JP3652626B2 - Combine - Google Patents

Combine Download PDF

Info

Publication number
JP3652626B2
JP3652626B2 JP2001186078A JP2001186078A JP3652626B2 JP 3652626 B2 JP3652626 B2 JP 3652626B2 JP 2001186078 A JP2001186078 A JP 2001186078A JP 2001186078 A JP2001186078 A JP 2001186078A JP 3652626 B2 JP3652626 B2 JP 3652626B2
Authority
JP
Japan
Prior art keywords
vehicle speed
engine
controller
governor
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001186078A
Other languages
Japanese (ja)
Other versions
JP2002067742A (en
Inventor
渉 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanma Agricultural Equipment Co Ltd
Original Assignee
Yanma Agricultural Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanma Agricultural Equipment Co Ltd filed Critical Yanma Agricultural Equipment Co Ltd
Priority to JP2001186078A priority Critical patent/JP3652626B2/en
Publication of JP2002067742A publication Critical patent/JP2002067742A/en
Application granted granted Critical
Publication of JP3652626B2 publication Critical patent/JP3652626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve a designing and manufacturing property and a handling property, etc., by arranging a car speed controller 27 at a position of a governor controller 34 and changing a structure and a function of one of the car speed controller 27 and the governor controller 34 by commonly using the other of them. SOLUTION: The car speed controller 27 furnished with a grain threshing part 4 and a harvesting part 8, to thresh grains by continuously reaping stalks and to automatically control travelling speed and the governor controller 34 to control engine speed of an engine 20 are furnished separately, a hydraulic pump 18 and a hydraulic motor 19 to constitute a stepless speed change mechanism 17 are provided, the hydraulic pump 18 is connected to the engine 20, and the hydraulic motor 19 is connected to a transmission case 23 to drive a travelling crawler 2.

