) * 2016-01-22 2016-05-04 济南大学 Corn threshing and threshing intelligent control system based on DSP

Also Published As

Publication number Publication date
JPH05172223A (en) 1993-07-09
JPH11227501A (en) 1999-08-24

Similar Documents

Publication Publication Date Title
US11612102B2 (en) Drive system for a harvester
JP3563416B2 (en) Combine
JP2538297Y2 (en) Combine drive controller
JP3240444B2 (en) Combine
JP3652626B2 (en) Combine
JP2002192982A (en) Combine harvester
JP3138882B2 (en) Combine speed controller
JP3831243B2 (en) Combine
JP3138881B2 (en) Vehicle speed control device for mobile agricultural machine
JP2002054473A (en) Combine
JP2736884B2 (en) Harvester vehicle speed control device
JP3146433B2 (en) Automatic constant rotation control mechanism for work equipment
JP3138880B2 (en) Vehicle speed control device for mobile agricultural machine
JP3138879B2 (en) Combine
JP3121004B2 (en) Power detector for working unit in harvester
JP3089330B2 (en) Combine speed controller
JP2624400B2 (en) Combine speed controller
JP3440478B2 (en) Combine speed control system
JP2648863B2 (en) Harvester vehicle speed control device
JP2516363B2 (en) Vehicle speed control device for work vehicle
JP3138883B2 (en) Mobile farm equipment steering system
JP3108167B2 (en) Combine speed controller
JP2541447Y2 (en) Combine
JPH09294453A (en) Car speed controlling device for combine harvester
JPH11146723A (en) Combine harvester

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040603

LAPS Cancellation because of no payment of annual fees