JP2002192982A - Combine harvester - Google Patents

Combine harvester

Info

Publication number
JP2002192982A
JP2002192982A JP2001295696A JP2001295696A JP2002192982A JP 2002192982 A JP2002192982 A JP 2002192982A JP 2001295696 A JP2001295696 A JP 2001295696A JP 2001295696 A JP2001295696 A JP 2001295696A JP 2002192982 A JP2002192982 A JP 2002192982A
Authority
JP
Japan
Prior art keywords
engine
vehicle speed
rotation
load
threshing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001295696A
Other languages
Japanese (ja)
Inventor
Wataru Nakagawa
渉 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Agricultural Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Agricultural Equipment Co Ltd filed Critical Yanmar Agricultural Equipment Co Ltd
Priority to JP2001295696A priority Critical patent/JP2002192982A/en
Publication of JP2002192982A publication Critical patent/JP2002192982A/en
Pending legal-status Critical Current

Links

Landscapes

  • Harvester Elements (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent drop in threshing performance caused by the variation of rotation of an engine 16 according to a working load by reducing speed by automatic vehicle speed control until the rotation of the engine 16 is decreased, and slowing the speed while the rotation of the engine 16 is kept almost constant to easily eliminate such malfunction that the rotation of a threshing cylinder 6 is varied. SOLUTION: A drive transmission member 28 conducting vehicle speed control based on load of the engine 16 and a vehicle speed sensor 34 is installed, and automatic vehicle speed control is conducted while the rotation of the engine 16 is kept almost constant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は穀稈を連続的に刈取
って脱穀するコンバインに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combine for continuously cutting and threshing grain culms.

【0002】[0002]

【発明が解決しようとする課題】従来、特開昭63−3
08255号公報に示す如く、作業負荷変化によってエ
ンジン負荷が変化してエンジン回転数が変化したとき、
自動的に車速を変更する技術がある。また、実開昭56
−153653号公報に示す如く、脱穀部の脱穀負荷を
検出して自動的に車速を変更させる技術がある。しかし
乍ら、前記従来技術は、エンジンの回転が低下した後、
車速制御を行ってエンジンの回転を復帰させるから、エ
ンジンの回転が一定に保たれず、作業負荷変化によって
扱胴の回転が変動する不具合がある。
SUMMARY OF THE INVENTION Conventionally, Japanese Unexamined Patent Publication No.
As shown in Japanese Patent Application Laid-Open No. 08255, when the engine load changes due to a change in the work load and the engine speed changes,
There is a technology that automatically changes the vehicle speed. In addition, 56
As disclosed in JP-A-155363, there is a technique for detecting a threshing load of a threshing unit and automatically changing the vehicle speed. However, the above-mentioned prior art does not
Since the rotation of the engine is restored by performing the vehicle speed control, the rotation of the engine is not kept constant, and the rotation of the handling cylinder fluctuates due to a change in the work load.

【0003】[0003]

【課題を解決するための手段】然るに、本発明は、エン
ジン負荷及び車速センサに基づき車速制御を行う走行変
速部材を設け、エンジン回転数を略一定維持する制御を
行い乍ら自動車速制御を行わせるもので、エンジンの回
転が低下するまでに自動車速制御により減速させ、エン
ジンの回転を略一定に保ち乍ら車速を下げることによっ
て扱胴の回転が変動する不具合を容易になくし得、作業
負荷によってエンジン回転が変化して脱穀性能が低下す
るのを未然に防止し得るものである。
According to the present invention, there is provided a traveling speed change member for controlling a vehicle speed based on an engine load and a vehicle speed sensor, and performs a vehicle speed control while performing a control for maintaining an engine speed substantially constant. The vehicle speed is reduced by the vehicle speed control before the engine speed decreases, and the problem of fluctuations in the rotation of the handling cylinder can be easily eliminated by lowering the vehicle speed while keeping the engine speed substantially constant. Thus, it is possible to prevent the threshing performance from being lowered due to a change in the engine speed.

【0004】[0004]

【発明の実施の形態】以下本発明の一実施例を図面に基
づいて詳述する。図1は車速制御回路図、図2はコンバ
インの全体側面図、図3は同平面図であり、図中(1)
は走行クローラ(2)を装設するトラックフレーム、
(3)は前記トラックフレーム(1)上に架設する機
台、(4)はフィードチェン(5)を左側に張架し扱胴
(6)及び処理胴(7)を内蔵している脱穀部、(8)
は刈刃及び穀稈搬送機構などを備える刈取部、(9)は
排藁チェン(10)(11)終端を臨ませる排藁処理
部、(12)は運転席(13)及び運転操作部(14)
を備える運転台、(15)はエンジン(16)を内設す
るエンジン部、(17)は前記エンジン部(15)前方
に配設して脱穀部(4)からの穀粒を揚穀筒(18)を
介し溜める穀粒タンク、(19)は前記穀粒タンク(1
7)内の穀粒を外側に取出す上部排出オーガであり、連
続的に刈取り・脱穀作業を行うように構成している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail with reference to the drawings. 1 is a vehicle speed control circuit diagram, FIG. 2 is an overall side view of the combine, and FIG.
Is a track frame on which the traveling crawler (2) is mounted,
(3) is a machine frame mounted on the track frame (1), (4) is a threshing unit which stretches a feed chain (5) to the left side and has a built-in handling cylinder (6) and a processing cylinder (7). , (8)
Is a mowing unit having a cutting blade and a grain culm transport mechanism, etc., (9) is a straw chain (10), a straw processing unit facing the end of (11), (12) is a driver's seat (13) and a driving operation unit ( 14)
A driver's cab, (15) an engine section in which an engine (16) is installed, (17) an engine section (15) disposed in front of the engine section (15), and a grain from the threshing section (4) being lifted. 18) a grain tank to be stored via the above-mentioned grain tank (1);
7) This is an upper discharge auger that takes out the inner grains to the outside, and is configured to continuously perform cutting and threshing operations.