Description

【0001】
【津名の属する技術分野】
本発明は例えば穀稈を刈取って脱穀するコンバインなどの移動農機に関する。
【0002】
【従来の技術】
従来、特開昭64−67108号公報、及び特開平2−100616号公報に示す如く、エンジンの燃料噴射量を自動制御してエンジンの回転を設定回転に保つ電子ガバナを設けると共に、走行変速制御して車速を変更する技術がある。
【0003】
【発明が解決しようとする課題】
前記従来技術は、同一のコントローラによってエンジン回転数と走行変速の両方を制御するから、電子ガバナまたは走行変速のいずれか一方だけの構造または機能などの変更により、前記コントローラも変更させる必要があり、コントローラなどの設計製作が面倒であり、製造コストを容易に低減し得ず、また交換修理用の部品保管コストも低減し得ない等の製造上及び取扱い上の問題がある。
【0004】
【課題を解決するための手段】
然るに、本発明は、脱穀部及び刈取部を備え、穀稈を連続的に刈取って脱穀すると共に、走行速度を自動制御する車速コントローラと、エンジンの回転数を制御するガバナコントローラとを各別に備え、無段変速機構を構成する油圧ポンプと油圧モータとを設けると共に、負荷が一定以上のときは、ガバナコントローラによりエンジンをRMAX(馬力アップモード)で回転負荷制御し、車速コントローラによって無段変速機構を制御するコンバインにおいて、車速の自動制御を行う自動スイッチと、脱穀部の脱穀負荷を検出する脱穀負荷センサと、車速を検出する車速センサとを、車速コントローラに入力接続させ、車速コントローラと前記ガバナ制御回路間を通信接続させ、前記自動スイッチがオンの自動車速制御開始直後の一定猶予時間内にエンジン回転数を所定の初期モードで制御し、車速も初期の設定速度で走行を行った後に車速制御を行う車速コントローラを共用して電子ガバナの構造及び機能などを変更し得、またガバナコントローラを共用して車速コントローラの構造及び機能などを変更し得、設計製造及び取扱い性の向上などを容易に図り得るものである。
【0006】
【発明の実施の形態】
以下本発明の一実施例を図面に基づいて詳述する。図1は制御回路図、図2はコンバインの全体側面図であり、図中(1)は走行クローラ(2)をトラックフレーム(3)に装備する機台、(4)は軸流式のスクリュ形扱胴(5)及び選別機構(6)を備えていて前記機台(1)に搭載する脱穀部、(7)は脱穀部(4)からの穀粒を溜める穀物タンク、(8)は前記脱穀部(4)の下部前方に油圧シリンダ(9)を介して昇降可能に装設する刈取部、(10)は運転席及び運転操作部を備えていて前記穀物タンク(7)の前方に固設させる運転室、(11)は前記穀物タンク(7)内の穀粒を取出す穀粒搬出オーガである。
【0007】
そして前記刈取部(8)は、未刈り穀稈を取入れる穀物ヘッダー(11)と、該ヘッダー(11)の後部略中央に連結させて刈取り穀稈を脱穀部(4)に送給する供給室(12)によって構成すると共に、未刈り穀稈掻込み用リール(13)及び往復駆動型刈刃(14)及び穀稈掻込ドラム(15)とを前記穀物ヘッダー(11)に備え、前記ヘッダー(11)に取込まれる刈取穀稈を供給室(12)に内設する供給チェンコンベア(16)を介し脱穀部(4)に送り込んで脱穀処理するように構成している。
【0008】
図3に示す如く、このコンバインの車速の変速はHSTである無段変速機構(17)を構成する可変容量形油圧ポンプ(18)と油圧モータ(19)とで行うもので、エンジン(20)の出力軸(20a)にベルト伝達機構(21)を介し前記油圧ポンプ(18)の入力軸(18a)を連動連結させ、前記走行クローラ(2)の駆動スプロケット(22)を有するミッションケース(23)に前記油圧モータ(19)の出力軸(19a)を連動連結させる一方、前記扱胴(5)の扱胴入力軸(5a)をベルト及びギヤ伝達機構(24)を介しエンジン(20)の入力軸(20a)に連動連結させている。
【0009】
また、前記エンジン(20)には燃料噴射ポンプの燃料噴射量を噴射量調整用ラックで制御して回転数を一定保持する電子ガバナ(25)を有すると共に、前記油圧ポンプ(18)には斜板角を制御して油圧吐出量の調整を行うDC形サーボモータ(26)を有して、該モータ(26)の正逆駆動でもって車速の増減速制御を行うように構成している。
【0010】
そして図1に示す如く、前記サーボモータ(26)を駆動制御するファジィ推論車速演算回路である車速制御回路(27)に、車速の自動制御を行う自動スイッチ(28)と、前記刈取部(8)での刈取負荷の一定以上を検出する刈取負荷センサ(29)と、前記脱穀部(4)での扱胴(5)など脱穀負荷の一定以上を検出する脱穀負荷センサ(30)と、排藁カッタでの切断負荷の一定以上を検出する排藁切断負荷センサ(31)と、車速を検出する車速センサ(32)と、HST油圧センサ(33)とを入力接続させる一方、燃料噴射ポンプの噴射量を調整するガバナ(25)のラック位置調節機構(25a)を駆動制御するガバナ制御回路(34)に、前記エンジン(20)での回転を検出するエンジン回転センサ(35)と、前記ガバナ(25)での噴射量調整用ラックの位置を検出するガバナラック位置センサ(36)とを入力接続させ、前記制御回路(27)(34)間を通信接続させて、これら各センサ(29)(30)(31)(32)(33)(35)(36)の検出に基づいてエンジン(20)回転数の一定制御やエンジン(20)の緊急停止やファジィ推論に基づく車速制御を行うように構成している。
【0011】
上記から明らかなように、脱穀部(4)及び刈取部(8)を備え、穀稈を連続的に刈取って脱穀すると共に、走行速度を自動制御する車速コントローラである車速制御回路(27)と、エンジン(20)の回転数を制御するガバナコントローラであるガバナ制御回路(34)とを各別に備え、無段変速機構(17)を構成する油圧ポンプ(18)と油圧モータ(19)とを設け、エンジン(20)に油圧ポンプ(18)を連結させ、走行クローラ(2)を駆動するミッションケース(23)に油圧モータ(19)を連結させる。そして、例えば電子ガバナ(25)を設けるエンジン(20)の近くにガバナ制御回路(34)を配設させる構造で、例えばエンジン(20)から離れた運転操作部またはミッションケース(23)などの近くに車速制御回路(27)を配設させても、車速制御回路(27)による走行クローラ(2)の走行変速制御と、ガバナ制御回路(34)によるエンジン(20)の回転数制御とを、互に関連させて適正に行わせると共に、車速制御回路(27)を共用して電子ガバナ(25)の構造及び機能などを変更させ、またガバナ制御回路(34)を共用して車速制御回路(27)の構造及び機能などを変更させ、設計製造及び取扱い性の向上などを図る。
【0012】
さらに、エンジン(20)の燃料噴射量を制御する電子ガバナ(25)と、車速を検出する車速センサ(32)と、車速を変更する走行変速部材であるサーボモータ(26)を設けると共に、少なくとも電子ガバナ(25)が制御する燃料噴射量と、該燃料噴射量の変化率とにより目標車速をファジィ推論によって演算し、前記目標車速と車速センサ(32)の車速検出値とにより走行変速出力をファジィ推論によって演算し、前記走行変速出力によって走行変速サーボモータ(26)を自動制御する車速コントローラである車速制御回路(27)を設けるコンバインにおいて、車速の自動制御を行う自動スイッチ(28)と、刈取部(8)での刈取負荷の一定以上を検出する刈取負荷センサ(29)と、脱穀部(4)での扱胴(5)など脱穀負荷の一定以上を検出する脱穀負荷センサ(30)と、排藁カッタでの切断負荷の一定以上を検出する排藁切断負荷センサ(31)と、車速を検出する車速センサ(32)と、HST油圧センサ(33)とを、車速制御回路(27)に入力接続させる一方、燃料噴射ポンプの噴射量を調整するガバナ(25)を駆動制御するガバナ制御回路(34)に、前記エンジン(20)での回転を検出するエンジン回転センサ(35)と、前記ガバナ(25)での噴射量調整用ラックの位置を検出するガバナラック位置センサ(36)とを入力接続させ、前記各制御回路(27)(34)間を通信接続させ、前記自動スイッチ(28)がオンの自動車速制御開始直後の一定猶予時間内にあってはエンジン(20)回転数を所定の初期モードで制御し、車速も初期の設定速度で走行を行った後、エンジン(20)回転数の一定制御やエンジン(20)の緊急停止やファジィ推論に基づく車速制御を行うように構成する。そして、自動車速制御開始直後の一定猶予時間内で初期モード制御を行い、初期設定したエンジン(20)回転数及び車速で自動作業を開始させ、ファジィ推論に基づく自動車速制御をスムーズに開始させ、自動作業の開始前後でエンジン(20)の回転数または車速の差が大きくなる場合でもエンジン(20)を適正回転に維持させ、過負荷によってエンジン(20)回転が変更されて収穫作業速度が変化する不具合をなくし、またエンジン(20)回転が低下して走行クローラ(2)駆動力が不足する不具合をなくし、車速コントローラ(27)による走行クローラ(2)駆動速度制御を適正に行わせ、作業者の人為運転操作の簡略化並びに収穫作業能率の向上などを図る。
【0013】
本実施例は上記の如く構成するものにして、以下図4のフローチャートを参照してこの車速制御を説明する。
【0014】
今各モジュールである基準値や検出値が初期化され、各センサ(29)〜(33)(35)(36)での検出値が入力され、刈取部(8)や脱穀部(4)や排藁カッタ部や走行部での異常作業時にあって、緊急信号が出力されるときエンジン(20)の緊急停止が行われると共に、正常作業時各センサ(32)(35)(36)の検出に基づくエンジン(20)データの受信や車速データのカウントが行われるもので、前記自動スイッチ(28)がオンの自動車速制御開始直後の一定猶予時間内にあってはエンジン(20)回転数を所定の初期モードで制御し、車速も初期の設定速度で走行を行う。
【0015】
そして一定猶予時間経過後にあってはエンジン(20)の入力データから現在の車速に対する増減速を必要とする目標の車速偏差値(VE)をファジィ推論に基づき演算出力させて目標の車速に制御しての走行を行うもので、脱穀部(4)及び刈取部(8)を備え、穀稈を連続的に刈取って脱穀すると共に、走行速度を自動制御する車速制御回路(27)と、エンジン(20)の回転数を制御するガバナ制御回路(34)とを各別に備え、無段変速機構(17)を構成する油圧ポンプ(18)と油圧モータ(19)とを設け、エンジン(20)に油圧ポンプ(18)を連結させ、走行クローラ(2)を駆動するミッションケース(23)に油圧モータ(19)を連結させると共に、負荷が一定以上のときは、ガバナ制御回路(34)によりエンジン(20)をRMAX(馬力アップモード)で回転負荷制御し、車速制御回路(27)によって無段変速機構(17)を減速させる。そして、車速制御回路(27)による走行クローラ(2)の走行変速制御と、ガバナ制御回路(34)によるエンジン(20)の回転数制御とを、互に関連させて適正に行わせると共に、車速制御回路(27)を共用して電子ガバナ(25)の構造及び機能などを変更させ、またガバナ制御回路(34)を共用して車速制御回路(27)の構造及び機能などを変更させ、さらに高負荷での収穫作業でもエンジン(20)が停止したり脱穀部(4)の回転が低下する等の不具合を容易になくし、脱穀部(4)を適正回転で駆動して高負荷作業性の向上などを図る。
【0016】
次に図5乃至図6を参照して車速偏差値(VE)を算出するうえでのファジィ推論制御を説明する。
【0017】
図6に示す如き、入力される電子ガバナ(25)のラック位置(燃料噴射量)とエンジン回転数との関係を最大負荷曲線(RMAX)及び無負荷曲線(RIDL)で表す特性図に基づきラック位置偏差値(RE)とその変化率(RD)及び最大出力偏差値(RM)を算出するもので、定格回転 N rpm、目標の最大噴射量となるラックの最大目標値がA、無負荷時の噴射量となるラックの無負荷値がBとなって、負荷率80%を設定したときの目標噴射量である目標ラック値(RACT)の値Cが、80%=C−B/A−Bの関係式から算出される。つまり実際の出力のデータ(ract)をD、そのときエンジン(20)の回転数の一定制御により電子ガバナコントローラである制御回路(34)から出力される制限最大噴射量値Eとすると、目標ラック値C、最大目標値Aからラック偏差値RE(=D−C)、最大目標偏差値RM(=E−A)と一定時間の偏差値(RE)の変化率(RD)とをファジィ推論の入力値とさせる。なお、エンジンの回転数の一定制御(例えば2625rpm一定制御)を行っているが、ラック位置調節機構(25a)等の制御遅れや段階的な制御や負荷の急激な変動等により、回転センサ(35)の値が同じでも、最大負荷曲線により決定される最大目標値(例えばA)と電子ガバナコントローラから出力される制限最大噴射量Eは、実際上一致しない。(但し一致する場合もありうる。)そして図7に示す如く、PB(正で大きい)、PS(正で小さい)、ZO(ゼロ)、NS(負で小さい)、NB(負で大きい)の5つファジィ集合で表されるメンバシップ関数に対応するようにこれら値の(RE)(RD)(RM)の正規化が行われてファジィ変数(re)(rd)(rm)に変換される。
【0018】
例えばこれに数値をあてはめ説明すると、N=2625rpm、目標負荷率を80%、A=189、B=102とするとき、C=172が算出され、D=176、E=187のとき、RE=4、RM=−2が算出されて、電子ガバナ(25)からの入力データとしてRE=4、RD=0、RM=−2が入力されるとき、メンバシップ関数に対応するようにre=18、rd=14、rm=12の入力変数に変換が行われる。
【0019】
変数(re)(rd)(rm)の値がこれら5つの集合に含まれる度合(グレード)を図7の三角型のメンバシップ関数の重みとしてそれぞれ求める。
【0020】
例えば、
re=18の場合 NB=0 NS=4 ZO=11 PS=12 PB=5
rd=14の場合 NB=1 NS=8 ZO=15 PS=8 PB=1
rm=12の場合 NB=3 NS=10 ZO=13 PS=6 PB=0
【0021】
各ルールに対してルールの前件部である変数つまり各メンバシップ値(re)(rd)(rm)の適応度を図8などより算出する。
【0022】
例えば、ファジィ制御のif−then型式ルールの0で、「もしreがZOで、rdがZOで、rmがNBならば、目標の車速偏差値veをZOとする」と推論すると、re=18の値がルールの前件部「reがZO」に対する適応度は図8より11、またrd=14の値が「rdがZO」に対する適応度は15、さらにrm=12の値が「rmがNB」に対する適応度は3となる。
【0023】
各ルールにおいてそれぞれ算出される前件部の適応度をミニマム合成(各値 の中から1番小さな値をとる)して求める。例示の場合min(11、15、 3)=3。
【0024】
図9に示す如く、各ルール後件部の出力ファジィを求める。同図はルール0 のve=ZOの場合。
【0025】
図10に示す如く、各ルールの前件部の適応度で後件部の出力ファジィ集合 の頭をカットする。例示の場合3でカットする。
【0026】
各ルールにおけるこのような処理が全て終了すると、図11に示す如く、 総てのルールに対する出力ファジィ集合のマキシム合成を行う。
【0027】
合成された出力ファジィ集合より非ファジィ処理でもって重心を求めて、中 央値との偏差である出力ファジィ変数veを算出する。
【0028】
出力ファジィ変数(ve)を実際の車速制御出力である車速偏差値(VE) に変換する。
【0029】
このようなファジィ推論を車速制御に用いた場合、容易に多次元の非線型関数が実現できると共に、非線型関数のパラメータをファジィルールによって感覚的に設定・変更でき、適応性を拡大させることができる。
【0030】
【発明の効果】
以上実施例から明らかなように本発明は、脱穀部(4)及び刈取部(8)を備え、穀稈を連続的に刈取って脱穀すると共に、走行速度を自動制御する車速コントローラ(27)と、エンジン(20)の回転数を制御するガバナコントローラ(34)とを各別に備え、無段変速機構(17)を構成する油圧ポンプ(18)と油圧モータ(19)とを設けると共に、負荷が一定以上のときは、ガバナコントローラ(34)によりエンジン(20)をRMAX(馬力アップモード)で回転負荷制御し、車速コントローラ(27)によって無段変速機構(17)を制御するコンバインにおいて、車速の自動制御を行う自動スイッチ(28)と、脱穀部(4)の脱穀負荷を検出する脱穀負荷センサ(30)と、車速を検出する車速センサ(32)とを、車速コントローラ(27)に入力接続させ、車速コントローラ(27)と前記ガバナ制御回路(34)間を通信接続させ、前記自動スイッチ(28)がオンの自動車速制御開始直後の一定猶予時間内にエンジン(20)回転数を所定の初期モードで制御し、車速も初期の設定速度で走行を行った後に車速制御を行うもので、車速コントローラ(27)を共用して電子ガバナ(25)の構造及び機能などを変更でき、またガバナコントローラ(34)を共用して車速コントローラ(27)の構造及び機能などを変更でき、設計製造及び取扱い性の向上などを容易に図ることができるものである。
【図面の簡単な説明】
【図1】制御回路図。
【図2】コンバインの全体側面図。
【図3】エンジン駆動系の部分説明図。
【図4】車速制御のフローチャート。
【図5】ファジィ制御のフローチャート。
【図6】エンジンとラック位置の関係を示す特性図。
【図7】三角型ファジィ変数を表す説明図。
【図8】ファジィ変数の各ルールに対する適応度を表す説明図。
【図9】出力ファジィ集合の説明図。
【図10】出力ファジィ集合のカット説明図。
【図11】出力ファジィ集合のマキシム合成説明図。
【符号の説明】
(2) 走行クローラ
(4) 脱穀部
(8) 刈取部
(17) 無段変速機構
(18) 油圧ポンプ
(19) 油圧モータ
(20) エンジン
(23) ミッションケース
(27) 車速制御回路(車速コントローラ)
(34) ガバナ制御回路(ガバナコントローラ)
[0001]
[Technical field to which Tuna belongs]
The present invention relates to a mobile agricultural machine such as a combine harvester that harvests and thresh grains.
[0002]
[Prior art]
Conventionally, as shown in Japanese Patent Application Laid-Open No. 64-67108 and Japanese Patent Application Laid-Open No. 2-100616, an electronic governor that automatically controls the fuel injection amount of the engine and keeps the engine rotation at a set rotation is provided, and travel shift control is performed. And there is a technology to change the vehicle speed.
[0003]
[Problems to be solved by the invention]
In the prior art, since both the engine speed and the traveling speed change are controlled by the same controller, it is necessary to change the controller by changing the structure or function of either the electronic governor or the traveling speed change. There are problems in manufacturing and handling, such as troublesome design and production of a controller and the like, and the manufacturing cost cannot be easily reduced, and the cost of storing parts for replacement repair cannot be reduced.
[0004]
[Means for Solving the Problems]
However, the present invention includes a threshing unit and a reaping unit, and continuously chops and threshs the cereal, and separately controls a vehicle speed controller that automatically controls the traveling speed and a governor controller that controls the rotational speed of the engine. includes, Rutotomoni provided a hydraulic pump and a hydraulic motor which constitutes the continuously variable transmission mechanism, when the load is more than a predetermined, rotation load control of the engine at RMAX (horsepower up mode) by the governor controller, stepless by the vehicle speed controller In the combine that controls the speed change mechanism, an automatic switch for automatically controlling the vehicle speed, a threshing load sensor for detecting the threshing load of the threshing unit, and a vehicle speed sensor for detecting the vehicle speed are connected to the vehicle speed controller, and the vehicle speed controller The governor control circuit is connected for communication, and the automatic switch is on. The engine speed is controlled to a predetermined initial mode within, share a vehicle speed controller for speed control after vehicle speed that was traveling at an initial set speed change and the structure and function of the electronic governor obtained, also the governor It is possible to change the structure and function of the vehicle speed controller by sharing the controller, and to easily improve the design and manufacturing and handling.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a control circuit diagram, FIG. 2 is an overall side view of the combine, in which (1) is a machine base equipped with a traveling crawler (2) on a track frame (3), and (4) is an axial flow type screw. A threshing section equipped with a shaped barrel (5) and a sorting mechanism (6) and mounted on the machine base (1), (7) a grain tank for storing grains from the threshing section (4), (8) A reaping part installed so as to be movable up and down via a hydraulic cylinder (9) in front of the lower part of the threshing part (4), (10) is provided with a driver's seat and a driving operation part in front of the grain tank (7). A fixed cab (11) is a grain carrying out auger for taking out the grains in the grain tank (7).
[0007]
And the said cutting part (8) is connected with the grain header (11) which takes in an uncut grain cereal, and the rear part substantially center of this header (11), and supplies the cutting cereal part to a threshing part (4) The cereal header (11) is provided with a reel (13) for reclaiming chopped cereal, a reciprocating drive type cutting blade (14), and a pestle scraping drum (15). The harvested cereal meal taken into the header (11) is sent to the threshing section (4) via the supply chain conveyor (16) provided in the supply chamber (12), and is threshed.