【0005】図4に示す如く、このコンバインの車速の
変速はHSTである無段変速機構(20)を構成する可
変容量形油圧ポンプ(21)と油圧モータ(22)とで
行うもので、エンジン(16)の出力軸(16a)にベ
ルト及びギヤ伝達機構(23)を介し前記油圧ポンプ
(21)の入力軸(21a)を連動連結させ、前記走行
クローラ(2)の駆動スプロケット(24)を有するミ
ッションケース(25)に前記油圧モータ(22)の出
力軸(22a)を連動連結させる一方、前記扱胴(6)
の扱胴入力軸(6a)をベルト及びギヤ伝達機構(2
6)を介しエンジン(16)の出力軸(16a)に連動
連結させている。
[0005] As shown in FIG. 4, the vehicle speed of the combine is changed by a variable displacement hydraulic pump (21) and a hydraulic motor (22) constituting a continuously variable transmission mechanism (20) which is an HST. The input shaft (21a) of the hydraulic pump (21) is operatively connected to the output shaft (16a) of (16) via a belt and a gear transmission mechanism (23), and the drive sprocket (24) of the traveling crawler (2) is connected. The output shaft (22a) of the hydraulic motor (22) is operatively connected to the transmission case (25) having the
The input shaft (6a) of the cylinder is connected to the belt and gear transmission mechanism (2).
6) and is linked to the output shaft (16a) of the engine (16) via the link (6).

【0006】また、前記エンジン(16)には燃料噴射
ポンプの燃料噴射量を噴射量調整用ラックで制御して回
転数を一定保持する電子ガバナ(27)を有すると共
に、前記油圧ポンプ(21)には斜板角を制御して油圧
吐出量の調整を行うDC形サーボモータ(28)を有し
て、該モータ(28)の正逆駆動でもって車速の増減速
制御を行うように構成している。
The engine (16) has an electronic governor (27) for controlling a fuel injection amount of a fuel injection pump by an injection amount adjusting rack to maintain a constant rotation speed, and the hydraulic pump (21). Has a DC-type servomotor (28) for controlling the swash plate angle to adjust the hydraulic discharge amount, and controls the vehicle speed to be increased or decreased by forward / reverse drive of the motor (28). ing.

【0007】そして図1に示す如く、前記サーボモータ
(28)を駆動制御するファジィ推論車速演算回路であ
る車速制御回路(29)に、車速の自動制御を行う自動
スイッチ(30)と、前記刈取部(8)での刈取負荷の
一定以上を検出する刈取負荷センサ(31)と、前記脱
穀部(4)での扱胴(5)など脱穀負荷の一定以上を検
出する脱穀負荷センサ(32)と、排藁カッタでの切断
負荷の一定以上を検出する排藁切断負荷センサ(33)
と、車速を検出する車速センサ(34)と、HST油圧
センサ(35)と、前記刈取部(8)の縦搬送装置(3
6)の挾扼ガイド杆に設けて搬送される穀稈の層厚より
脱穀部(4)に送り込まれる穀稈供給量を検出する供給
量センサ(37)とを入力接続させる一方、燃料噴射ポ
ンプの噴射量を調整するガバナ(27)のラック位置調
節機構(27a)を駆動制御するガバナ制御回路(3
8)に、前記エンジン(16)での回転を検出するエン
ジン回転センサ(39)と、前記ガバナ(27)での噴
射量調整用ラックの位置を検出するガバナラック位置セ
ンサ(40)とを入力接続させ、前記制御回路(29)
(38)間を通信接続させて、これら各センサ(31)
(32)(33)(34)(35)(37)(39)
(40)の検出に基づいてエンジン回転数の一定制御や
エンジンの緊急停止やファジィ推論に基づく車速制御を
行うように構成している。
As shown in FIG. 1, a vehicle speed control circuit (29), which is a fuzzy inference vehicle speed calculation circuit for driving and controlling the servo motor (28), includes an automatic switch (30) for automatically controlling the vehicle speed, and the reaper. A threshing load sensor (31) for detecting a certain level of the threshing load in the section (8), and a threshing load sensor (32) for detecting a certain level of the threshing load such as the handling cylinder (5) in the threshing section (4). And a straw cutting load sensor (33) for detecting a certain or more cutting load on the straw cutter
A vehicle speed sensor (34) for detecting a vehicle speed, an HST oil pressure sensor (35), and a vertical transfer device (3) for the cutting unit (8).
The fuel injection pump is connected to a feed rate sensor (37) which detects the feed rate of the grain culm fed to the threshing unit (4) based on the thickness of the grain culm conveyed provided on the clamping guide rod of (6). Governor control circuit (3) for driving and controlling the rack position adjusting mechanism (27a) of the governor (27) for adjusting the injection amount of the governor (27)
8) An engine rotation sensor (39) for detecting the rotation of the engine (16) and a governor rack position sensor (40) for detecting the position of the injection amount adjusting rack in the governor (27) are input. Connecting the control circuit (29)
(38) are connected for communication, and each of these sensors (31)
(32) (33) (34) (35) (37) (39)
Based on the detection of (40), constant control of the engine speed, emergency stop of the engine, and vehicle speed control based on fuzzy inference are performed.