[0008]
As shown in FIG. 3, the speed of the combine is changed by a variable displacement hydraulic pump (18) and a hydraulic motor (19) constituting a continuously variable transmission mechanism (17) which is an HST. A transmission case (23) having a drive sprocket (22) for the traveling crawler (2) by interlockingly connecting the input shaft (18a) of the hydraulic pump (18) to the output shaft (20a) via a belt transmission mechanism (21). ) Is coupled to the output shaft (19a) of the hydraulic motor (19) while the cylinder input shaft (5a) of the cylinder (5) is connected to the engine (20) via a belt and a gear transmission mechanism (24). It is linked to the input shaft (20a).
[0009]
The engine (20) has an electronic governor (25) for controlling the fuel injection amount of the fuel injection pump by an injection amount adjusting rack to keep the rotation speed constant, and the hydraulic pump (18) is inclined. It has a DC servo motor (26) that adjusts the hydraulic discharge amount by controlling the plate angle, and is configured to perform vehicle speed increase / decrease control by forward / reverse drive of the motor (26).
[0010]
As shown in FIG. 1, a vehicle speed control circuit (27), which is a fuzzy inference vehicle speed calculation circuit for driving and controlling the servo motor (26), has an automatic switch (28) for automatically controlling the vehicle speed, and the cutting unit (8 ) A cutting load sensor (29) for detecting a certain amount or more of the cutting load in the above), a threshing load sensor (30) for detecting a certain amount or more of the threshing load such as a handling cylinder (5) in the threshing section (4), An exhaust cutting load sensor (31) for detecting a certain cutting load or more at the rod cutter, a vehicle speed sensor (32) for detecting the vehicle speed, and an HST hydraulic sensor (33) are connected to each other, while the fuel injection pump The governor control circuit (34) for driving and controlling the rack position adjusting mechanism (25a) of the governor (25) for adjusting the injection amount is provided with an engine rotation sensor (35) for detecting the rotation of the engine (20), and the governor. A governor rack position sensor (36) for detecting the position of the injection amount adjusting rack at the center (25) is input-connected, and the control circuits (27) (34) are connected for communication, and each of these sensors (29 ) (30) (31) (32) (33) (35) (36) Based on the detection of the engine (20) constant speed, the engine (20) emergency stop and vehicle speed control based on fuzzy inference It is configured as follows.
[0011]
As is clear from the above, a vehicle speed control circuit (27) that is a vehicle speed controller that includes a threshing section (4) and a reaping section (8), continuously slashes and threshs the cereal, and automatically controls the traveling speed. And a governor control circuit (34), which is a governor controller for controlling the rotational speed of the engine (20), and a hydraulic pump (18) and a hydraulic motor (19) constituting the continuously variable transmission mechanism (17), The hydraulic pump (18) is connected to the engine (20), and the hydraulic motor (19) is connected to the transmission case (23) that drives the traveling crawler (2). For example, the governor control circuit (34) is disposed near the engine (20) where the electronic governor (25) is provided. For example, near the driving operation unit or the transmission case (23) which is away from the engine (20). Even when the vehicle speed control circuit (27) is provided, the traveling speed change control of the traveling crawler (2) by the vehicle speed control circuit (27) and the rotational speed control of the engine (20) by the governor control circuit (34), The vehicle speed control circuit (27) is shared to change the structure and function of the electronic governor (25), and the governor control circuit (34) is shared to the vehicle speed control circuit ( 27) The structure and function of 27) are changed to improve design and manufacture and handling.
[0012]
Further, an electronic governor (25) for controlling the fuel injection amount of the engine (20), a vehicle speed sensor (32) for detecting the vehicle speed, and a servo motor (26) that is a traveling speed changing member for changing the vehicle speed are provided. The target vehicle speed is calculated by fuzzy inference based on the fuel injection amount controlled by the electronic governor (25) and the rate of change of the fuel injection amount, and the travel shift output is calculated based on the target vehicle speed and the vehicle speed detection value of the vehicle speed sensor (32). An automatic switch (28) that performs automatic control of the vehicle speed in a combine provided with a vehicle speed control circuit (27) that is a vehicle speed controller that is operated by fuzzy inference and automatically controls the travel shift servomotor (26) based on the travel shift output. A cutting load sensor (29) for detecting a certain amount or more of the cutting load in the cutting unit (8), a handling cylinder (5) in the threshing unit (4) Threshing load sensor (30) for detecting a certain amount of load, a waste cutting load sensor (31) for detecting a certain amount of cutting load in the waste cutter, a vehicle speed sensor (32) for detecting vehicle speed, and HST The engine (20) is connected to the governor control circuit (34) for driving and controlling the governor (25) for adjusting the injection amount of the fuel injection pump while the hydraulic sensor (33) is connected to the vehicle speed control circuit (27). An engine rotation sensor (35) for detecting rotation at the governor and a governor rack position sensor (36) for detecting the position of the injection amount adjusting rack at the governor (25) are connected to each other, and the control circuits (27 ) (34) are connected for communication, and within a certain grace period immediately after the start of the vehicle speed control when the automatic switch (28) is on, the engine (20) rotational speed is controlled in a predetermined initial mode, After it was also running at an initial set speed fast, configured to perform vehicle speed control based on the emergency stop and fuzzy inference engine (20) constant control and the engine speed (20). Then, the initial mode control is performed within a certain grace period immediately after the start of the vehicle speed control, the automatic operation is started at the engine (20) rotation speed and the vehicle speed that are initially set, and the vehicle speed control based on fuzzy inference is smoothly started. Even when the difference in the rotational speed or vehicle speed of the engine (20) before and after the start of the automatic operation becomes large, the engine (20) is maintained at an appropriate rotation, and the engine (20) rotation is changed due to overload and the harvesting work speed is changed. And the problem that the driving crawler (2) driving force is insufficient due to a decrease in the rotation of the engine (20), and the driving speed control of the driving crawler (2) by the vehicle speed controller (27) is appropriately performed. Simplification of human operation and improvement of harvesting efficiency.
[0013]
This embodiment is configured as described above, and this vehicle speed control will be described below with reference to the flowchart of FIG.
[0014]
The reference value and detection value which are each module are initialized now, the detection value in each sensor (29)-(33) (35) (36) is input, a cutting part (8), a threshing part (4), When an emergency signal is output during an abnormal operation in the waste cutter unit or the traveling unit, the engine (20) is emergency stopped and detected by the sensors (32) (35) (36) during normal operation. The engine (20) data is received and the vehicle speed data is counted, and the engine (20) speed is reduced within a certain grace period immediately after the start of the vehicle speed control when the automatic switch (28) is on. Control is performed in a predetermined initial mode, and the vehicle travels at an initial set speed.
[0015]
After a certain grace period, the target vehicle speed deviation value (VE) that requires acceleration / deceleration with respect to the current vehicle speed is calculated based on fuzzy inference from the input data of the engine (20) and controlled to the target vehicle speed. A vehicle speed control circuit (27), which includes a threshing section (4) and a mowing section (8), continuously slashes and threshs the cereal, and automatically controls the traveling speed; A governor control circuit (34) for controlling the rotational speed of (20), a hydraulic pump (18) and a hydraulic motor (19) constituting a continuously variable transmission mechanism (17), and an engine (20). The hydraulic pump (18) is connected to the transmission case, the hydraulic motor (19) is connected to the transmission case (23) that drives the traveling crawler (2), and when the load is above a certain level, the governor control circuit (34) Gin (20) rotates load control at RMAX (horsepower mode), to slow the continuously variable transmission mechanism (17) by the vehicle speed control circuit (27). Then, the traveling speed control of the traveling crawler (2) by the vehicle speed control circuit (27) and the rotational speed control of the engine (20) by the governor control circuit (34) are appropriately performed in association with each other, and the vehicle speed is controlled. The control circuit (27) is shared to change the structure and function of the electronic governor (25), and the governor control circuit (34) is shared to change the structure and function of the vehicle speed control circuit (27). Even in high-load harvesting operations, problems such as the engine (20) being stopped and the rotation of the threshing section (4) being reduced are easily eliminated, and the threshing section (4) is driven at an appropriate rotation so that the high-load workability can be improved. To improve.
[0016]
Next, fuzzy inference control for calculating the vehicle speed deviation value (VE) will be described with reference to FIGS.
[0017]
As shown in FIG. 6, the rack is based on the characteristic diagram representing the relationship between the rack position (fuel injection amount) of the input electronic governor (25) and the engine speed by the maximum load curve (RMAX) and the no-load curve (RIDL). Calculates the position deviation value (RE), its rate of change (RD), and maximum output deviation value (RM). Rated rotation N rpm, the maximum target value of the rack that is the target maximum injection amount is A, no load The no-load value of the rack that is the injection amount of B becomes B, and the target rack value (RACT) value C that is the target injection amount when the load factor 80% is set is 80% = C−B / A− It is calculated from the relational expression of B. In other words, if the actual output data (ract) is D, and the limit maximum injection amount value E output from the control circuit (34) which is an electronic governor controller by constant control of the engine speed (20) at that time, the target rack From the value C, the maximum target value A to the rack deviation value RE (= DC), the maximum target deviation value RM (= EA) and the rate of change (RD) of the deviation value (RE) over a certain period of time Let it be an input value. In addition, although constant control of the engine speed (for example, constant control of 2625 rpm) is performed, the rotation sensor (35 ) Are the same, the maximum target value (for example, A) determined by the maximum load curve and the limited maximum injection amount E output from the electronic governor controller do not actually match. (However, they may match.) As shown in FIG. 7, PB (positive and large), PS (positive and small), ZO (zero), NS (negative and small), and NB (negative and large). These values (RE), (RD), and (RM) are normalized so as to correspond to membership functions represented by five fuzzy sets, and converted into fuzzy variables (re), (rd), and (rm). .