【0008】また自動制御時での目標車速の設定や手動
変速操作を行う主変速レバー(41)の回動量を検出し
てこの回動量に応じ前記サーボモータ(28)を駆動制
御するポテンショメータ型変速レバー位置センサ(4
2)を設けるもので、該位置センサ(42)を前記制御
回路(29)に入力接続させると共に、前記変速レバー
(41)を中立或いは高低速側に駆動制御する変速レバ
ーモータ(43)に前記制御回路(29)を出力接続さ
せて、前記エンジン(16)の緊急停止時には駆動モー
タ(43)を介し変速レバー(41)を中立位置に戻す
ように構成している。
A potentiometer-type transmission for detecting the amount of rotation of a main shift lever (41) for setting a target vehicle speed and performing a manual gear shift operation during automatic control and for controlling the drive of the servomotor (28) according to the amount of rotation. Lever position sensor (4
2), wherein the position sensor (42) is input-connected to the control circuit (29), and the shift lever motor (43) that drives and controls the shift lever (41) to the neutral or high / low speed side. The control circuit (29) is connected to the output so that the shift lever (41) is returned to the neutral position via the drive motor (43) when the engine (16) is stopped in an emergency.

【0009】上記のように、穀稈を刈取って脱穀する収
穫作業を連続的に行うコンバインにおいて、エンジン
(16)出力を制御する電子ガバナ(27)と、走行ク
ローラ(2)駆動速度を制御する車速制御コントローラ
である車速制御回路(29)を搭載し、収穫作業負荷及
び走行負荷の変動などに対して電子ガバナ(27)によ
りエンジン(16)を適正回転に維持し、過負荷によっ
てエンジン(16)回転が変更されて収穫作業速度が変
化する不具合をなくし、またエンジン(16)回転が低
下して走行クローラ(2)駆動力が不足する不具合をな
くし、車速制御回路(29)による走行クローラ(2)
駆動速度制御を適正に行わせると共に、収穫作業負荷に
基づいて車速制御を自動的に行わせ、収穫作業負荷の増
減変化に比例させて走行クローラ(2)駆動速度を増減
変更させ、過負荷を防止し乍ら刈取り脱穀する穀稈量を
増減変更し、作業者の人為運転操作の簡略化並びに収穫
作業能率の向上などを図るもので、エンジン(16)負
荷及び車速センサ(34)に基づき車速制御を行う走行
変速部材であるサーボモータ(28)を設け、エンジン
(16)回転数を略一定維持する制御を行い乍ら自動車
速制御を行わせ、例えば脱穀部(4)に送られる穀稈の
供給量の変化などに基づき、エンジン(16)の回転が
低下するまでに自動車速制御により減速させ、エンジン
(16)の回転を略一定に保ち乍ら車速を下げることに
よって扱胴(6)の回転が変動する不具合をなくし、作
業負荷によってエンジン(16)回転が変化して脱穀性
能が低下するのを未然に防止する。
As described above, in a combine harvester that continuously harvests culms by cutting and threshing, the electronic governor (27) for controlling the output of the engine (16) and the driving speed of the traveling crawler (2) are controlled. A vehicle speed control circuit (29), which is a vehicle speed control controller, is mounted. The electronic governor (27) keeps the engine (16) at an appropriate speed with respect to fluctuations in harvesting work load, running load, and the like. 16) Eliminating the problem that the rotation speed is changed and the harvesting operation speed is changed, and eliminating the problem that the engine (16) rotation is reduced and the traveling crawler (2) is insufficient in driving force, and the traveling speed crawler by the vehicle speed control circuit (29) is eliminated. (2)
The driving speed control is performed properly, and the vehicle speed control is automatically performed based on the harvesting work load. The driving speed of the traveling crawler (2) is increased / decreased in proportion to the increase / decrease of the harvesting work load to reduce the overload. The amount of culm to be harvested and threshing is increased or decreased while preventing the operation, thereby simplifying the manual operation of the operator and improving the efficiency of the harvesting operation. A servomotor (28), which is a traveling speed change member for controlling the vehicle, is provided to control the speed of the vehicle while controlling the rotation speed of the engine (16) to be substantially constant. For example, a grain culm sent to the threshing unit (4) The speed of the engine (16) is reduced by the vehicle speed control before the rotation of the engine (16) decreases based on a change in the supply amount of the engine (16), and the vehicle speed is reduced by keeping the rotation of the engine (16) substantially constant to reduce the vehicle speed. Eliminate the problem of rotation varies, the engine (16) rotation is changed by the workload threshing performance to prevent a reduction.

【0010】本実施例は上記の如く構成するものにし
て、以下図5のフローチャートを参照してこの車速制御
を説明する。
This embodiment is configured as described above, and this vehicle speed control will be described below with reference to the flowchart of FIG.