[0018]
For example, when numerical values are applied to this, when N = 2625 rpm, the target load factor is 80%, A = 189, and B = 102, C = 172 is calculated, and when D = 176 and E = 187, RE = 4. When RM = −2 is calculated and RE = 4, RD = 0, and RM = −2 are input as input data from the electronic governor (25), re = 18 so as to correspond to the membership function. , Rd = 14, and rm = 12, the conversion is performed.
[0019]
The degree (grade) in which the values of the variables (re), (rd), and (rm) are included in these five sets is determined as the weight of the triangular membership function in FIG.
[0020]
For example,
When re = 18 NB = 0 NS = 4 ZO = 11 PS = 12 PB = 5
When rd = 14 NB = 1 NS = 8 ZO = 15 PS = 8 PB = 1
When rm = 12, NB = 3 NS = 10 ZO = 13 PS = 6 PB = 0
[0021]
For each rule, the fitness that is the variable that is the antecedent part of the rule, that is, each membership value (re) (rd) (rm) is calculated from FIG.
[0022]
For example, if the if-then type rule of fuzzy control is 0 and it is inferred that “if re is ZO, rd is ZO, and rm is NB, the target vehicle speed deviation value ve is ZO”, re = 18. 8, the fitness for the antecedent part “re is ZO” of the rule is 11 from FIG. 8, the value of rd = 14 is 15 for “rd is ZO”, and the value of rm = 12 is “rm The fitness for “NB” is 3.
[0023]
The fitness of the antecedent part calculated for each rule is obtained by minimum synthesis (the smallest value is taken from each value). In the case of illustration, min (11, 15, 3) = 3.
[0024]
As shown in FIG. 9, the output fuzzy of each rule consequent part is obtained. The figure shows the case of rule 0 ve = ZO.
[0025]
As shown in FIG. 10, the head of the output fuzzy set of the consequent part is cut according to the fitness of the antecedent part of each rule. In the case of illustration, it cuts by 3.
[0026]
When all such processing for each rule is completed, as shown in FIG. 11, the maximum composition of output fuzzy sets for all rules is performed.
[0027]
The center of gravity is obtained from the synthesized output fuzzy set by non-fuzzy processing, and an output fuzzy variable ve that is a deviation from the center value is calculated.
[0028]
The output fuzzy variable (ve) is converted into a vehicle speed deviation value (VE) which is an actual vehicle speed control output.
[0029]
When such fuzzy inference is used for vehicle speed control, a multidimensional nonlinear function can be easily realized, and the parameters of the nonlinear function can be set and changed sensuously by fuzzy rules, thereby expanding the adaptability. it can.
[0030]
【The invention's effect】
As is apparent from the above-described embodiments, the present invention includes a threshing section (4) and a reaping section (8), and continuously chops and threshs the culm and automatically controls the running speed. If, Rutotomoni provided an engine and a governor controller for controlling the rotational speed of (20) (34) provided separately to each hydraulic pump (18) and a hydraulic motor (19) constituting the continuously variable transmission mechanism (17), When the load is above a certain level, in the combine where the governor controller (34) controls the rotational load of the engine (20) in RMAX (horsepower up mode) and the vehicle speed controller (27) controls the continuously variable transmission mechanism (17). An automatic switch (28) for automatically controlling the vehicle speed, a threshing load sensor (30) for detecting the threshing load of the threshing section (4), and a vehicle speed sensor (32) for detecting the vehicle speed, An input connection is made to the speed controller (27), the vehicle speed controller (27) and the governor control circuit (34) are connected to communicate, and the engine is within a certain grace period immediately after the start of the vehicle speed control when the automatic switch (28) is on. (20) The number of revolutions is controlled in a predetermined initial mode, and the vehicle speed is controlled after traveling at the initial set speed . The vehicle speed controller (27) is shared, and the structure of the electronic governor (25) and The function and the like can be changed, and the structure and function of the vehicle speed controller (27) can be changed by sharing the governor controller (34), so that the design and manufacturing and the handling can be easily improved.
[Brief description of the drawings]
FIG. 1 is a control circuit diagram.
FIG. 2 is an overall side view of the combine.
FIG. 3 is a partial explanatory diagram of an engine drive system.
FIG. 4 is a flowchart of vehicle speed control.
FIG. 5 is a flowchart of fuzzy control.
FIG. 6 is a characteristic diagram showing the relationship between the engine and the rack position.
FIG. 7 is an explanatory diagram showing a triangular fuzzy variable.
FIG. 8 is an explanatory diagram showing fitness for each rule of a fuzzy variable.
FIG. 9 is an explanatory diagram of an output fuzzy set.
FIG. 10 is an explanatory diagram of cut of an output fuzzy set.
FIG. 11 is a diagram for explaining maximum synthesis of an output fuzzy set.
[Explanation of symbols]
(2) Traveling crawler (4) Threshing part (8) Cutting part (17) Continuously variable transmission mechanism (18) Hydraulic pump (19) Hydraulic motor (20) Engine (23) Mission case (27) Vehicle speed control circuit (vehicle speed controller )
(34) Governor control circuit (governor controller)

Claims (1)

脱穀部(4)及び刈取部(8)を備え、穀稈を連続的に刈取って脱穀すると共に、走行速度を自動制御する車速コントローラ(27)と、エンジン(20)の回転数を制御するガバナコントローラ(34)とを各別に備え、無段変速機構(17)を構成する油圧ポンプ(18)と油圧モータ(19)とを設けると共に、負荷が一定以上のときは、ガバナコントローラ(34)によりエンジン(20)をRMAX(馬力アップモード)で回転負荷制御し、車速コントローラ(27)によって無段変速機構(17)を制御するコンバインにおいて、車速の自動制御を行う自動スイッチ(28)と、脱穀部(4)の脱穀負荷を検出する脱穀負荷センサ(30)と、車速を検出する車速センサ(32)とを、車速コントローラ(27)に入力接続させ、車速コントローラ(27)と前記ガバナ制御回路(34)間を通信接続させ、前記自動スイッチ(28)がオンの自動車速制御開始直後の一定猶予時間内にエンジン(20)回転数を所定の初期モードで制御し、車速も初期の設定速度で走行を行った後に車速制御を行うことを特徴とするコンバイン。A threshing unit (4) and a mowing unit (8) are provided, and the cereals are continuously harvested and threshed, and the vehicle speed controller (27) for automatically controlling the traveling speed and the rotational speed of the engine (20) are controlled. a governor controller (34) to each other, the CVT hydraulic motor (19) and hydraulic pump (18) constituting the (17) and the provided Rutotomoni, when the load is above a certain the governor controller (34 ) To control the rotational load of the engine (20) in RMAX (horsepower up mode), and to control the continuously variable transmission mechanism (17) by the vehicle speed controller (27), an automatic switch (28) for automatically controlling the vehicle speed The threshing load sensor (30) for detecting the threshing load of the threshing section (4) and the vehicle speed sensor (32) for detecting the vehicle speed are connected to the vehicle speed controller (27). The vehicle speed controller (27) and the governor control circuit (34) are communicatively connected, and the engine (20) rotational speed is set to a predetermined initial mode within a certain grace period immediately after the start of the vehicle speed control when the automatic switch (28) is on. The vehicle is controlled at a vehicle speed, and the vehicle speed is controlled at the initial set speed .
JP2001186078A 2001-06-20 2001-06-20 Combine Expired - Fee Related JP3652626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001186078A JP3652626B2 (en) 2001-06-20 2001-06-20 Combine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001186078A JP3652626B2 (en) 2001-06-20 2001-06-20 Combine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8171491A Division JP3240444B2 (en) 1991-03-20 1991-03-20 Combine