【0011】今各モジュールである基準値や検出値が初
期化され、各センサ(31)〜(35)(37)(3
9)(40)での検出値が入力され、刈取部(8)や脱
穀部(4)や排藁カッタ部や走行部での異常作業時にあ
って、緊急信号が出力されるときエンジン(16)の緊
急停止が行われると共に、正常作業時各センサ(34)
(39)(40)の検出に基づくエンジンデータの受信
や車速データのカウントが行われる。
Now, reference values and detected values of the respective modules are initialized, and the sensors (31) to (35) (37) (3)
9) When the detection value at (40) is input and the emergency signal is output at the time of abnormal work in the mowing unit (8), threshing unit (4), straw cutter unit, or traveling unit, the engine (16) ) Is performed, and each sensor (34) is operated during normal operation.
(39) Reception of engine data and counting of vehicle speed data based on the detection in (40) are performed.

【0012】そしてエンジン(16)の入力データから
現在の車速に対する増減速を必要とする目標の車速偏差
値(VE)をファジィ推論に基づき演算出力させて目標
の車速に制御しての走行を行うものである。
Then, a target vehicle speed deviation value (VE) requiring acceleration / deceleration with respect to the current vehicle speed is calculated and output based on fuzzy inference from input data of the engine (16), and the vehicle is controlled to the target vehicle speed to perform traveling. Things.

【0013】次に図6乃至図7を参照して車速偏差値
(VE)を算出するうえでのファジィ推論制御を説明す
る。
Next, the fuzzy inference control for calculating the vehicle speed deviation value (VE) will be described with reference to FIGS.

【0014】1) 図7に示す如き、入力される電子ガ
バナ(27)のラック位置(燃料噴射量)とエンジン回
転数との関係を最大負荷曲線(RMAX)及び無負荷曲
線(RIDL)で表す特性図に基づきラック位置偏差値
(RE)と最大出力偏差値(RM)を算出すると共に、
前記供給量センサ(37)の検出に基づいて穀稈供給量
変化率(ds(n))を算出するもので、定格回転Nr
pm、目標の最大噴射量となるラックの最大目標値が
A、無負荷時の噴射量となるラックの無負荷値がBとな
って、負荷率80%を設定したときの目標噴射量である
目標ラック値(RACT)の値Cが、80%=C−B/
A−Bの関係式から算出される。つまり実際の出力のデ
ータ(ract)をD、そのときエンジン(16)の回
転数の一定制御により電子ガバナコントローラである制
御回路(38)から出力される制限最大噴射量値Eとす
ると、目標ラック値C、最大目標値Aからラック偏差値
RE(=D−C)、最大目標偏差値RM(=E−A)と
穀稈供給量変化率(ds(n))とをファジィ推論の入
力値とさせる。なお、エンジンの回転数の一定制御(例
えば2625rpm一定制御)を行っているが、ラック
位置調節機構(27a)等の制御遅れや段階的な制御や
負荷の急激な変動等により、回転センサ(39)の値が
同じでも、最大負荷曲線により決定される最大目標値
(例えばA)と電子ガバナコントローラから出力される
制限最大噴射量Eは、実際上一致しない。(但し一致す
る場合もありうる。)また図8に示す如く、供給量変化
率の検出は、前記供給量センサ(37)の電圧入力値
(Vs)と、車速(v)より算出する刈取搬送速度(v
k)(車速と刈取搬送速度とは同調)とから行うもの
で、供給量(S(n))はS(n)=Vs×vk×α
(αは比例定数)の関係式より一定時間毎に算出して、
リングカウンタに順次記憶させる一方、一定時間前の供
給量(S(m))と現在供給量(S(n))との差ds
(n)(ds(n)=S(m)−S(n))を供給量変
化率として算出するものであり、この一定時間の設定は
縦搬送装置(36)で搬送される穀稈が供給量センサ
(37)位置を通過した時点より脱穀部(4)に供給さ
れるまでの搬送時間に設定して、前記センサ(37)位
置を通過した穀稈が脱穀部(4)に供給されエンジン負
荷として出力されるまでの時間とするものである。
1) As shown in FIG. 7, the relationship between the input rack position (fuel injection amount) of the electronic governor (27) and the engine speed is represented by a maximum load curve (RMAX) and a no-load curve (RIDL). The rack position deviation value (RE) and the maximum output deviation value (RM) are calculated based on the characteristic diagram,
The change rate (ds (n)) of the grain culm supply amount is calculated based on the detection of the supply amount sensor (37).
pm, the maximum target value of the rack that becomes the target maximum injection amount is A, the no-load value of the rack that becomes the injection amount at no load is B, and the target injection amount when the load ratio is set to 80%. The value C of the target rack value (RACT) is 80% = C−B /
It is calculated from the relational expression AB. That is, assuming that the actual output data (ract) is D, and the limited maximum injection amount value E output from the control circuit (38) which is an electronic governor controller by constant control of the rotation speed of the engine (16) at that time, the target rack The input value of the fuzzy inference from the value C, the maximum target value A to the rack deviation value RE (= DC), the maximum target deviation value RM (= EA), and the change rate of the grain culm supply amount (ds (n)). And let Although constant control of the engine speed (for example, constant control at 2625 rpm) is performed, the rotation sensor (39) is controlled due to a control delay of the rack position adjusting mechanism (27a), a stepwise control, a sudden change in load, or the like. ), The maximum target value (for example, A) determined by the maximum load curve does not substantially match the limited maximum injection amount E output from the electronic governor controller. As shown in FIG. 8, the rate of change of the supply amount is detected by the reaping conveyance calculated from the voltage input value (Vs) of the supply amount sensor (37) and the vehicle speed (v). Speed (v
k) (the vehicle speed and the mowing transport speed are synchronized), and the supply amount (S (n)) is S (n) = Vs × vk × α
(Α is a proportional constant) is calculated at regular intervals from the relational expression.
The difference ds between the supply amount (S (m)) before a certain time and the current supply amount (S (n)) is stored in the ring counter sequentially.
(N) (ds (n) = S (m) -S (n)) is calculated as the rate of change in the supply amount. The conveying time from the point of passing the supply amount sensor (37) to the time of supply to the threshing unit (4) is set, and the cereal stem that has passed the position of the sensor (37) is supplied to the threshing unit (4). This is the time until output as the engine load.

【0015】そして図9に示す如く、PB(正で大き
い)、PS(正で小さい)、ZO(ゼロ)、NS(負で
小さい)、NB(負で大きい)の5つファジィ集合で表
されるメンバシップ関数に対応するようにこれら値の
(RE)(ds(n))(RM)の正規化が行われてフ
ァジィ変数(re)(ds)(rm)に変換される。
[0015] As shown in Fig. 9, it is represented by five fuzzy sets of PB (positive and large), PS (positive and small), ZO (zero), NS (negative and small), and NB (negative and large). These values are normalized to (RE) (ds (n)) (RM) so as to correspond to the membership functions, and are converted into fuzzy variables (re) (ds) (rm).

【0016】例えばこれに数値をあてはめ説明すると、
N=2625rpm、目標負荷率を80%、A=18
9、B=102とするとき、C=172が算出され、D
=176、E=187のとき、RE=4、RM=−2が
算出されて、電子ガバナ(27)からの入力データとし
てRE=4、RM=−2が、また穀稈供給量変化率とし
てds(n)=0が入力されるとき、メンバシップ関数
に対応するようにre=18、ds=14、rm=12
の入力変数に変換が行われる。
For example, by applying a numerical value to this,
N = 2625 rpm, target load factor 80%, A = 18
9, when B = 102, C = 172 is calculated, and D
= 176, E = 187, RE = 4, RM = -2 are calculated, and RE = 4, RM = -2 as input data from the electronic governor (27), and the grain culm supply amount change rate When ds (n) = 0 is input, re = 18, ds = 14, rm = 12 so as to correspond to the membership function.
Is converted to the input variables of

【0017】2) 変数(re)(ds)(rm)の値
がこれら5つの集合に含まれる度合(グレード)を図9
の三角型のメンバシップ関数の重みとしてそれぞれ求め
る。
2) The degree (grade) at which the values of the variables (re), (ds), and (rm) are included in these five sets is shown in FIG.
Are calculated as weights of the triangular membership function.

【0018】例えば、 re=18の場合 NB=0 NS=4 ZO=11
PS=12 PB=5 ds=14の場合 NB=1 NS=8 ZO=15
PS=8 PB=1 rm=12の場合 NB=3 NS=10 ZO=13
PS=6 PB=0
For example, if re = 18, NB = 0 NS = 4 ZO = 11
When PS = 12 PB = 5 ds = 14 NB = 1 NS = 8 ZO = 15
PS = 8 PB = 1 When rm = 12 NB = 3 NS = 10 ZO = 13
PS = 6 PB = 0

【0019】3) 各ルールに対してルールの前件部で
ある変数つまり各メンバシップ値(re)(ds)(r
m)の適応度を図10などより算出する。
3) For each rule, a variable that is the antecedent of the rule, that is, each membership value (re) (ds) (r)
The fitness of m) is calculated from FIG.

【0020】例えば、ファジィ制御のif−then型
式ルールの0で、「もしreがZOで、dsがZOで、
rmがNBならば、目標の車速偏差値veをZOとす
る」と推論すると、re=18の値がルールの前件部
「reがZO」に対する適応度は図10より11、また
ds=14の値が「rdがZO」に対する適応度は1
5、さらにrm=12の値が「rmがNB」に対する適
応度は3となる。
For example, if the if-then type rule of fuzzy control is 0, "if re is ZO, ds is ZO,
If rm is NB, the target vehicle speed deviation value ve is assumed to be ZO. "If the value of re = 18 is 11, the fitness for the antecedent part" re is ZO "of the rule is 11 from FIG. 10, and ds = 14. Is "1 for rd is ZO".
5, and the value of rm = 12 has a fitness of 3 for “rm is NB”.

【0021】4) 各ルールにおいてそれぞれ算出され
る前件部の適応度をミニマム合成(各値の中から1番小
さな値をとる)して求める。例示の場合min(11、
15、3)=3。
4) The fitness of the antecedent part calculated in each rule is obtained by minimum synthesis (taking the smallest value from each value). In the case of the example, min (11,
15, 3) = 3.

【0022】5) 図11に示す如く、各ルール後件部
の出力ファジィを求める。同図はルール0のve=ZO
の場合。
5) As shown in FIG. 11, an output fuzzy of each rule consequent is obtained. The figure shows ve = ZO of rule 0
in the case of.

【0023】6) 図12に示す如く、各ルールの前件
部の適応度で後件部の出力ファジィ集合の頭をカットす
る。例示の場合3でカットする。
6) As shown in FIG. 12, the head of the output fuzzy set of the consequent part is cut by the fitness of the antecedent part of each rule. In the case of illustration, it cuts in 3.

【0024】7)8) 各ルールにおけるこのような処
理が全て終了すると、図13に示す如く、総てのルール
に対する出力ファジィ集合のマキシム合成を行う。
7) 8) When all such processes for each rule are completed, as shown in FIG. 13, the maximal synthesis of output fuzzy sets for all rules is performed.

【0025】9) 合成された出力ファジィ集合より非
ファジィ処理でもって重心を求めて、中央値との偏差で
ある出力ファジィ変数veを算出する。
9) The center of gravity is obtained by non-fuzzy processing from the synthesized output fuzzy set, and an output fuzzy variable ve which is a deviation from the median is calculated.

【0026】10) 出力ファジィ変数(ve)を実際
の車速制御出力である車速偏差値(VE)に変換する。
10) Convert the output fuzzy variable (ve) into a vehicle speed deviation value (VE) which is an actual vehicle speed control output.

【0027】このようなファジィ推論を車速制御に用い
た場合、容易に多次元の非線型関数が実現できると共
に、非線型関数のパラメータをファジィルールによって
感覚的に設定・変更でき、適応性を拡大させることがで
きる。
When such fuzzy inference is used for vehicle speed control, a multidimensional nonlinear function can be easily realized, and parameters of the nonlinear function can be set and changed intuitively by fuzzy rules, thereby expanding adaptability. Can be done.

【0028】一方図14に示す如く、作業中に排藁カッ
タ部などからの緊急信号でもってエンジン(16)の駆
動が停止したことを前記ラック位置センサ(40)によ
り検出したとき、主変速を中立に戻すもので、前記電子
ガバナ(27)のラック位置であるラック値(RAC
T)がラック最小値(RMIN)より以下(RACT<
RMIN)を一定カウント数(A0)つまり一定時間以
上検出するとき、エンジン停止フラグをオンとして、中
立以外に変速レバー(41)があるときには前記レバー
モータ(43)を駆動して該レバー(41)を中立位置
に戻すと共に、前記ガバナ(27)での燃料噴射を停止
させるエマージェンシー出力を出力させ、前記レバー
(41)が中立位置に戻ったときエマージェンシー出力
を解除する。この結果エンジン(16)が緊急停止して
次にエンジン(16)を始動する場合には、主変速が中
立位置以外では始動せず、中立位置にあるときにのみ始
動するもので、したがってエンジン(16)緊急停止後
の急発進が防止できて安全性を向上させることができ
る。
On the other hand, as shown in FIG. 14, when the rack position sensor (40) detects that the driving of the engine (16) has been stopped by an emergency signal from a straw cutter or the like during the work, the main shift is performed. The rack value (RAC) which is the rack position of the electronic governor (27) is returned to neutral.
T) is less than the minimum rack value (RMIN) (RACT <
When RMIN) is detected for a predetermined count number (A0), that is, for a predetermined time or more, the engine stop flag is turned on, and when there is a shift lever (41) other than neutral, the lever motor (43) is driven to operate the lever (41). Is returned to the neutral position, an emergency output for stopping the fuel injection in the governor (27) is output, and the emergency output is released when the lever (41) returns to the neutral position. As a result, when the engine (16) is emergency-stopped and the engine (16) is started next, the main shift is not started except in the neutral position, and is started only when the main shift is in the neutral position. 16) A sudden start after an emergency stop can be prevented, and safety can be improved.

【0029】上記のように、穀稈を刈取って脱穀する収
穫作業を連続的に行うコンバインにおいて、エンジン
(16)出力を制御する電子ガバナ(27)と、走行ク
ローラ(2)駆動速度を制御する車速制御コントローラ
である車速制御回路(29)を搭載し、電子ガバナ(2
7)によってエンジン(16)回転を制御し乍ら収穫作
業負荷に基づいて車速制御を自動的に行わせるように構
成すると共に、走行変速が中立位置のときにだけエンジ
ン(16)を始動可能に構成し、電子ガバナ(27)に
よってエンジン(16)回転を自動制御し乍ら、収穫作
業負荷によって車速を自動制御し、車速制御によって電
子ガバナ(27)制御を補完して脱穀部(4)の駆動回
転数を確保すると共に、収穫作業の途中でエンジン(1
6)が緊急停止したり停止させた後でエンジン(16)
を再び始動させても、走行変速が中立位置以外の状態で
エンジン(16)が再始動して急発進することがなく、
エンジン(16)の始動によって機体が急発進する不具
合をなくし、作業者の人為運転操作の簡略化並びに車速
制御機能及び収穫作業能率などの向上を図る。
As described above, in the combine which continuously performs the harvesting operation of cutting and threshing the culm, the electronic governor (27) for controlling the output of the engine (16) and the driving speed of the traveling crawler (2) are controlled. A vehicle speed control circuit (29), which is a vehicle speed control controller for
According to 7), the vehicle speed control is automatically performed based on the harvesting work load while controlling the rotation of the engine (16), and the engine (16) can be started only when the traveling shift is in the neutral position. The automatic governor (27) automatically controls the rotation of the engine (16) by the electronic governor (27), while the vehicle speed is automatically controlled by the harvesting work load. The electronic speed governor (27) is supplemented by the vehicle speed control to complement the threshing unit (4). In addition to securing the driving speed, the engine (1
6) After an emergency stop or stop, the engine (16)
Even if the engine is restarted, the engine (16) is restarted and the vehicle does not suddenly start in a state where the traveling shift is at a position other than the neutral position.
The present invention eliminates the problem that the aircraft suddenly starts due to the start of the engine (16), simplifies the manual driving operation of the operator, and improves the vehicle speed control function and the harvesting work efficiency.

【0030】また図15に示す如く、急激的にエンジン
(16)負荷が変化して、目標負荷を越えてしまったと
きには、前記レバー位置センサ(42)によりそのエン
ジン負荷に応じた車速となるレバー位置を換算決定し
て、この換算位置となるレバー位置にモータ(43)で
もって変速レバー(41)を駆動制御して、急激な負荷
変動に対し車速を対応させるもので、したがって緊急時
には無段変速機構(20)及びミッションケース(2
5)を介して応答する車速センサ(34)のフィードバ
ックに比べ制御遅れなどのない迅速的な対応が行えて、
より一層適正な車速制御が可能にできる。
As shown in FIG. 15, when the load of the engine (16) suddenly changes and exceeds the target load, the lever position sensor (42) turns the lever to a vehicle speed corresponding to the engine load. The position is converted and determined, and the shift lever (41) is driven and controlled by the motor (43) to the lever position serving as the converted position so that the vehicle speed responds to a sudden load change. Transmission mechanism (20) and transmission case (2
5) A quick response without control delay can be performed as compared with the feedback of the vehicle speed sensor (34) responding via
More appropriate vehicle speed control can be performed.

【0031】なお前述実施例にあっては、供給量センサ
(37)を縦搬送装置(36)の挾扼ガイド杆に設ける
構成を示したが、前記フィードチェン(5)の挾扼杆に
設けて、該フィードチェン(5)で搬送される穀稈の層
厚より脱穀部(4)に送り込まれる穀稈供給量を検出し
ても良い。
In the above-described embodiment, the supply amount sensor (37) is provided on the clamping guide rod of the vertical conveying device (36). However, the supply amount sensor (37) is provided on the clamping rod of the feed chain (5). Thus, the supply amount of grain culm fed into the threshing unit (4) may be detected from the layer thickness of the grain culm conveyed by the feed chain (5).

【0032】また実施例では自脱型コンバインを例にと
って説明したが全量投入型の普通形コンバインでも良
い。
In the embodiment, a self-removing type combine is described as an example, but a full-load type ordinary type combine may be used.

【0033】[0033]

【発明の効果】以上実施例から明らかなように本発明
は、エンジン(16)負荷及び車速センサ(34)に基
づき車速制御を行う走行変速部材(28)を設け、エン
ジン(16)回転数を略一定維持する制御を行い乍ら自
動車速制御を行わせるもので、エンジン(16)の回転
が低下するまでに自動車速制御により減速させ、エンジ
ン(16)の回転を略一定に保ち乍ら車速を下げること
によって扱胴(6)の回転が変動する不具合を容易にな
くすことができ、作業負荷によってエンジン(16)回
転が変化して脱穀性能が低下するのを未然に防止できる
ものである。
As is apparent from the above embodiments, the present invention provides a traveling speed change member (28) for controlling the vehicle speed based on the load of the engine (16) and a vehicle speed sensor (34), and reduces the rotational speed of the engine (16). The vehicle speed control is performed while performing control to maintain substantially constant, and the vehicle speed is reduced by the vehicle speed control until the rotation of the engine (16) decreases, and the vehicle speed is controlled while maintaining the rotation of the engine (16) substantially constant. By lowering the rotation speed, it is possible to easily eliminate the problem that the rotation of the handling cylinder (6) fluctuates, and to prevent the rotation of the engine (16) from changing due to the work load and the threshing performance from lowering.

【図面の簡単な説明】[Brief description of the drawings]

【図1】制御回路図。FIG. 1 is a control circuit diagram.

【図2】コンバインの全体側面図。FIG. 2 is an overall side view of the combine.

【図3】コンバインの全体平面図。FIG. 3 is an overall plan view of the combine.

【図4】エンジン駆動系の部分説明図。FIG. 4 is a partial explanatory view of an engine drive system.

【図5】車速制御のフローチャート。FIG. 5 is a flowchart of vehicle speed control.

【図6】ファジィ制御のフローチャート。FIG. 6 is a flowchart of fuzzy control.

【図7】エンジンとラック位置の関係を示す特性図。FIG. 7 is a characteristic diagram showing a relationship between an engine and a rack position.

【図8】穀稈供給量検出のフローチャート。FIG. 8 is a flowchart of detecting the supply of cereal stems.

【図9】三角型ファジィ変数を表す説明図。FIG. 9 is an explanatory diagram showing a triangular fuzzy variable.

【図10】ファジィ変数の各ルールに対する適応度を表
す説明図。
FIG. 10 is an explanatory diagram showing the fitness of each rule of a fuzzy variable.

【図11】出力ファジィ集合の説明図。FIG. 11 is an explanatory diagram of an output fuzzy set.

【図12】出力ファジィ集合のカット説明図。FIG. 12 is an explanatory diagram of a cut of an output fuzzy set.

【図13】出力ファジィ集合のマキシム合成説明図。FIG. 13 is an explanatory diagram of Maxim synthesis of an output fuzzy set.

【図14】エンジン緊急停止時のフローチャート。FIG. 14 is a flowchart for an emergency stop of the engine.

【図15】エンジン負荷急激変動時のフローチャート。FIG. 15 is a flowchart at the time of a sudden change in engine load.

【符号の説明】[Explanation of symbols]

(16) エンジン (28) サーボモータ(走行変速部材) (34) 車速センサ (16) Engine (28) Servo motor (traveling member) (34) Vehicle speed sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 1/08 F02D 1/08 A 3G093 29/00 29/00 H 45/00 305 45/00 305D 322 322C Fターム(参考) 2B076 AA03 CC02 EC02 EC09 ED01 3D041 AA66 AA67 AB04 AC01 AC19 AD02 AD10 AD31 AD51 AD53 AE03 AE31 AF01 AF05 3D044 AA03 AA04 AA12 AA27 AA47 AB04 AC03 AC05 AC22 AC26 AC42 AD02 AD17 AE21 AE31 3G060 AA08 BA02 CA01 FA06 GA02 GA18 3G084 AA07 BA03 BA13 BA32 CA01 CA07 DA04 DA36 EB16 EC04 FA05 FA06 FA10 FA18 FA33 FA36 3G093 AA06 AA09 AA15 AB05 BA02 BA14 CA01 CB10 CB11 CB12 DA01 DA10 DA12 DB05 DB11 DB22 EA03 EA05 EB03 EB07 EC04 FA07 FA12 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 1/08 F02D 1/08 A 3G093 29/00 29/00 H 45/00 305 45/00 305D 322 322C F-term (reference) 2B076 AA03 CC02 EC02 EC09 ED01 3D041 AA66 AA67 AB04 AC01 AC19 AD02 AD10 AD31 AD51 AD53 AE03 AE31 AF01 AF05 3D044 AA03 AA04 AA12 AA27 AA47 AB04 AC03 AC05 AC22 AC26 AC42 AD02 AD17 GA18 A08 AE03 AA07 BA03 BA13 BA32 CA01 CA07 DA04 DA36 EB16 EC04 FA05 FA06 FA10 FA18 FA33 FA36 3G093 AA06 AA09 AA15 AB05 BA02 BA14 CA01 CB10 CB11 CB12 DA01 DA10 DA12 DB05 DB11 DB22 EA03 EA05 EB03 EB07 EC04 FA07 FA12

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 エンジン(16)負荷及び車速センサ
(34)に基づき車速制御を行う走行変速部材(28)
を設け、エンジン(16)回転数を略一定維持する制御
を行い乍ら自動車速制御を行わせることを特徴とするコ
ンバイン。
A traveling transmission member (28) for controlling a vehicle speed based on an engine (16) load and a vehicle speed sensor (34).
Wherein the vehicle speed control is performed while performing control for maintaining the engine (16) rotation speed substantially constant.
JP2001295696A 2001-09-27 2001-09-27 Combine harvester Pending JP2002192982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001295696A JP2002192982A (en) 2001-09-27 2001-09-27 Combine harvester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001295696A JP2002192982A (en) 2001-09-27 2001-09-27 Combine harvester

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP31400698A Division JPH11227501A (en) 1991-12-20 1998-10-15 Combine

Publications (1)

Publication Number Publication Date
JP2002192982A true JP2002192982A (en) 2002-07-10

Family

ID=19117084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001295696A Pending JP2002192982A (en) 2001-09-27 2001-09-27 Combine harvester

Country Status (1)

Country Link
JP (1) JP2002192982A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025058A (en) * 2008-07-23 2010-02-04 Yanmar Co Ltd Working vehicle
KR101029212B1 (en) 2004-12-07 2011-04-12 두산인프라코어 주식회사 Apparatus and Method to control digital governer using fuzzy control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101029212B1 (en) 2004-12-07 2011-04-12 두산인프라코어 주식회사 Apparatus and Method to control digital governer using fuzzy control
JP2010025058A (en) * 2008-07-23 2010-02-04 Yanmar Co Ltd Working vehicle

Similar Documents

Publication Publication Date Title
US20200352100A1 (en) Drive System for a Harvester
JP2002192982A (en) Combine harvester
US20220087092A1 (en) Vehicle Speed Control System
JP2538297Y2 (en) Combine drive controller
JP3240444B2 (en) Combine
JP3563416B2 (en) Combine
JP3652626B2 (en) Combine
JP3831243B2 (en) Combine
JP2002054473A (en) Combine
JP5248725B2 (en) Combine
JP3138882B2 (en) Combine speed controller
JP3138881B2 (en) Vehicle speed control device for mobile agricultural machine
JP3138880B2 (en) Vehicle speed control device for mobile agricultural machine
JP3146433B2 (en) Automatic constant rotation control mechanism for work equipment
JP3121004B2 (en) Power detector for working unit in harvester
JP3138879B2 (en) Combine
JP2736884B2 (en) Harvester vehicle speed control device
JPH09294453A (en) Car speed controlling device for combine harvester
JP3133638B2 (en) Combine speed controller
JP3440478B2 (en) Combine speed control system
JP2624400B2 (en) Combine speed controller
JP2003214206A (en) Pre-treatment equipment for combine
JP3089330B2 (en) Combine speed controller
JP3138883B2 (en) Mobile farm equipment steering system
JP2541447Y2 (en) Combine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050719