Publications (2)

Publication Number Publication Date
JP2002067742A JP2002067742A (en) 2002-03-08
JP3652626B2 true JP3652626B2 (en) 2005-05-25

Family

ID=19025560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001186078A Expired - Fee Related JP3652626B2 (en) 2001-06-20 2001-06-20 Combine

Country Status (1)

Country Link
JP (1) JP3652626B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105746076A (en) * 2016-04-22 2016-07-13 张飞 Frequency-converter-control-type combined harvester

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101319407B1 (en) * 2013-05-24 2013-10-17 김남임 Self-propelled bean threshing machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105746076A (en) * 2016-04-22 2016-07-13 张飞 Frequency-converter-control-type combined harvester

Also Published As

Publication number Publication date
JP2002067742A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
EP2450539B1 (en) Engine device
JPH10191762A (en) Driving power controller for combine harvester
US11612102B2 (en) Drive system for a harvester
JP3652626B2 (en) Combine
JP2538297Y2 (en) Combine drive controller
JPS6342284B2 (en)
JP3240444B2 (en) Combine
JP4795563B2 (en) Auxiliary output device for work section of mobile agricultural machine
JP2002054473A (en) Combine
JP3831243B2 (en) Combine
JPH09215433A (en) Combine harvester
JP3563416B2 (en) Combine
JP2002192982A (en) Combine harvester
JP3601035B2 (en) Combine
JP2736884B2 (en) Harvester vehicle speed control device
JP3138881B2 (en) Vehicle speed control device for mobile agricultural machine
JP3138882B2 (en) Combine speed controller
JP3138880B2 (en) Vehicle speed control device for mobile agricultural machine
JPH094481A (en) Engine output control device for running working machine
JPH0249050Y2 (en)
JPS6244109Y2 (en)
JP3138879B2 (en) Combine
JP3440478B2 (en) Combine speed control system
JP2010187575A (en) Combine harvester
JPS635455Y2 (en)

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040517

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040623

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees