JP2002054473A - Combine - Google Patents

Combine

Info

Publication number
JP2002054473A
JP2002054473A JP2001186077A JP2001186077A JP2002054473A JP 2002054473 A JP2002054473 A JP 2002054473A JP 2001186077 A JP2001186077 A JP 2001186077A JP 2001186077 A JP2001186077 A JP 2001186077A JP 2002054473 A JP2002054473 A JP 2002054473A
Authority
JP
Japan
Prior art keywords
vehicle speed
controller
governor
engine
threshing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001186077A
Other languages
Japanese (ja)
Inventor
Wataru Nakagawa
渉 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Agricultural Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Agricultural Equipment Co Ltd filed Critical Yanmar Agricultural Equipment Co Ltd
Priority to JP2001186077A priority Critical patent/JP2002054473A/en
Publication of JP2002054473A publication Critical patent/JP2002054473A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combines (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve design and manufacture and handling ability by performing proper control of a vehicle speed controller (27) and a governor controller (34) in relation with each other though the vehicle speed controller (27) is disposed apart from the governor controller (34) and commonly using either the vehicle speed controller (27) or the governor controller (34) and varying the structure and the function of the other. SOLUTION: In a combine provided with a threshing part (4), a cutting part (8) and effecting threshing by continuously cutting cereal stalks and automatically controlling the vehicle speed, and a governor controller (34) to control the number of revolutions of an engine (20), the vehicle speed controller (27) and the governor controller (34) air interconnected for communication.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【津名の属する技術分野】本発明は例えば穀稈を刈取っ
て脱穀するコンバインなどの移動農機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mobile agricultural machine such as a combine harvester for cutting and threshing grain culms.

【0002】[0002]

【従来の技術】従来、特開昭64−67108号公報、
及び特開平2−100616号公報に示す如く、エンジ
ンの燃料噴射量を自動制御してエンジンの回転を設定回
転に保つ電子ガバナを設けると共に、走行変速制御して
車速を変更する技術がある。
2. Description of the Related Art Conventionally, Japanese Unexamined Patent Publication No.
As disclosed in Japanese Patent Application Laid-Open No. Hei 2-100616, there is a technology for automatically controlling the fuel injection amount of the engine to provide an electronic governor for keeping the rotation of the engine at a set rotation, and for controlling the traveling speed to change the vehicle speed.

【0003】[0003]

【発明が解決しようとする課題】前記従来技術は、運転
操作部に設ける自動制御コントローラによってエンジン
回転数と走行変速の両方を制御するから、エンジンまた
は電子ガバナの構造及び機能などの変更により、自動制
御コントローラも変更させる必要があり、コントローラ
などの設計製作が面倒であり、製造コストを容易に低減
し得ず、また交換修理用の部品保管コストも低減し得な
い等の製造上及び取扱い上の問題がある。
In the prior art, since both the engine speed and the traveling speed are controlled by an automatic controller provided in a driving operation unit, the automatic control is performed by changing the structure and function of the engine or the electronic governor. It is also necessary to change the controller, and it is troublesome to design and manufacture the controller, etc., so that the manufacturing cost cannot be easily reduced, and the cost of storing parts for replacement and repair cannot be reduced. There's a problem.

【0004】[0004]

【課題を解決するための手段】然るに、本発明は、脱穀
部及び刈取部を備え、穀稈を連続的に刈取って脱穀する
と共に、走行速度を自動制御する車速コントローラと、
エンジンの回転数を制御するガバナコントローラを備え
るコンバインにおいて、前記車速コントローラとガバナ
コントローラを通信接続させるもので、例えばエンジン
から離れた運転操作部またはミッションケースなどの近
くに車速コントローラを配設させても、車速コントロー
ラによる走行クローラの走行変速制御と、ガバナコント
ローラによるエンジンの回転数制御とを、互に関連させ
て適正に行わせ得ると共に、車速コントローラを共用し
てエンジンまたは電子ガバナの構造及び機能などを変更
し得、またガバナコントローラを共用して車速コントロ
ーラの構造及び機能などを変更し得、設計製造及び取扱
い性の向上などを容易に図り得るものである。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a vehicle speed controller having a threshing unit and a reaping unit for continuously cutting and threshing a grain stalk and automatically controlling a traveling speed.
In a combine equipped with a governor controller that controls the number of revolutions of the engine, the vehicle speed controller and the governor controller are connected for communication.For example, even if the vehicle speed controller is arranged near a driving operation unit or a transmission case away from the engine. The traveling speed control of the traveling crawler by the vehicle speed controller and the engine speed control by the governor controller can be appropriately performed in association with each other, and the structure and function of the engine or the electronic governor by sharing the vehicle speed controller. Can be changed, and the structure and function of the vehicle speed controller can be changed by sharing the governor controller, so that the design, manufacture, and handleability can be easily improved.

【0005】[0005]

【発明の実施の形態】以下本発明の一実施例を図面に基
づいて詳述する。図1は制御回路図、図2はコンバイン
の全体側面図であり、図中(1)は走行クローラ(2)
をトラックフレーム(3)に装備する機台、(4)は軸
流式のスクリュ形扱胴(5)及び選別機構(6)を備え
ていて前記機台(1)に搭載する脱穀部、(7)は脱穀
部(4)からの穀粒を溜める穀物タンク、(8)は前記
脱穀部(4)の下部前方に油圧シリンダ(9)を介して
昇降可能に装設する刈取部、(10)は運転席及び運転
操作部を備えていて前記穀物タンク(7)の前方に固設
させる運転室、(11)は前記穀物タンク(7)内の穀
粒を取出す穀粒搬出オーガである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail with reference to the drawings. 1 is a control circuit diagram, and FIG. 2 is an overall side view of the combine, in which (1) is a traveling crawler (2).
(4) is a threshing unit equipped with an axial-flow screw-type handling cylinder (5) and a sorting mechanism (6) and mounted on the machine (1); 7) is a grain tank for storing grains from the threshing unit (4), (8) is a harvesting unit which is installed in a lower front of the threshing unit (4) via a hydraulic cylinder (9) so as to be able to move up and down, (10) ) Is a driver's cab provided with a driver's seat and a driving operation unit and fixed in front of the grain tank (7), and (11) is a grain carrying auger for taking out grains in the grain tank (7).

【0006】そして前記刈取部(8)は、未刈り穀稈を
取入れる穀物ヘッダー(11)と、該ヘッダー(11)
の後部略中央に連結させて刈取り穀稈を脱穀部(4)に
送給する供給室(12)によって構成すると共に、未刈
り穀稈掻込み用リール(13)及び往復駆動型刈刃(1
4)及び穀稈掻込ドラム(15)とを前記穀物ヘッダー
(11)に備え、前記ヘッダー(11)に取込まれる刈
取穀稈を供給室(12)に内設する供給チェンコンベア
(16)を介し脱穀部(4)に送り込んで脱穀処理する
ように構成している。
The cutting section (8) includes a cereal header (11) for incorporating uncut culm stems, and the header (11).
And a feed chamber (12) for feeding the harvested grain culm to the threshing unit (4) by being connected to the approximate center of the rear part, and a reel (13) for scraping the uncut grain culm and a reciprocating drive type cutting blade (1).
4) and a grain stalk scraping drum (15) in the grain header (11), and a supply chain conveyor (16) in which a harvested grain culm to be taken into the header (11) is provided in a supply chamber (12). Through the threshing unit (4) for threshing.

【0007】図3に示す如く、このコンバインの車速の
変速はHSTである無段変速機構(17)を構成する可
変容量形油圧ポンプ(18)と油圧モータ(19)とで
行うもので、エンジン(20)の出力軸(20a)にベ
ルト伝達機構(21)を介し前記油圧ポンプ(18)の
入力軸(18a)を連動連結させ、前記走行クローラ
(2)の駆動スプロケット(22)を有するミッション
ケース(23)に前記油圧モータ(19)の出力軸(1
9a)を連動連結させる一方、前記扱胴(5)の扱胴入
力軸(5a)をベルト及びギヤ伝達機構(24)を介し
エンジン(20)の入力軸(20a)に連動連結させて
いる。
As shown in FIG. 3, the vehicle speed of the combine is changed by a variable displacement hydraulic pump (18) and a hydraulic motor (19) constituting a continuously variable transmission mechanism (17) which is an HST. A transmission having a drive sprocket (22) for the traveling crawler (2) by interlockingly connecting an input shaft (18a) of the hydraulic pump (18) to an output shaft (20a) of (20) via a belt transmission mechanism (21). The output shaft (1) of the hydraulic motor (19) is attached to the case (23).
9a), the handle cylinder input shaft (5a) of the handle cylinder (5) is linked to the input shaft (20a) of the engine (20) via a belt and a gear transmission mechanism (24).

【0008】また、前記エンジン(20)には燃料噴射
ポンプの燃料噴射量を噴射量調整用ラックで制御して回
転数を一定保持する電子ガバナ(25)を有すると共
に、前記油圧ポンプ(18)には斜板角を制御して油圧
吐出量の調整を行うDC形サーボモータ(26)を有し
て、該モータ(26)の正逆駆動でもって車速の増減速
制御を行うように構成している。
The engine (20) has an electronic governor (25) for controlling a fuel injection amount of a fuel injection pump by an injection amount adjusting rack to keep the rotation speed constant, and the hydraulic pump (18). Has a DC servomotor (26) for controlling the swash plate angle to adjust the hydraulic discharge amount, and is configured to control the increase / decrease of the vehicle speed by forward / reverse drive of the motor (26). ing.

【0009】そして図1に示す如く、前記サーボモータ
(26)を駆動制御するファジィ推論車速演算回路であ
る車速制御回路(27)に、車速の自動制御を行う自動
スイッチ(28)と、前記刈取部(8)での刈取負荷の
一定以上を検出する刈取負荷センサ(29)と、前記脱
穀部(4)での扱胴(5)など脱穀負荷の一定以上を検
出する脱穀負荷センサ(30)と、排藁カッタでの切断
負荷の一定以上を検出する排藁切断負荷センサ(31)
と、車速を検出する車速センサ(32)と、HST油圧
センサ(33)とを入力接続させる一方、燃料噴射ポン
プの噴射量を調整するガバナ(25)のラック位置調節
機構(25a)を駆動制御するガバナ制御回路(34)
に、前記エンジン(20)での回転を検出するエンジン
回転センサ(35)と、前記ガバナ(25)での噴射量
調整用ラックの位置を検出するガバナラック位置センサ
(36)とを入力接続させ、前記制御回路(27)(3
4)間を通信接続させて、これら各センサ(29)(3
0)(31)(32)(33)(35)(36)の検出
に基づいてエンジン(20)回転数の一定制御やエンジ
ン(20)の緊急停止やファジィ推論に基づく車速制御
を行うように構成している。
As shown in FIG. 1, a vehicle speed control circuit (27), which is a fuzzy inference vehicle speed calculation circuit for driving and controlling the servo motor (26), includes an automatic switch (28) for automatically controlling the vehicle speed, and the reaper. A threshing load sensor (29) for detecting a certain level of the mowing load in the section (8), and a threshing load sensor (30) for detecting a certain level of the threshing load such as the handling cylinder (5) in the threshing section (4). And a straw cutting load sensor (31) for detecting a certain or more cutting load on the straw cutter
And a vehicle speed sensor (32) for detecting a vehicle speed and an HST oil pressure sensor (33), and drive control of a rack position adjusting mechanism (25a) of a governor (25) for adjusting an injection amount of a fuel injection pump. Governor control circuit (34)
And an engine rotation sensor (35) for detecting the rotation of the engine (20) and a governor rack position sensor (36) for detecting the position of the injection amount adjusting rack in the governor (25). , The control circuit (27) (3
4) to make a communication connection between these sensors (29) (3)
0) (31) (32) (33) (35) (36) Based on the detection of the engine (20) constant speed control, emergency stop of the engine (20) and vehicle speed control based on fuzzy inference. Make up.

【0010】上記から明らかなように、脱穀部(4)及
び刈取部(8)を備え、穀稈を連続的に刈取って脱穀す
ると共に、走行速度を自動制御する車速コントローラで
ある車速制御回路(27)と、エンジン(20)の回転
数を制御するガバナコントローラであるガバナ制御回路
(34)を備えるコンバインにおいて、前記車速制御回
路(27)とガバナ制御回路(34)を通信接続させ
る。そして、例えば電子ガバナ(25)を設けるエンジ
ン(20)の近くにガバナ制御回路(34)を配設させ
る構造で、例えばエンジン(20)から離れた運転操作
部またはミッションケース(23)などの近くに車速制
御回路(27)を配設させても、車速制御回路(27)
による走行クローラ(2)の走行変速制御と、ガバナ制
御回路(34)によるエンジン(20)の回転数制御と
を、互に関連させて適正に行わせると共に、車速制御回
路(27)を共用してエンジン(20)または電子ガバ
ナ(25)の構造及び機能などを変更させ、またガバナ
制御回路(34)を共用して車速制御回路(27)の構
造及び機能などを変更させ、設計製造及び取扱い性の向
上などを図る。
As is apparent from the above, a vehicle speed control circuit which is a vehicle speed controller having a threshing unit (4) and a reaping unit (8) and continuously cutting and threshing the culm and automatically controlling the traveling speed. (27) In a combine including a governor control circuit (34) which is a governor controller for controlling the number of revolutions of the engine (20), the vehicle speed control circuit (27) and the governor control circuit (34) are connected by communication. For example, the governor control circuit (34) is arranged near the engine (20) provided with the electronic governor (25), and for example, near the operation unit or the transmission case (23) remote from the engine (20). The vehicle speed control circuit (27)
The control of the traveling speed of the traveling crawler (2) and the control of the rotation speed of the engine (20) by the governor control circuit (34) are appropriately performed in association with each other, and the vehicle speed control circuit (27) is shared. To change the structure and function of the engine (20) or the electronic governor (25), and to change the structure and function of the vehicle speed control circuit (27) by sharing the governor control circuit (34); Improve the performance.

【0011】さらに、エンジン(20)の燃料噴射量を
制御する電子ガバナ(25)と、車速を検出する車速セ
ンサ(32)と、車速を変更する走行変速部材であるサ
ーボモータ(26)を設けると共に、少なくとも電子ガ
バナ(25)が制御する燃料噴射量と、該燃料噴射量の
変化率とにより目標車速をファジィ推論によって演算
し、前記目標車速と車速センサ(32)の車速検出値と
により走行変速出力をファジィ推論によって演算し、前
記走行変速出力によって走行変速サーボモータ(26)
を自動制御する車速コントローラである車速制御回路
(27)を設けるコンバインにおいて、車速の自動制御
を行う自動スイッチ(28)と、刈取部(8)での刈取
負荷の一定以上を検出する刈取負荷センサ(29)と、
脱穀部(4)での扱胴(5)など脱穀負荷の一定以上を
検出する脱穀負荷センサ(30)と、排藁カッタでの切
断負荷の一定以上を検出する排藁切断負荷センサ(3
1)と、車速を検出する車速センサ(32)と、HST
油圧センサ(33)とを、車速制御回路(27)に入力
接続させる一方、燃料噴射ポンプの噴射量を調整するガ
バナ(25)を駆動制御するガバナ制御回路(34)
に、前記エンジン(20)での回転を検出するエンジン
回転センサ(35)と、前記ガバナ(25)での噴射量
調整用ラックの位置を検出するガバナラック位置センサ
(36)とを入力接続させ、前記各制御回路(27)
(34)間を通信接続させ、前記自動スイッチ(28)
がオンの自動車速制御開始直後の一定猶予時間内にあっ
てはエンジン(20)回転数を所定の初期モードで制御
し、車速も初期の設定速度で走行を行った後、エンジン
(20)回転数の一定制御やエンジン(20)の緊急停
止やファジィ推論に基づく車速制御を行うように構成す
る。そして、自動車速制御開始直後の一定猶予時間内で
初期モード制御を行い、初期設定したエンジン(20)
回転数及び車速で自動作業を開始させ、ファジィ推論に
基づく自動車速制御をスムーズに開始させ、自動作業の
開始前後でエンジン(20)の回転数または車速の差が
大きくなる場合でもエンジン(20)を適正回転に維持
させ、過負荷によってエンジン(20)回転が変更され
て収穫作業速度が変化する不具合をなくし、またエンジ
ン(20)回転が低下して走行クローラ(2)駆動力が
不足する不具合をなくし、車速コントローラ(27)に
よる走行クローラ(2)駆動速度制御を適正に行わせ、
作業者の人為運転操作の簡略化並びに収穫作業能率の向
上などを図る。
Further, an electronic governor (25) for controlling a fuel injection amount of the engine (20), a vehicle speed sensor (32) for detecting a vehicle speed, and a servomotor (26) as a traveling speed change member for changing the vehicle speed are provided. At the same time, the target vehicle speed is calculated by fuzzy inference based on at least the fuel injection amount controlled by the electronic governor (25) and the rate of change of the fuel injection amount, and the vehicle travels based on the target vehicle speed and the vehicle speed detection value of the vehicle speed sensor (32). The shift output is calculated by fuzzy inference, and the shift servomotor (26) is operated based on the shift output.
In a combine provided with a vehicle speed control circuit (27) which is a vehicle speed controller for automatically controlling the speed, an automatic switch (28) for automatically controlling the vehicle speed, and a cutting load sensor for detecting a certain or more cutting load in the cutting unit (8). (29)
A threshing load sensor (30) for detecting a certain or more threshing load, such as a handling cylinder (5) in a threshing unit (4), and a straw cutting load sensor (3) for detecting a certain or more cutting load with a straw cutter.
1) a vehicle speed sensor (32) for detecting a vehicle speed;
A governor control circuit (34) for driving and controlling a governor (25) for adjusting an injection amount of a fuel injection pump while inputting a hydraulic pressure sensor (33) to a vehicle speed control circuit (27).
An engine rotation sensor (35) for detecting the rotation of the engine (20) and a governor rack position sensor (36) for detecting the position of the injection amount adjusting rack in the governor (25) are connected. , Each of the control circuits (27)
(34) to establish communication connection between the automatic switch (28)
During a certain grace period immediately after the start of the vehicle speed control, the engine (20) speed is controlled in a predetermined initial mode, the vehicle speed is also driven at the initial set speed, and then the engine (20) speed is turned on. It is configured to perform constant control of the number, emergency stop of the engine (20), and vehicle speed control based on fuzzy inference. Then, the initial mode control is performed within a certain grace period immediately after the start of the vehicle speed control, and the initially set engine (20)
The automatic work is started at the rotation speed and the vehicle speed, and the vehicle speed control based on the fuzzy inference is smoothly started. Is maintained at an appropriate speed to eliminate the problem that the rotation speed of the engine (20) is changed due to overload and the harvesting speed is changed, and that the driving force of the traveling crawler (2) is insufficient due to the reduced rotation of the engine (20). The vehicle speed controller (27) controls the traveling crawler (2) drive speed appropriately,
The simplification of the manual operation of the worker and the improvement of the efficiency of the harvest work are aimed at.

【0012】本実施例は上記の如く構成するものにし
て、以下図4のフローチャートを参照してこの車速制御
を説明する。
This embodiment is configured as described above, and the vehicle speed control will be described below with reference to the flowchart of FIG.

【0013】今各モジュールである基準値や検出値が初
期化され、各センサ(29)〜(33)(35)(3
6)での検出値が入力され、刈取部(8)や脱穀部
(4)や排藁カッタ部や走行部での異常作業時にあっ
て、緊急信号が出力されるときエンジン(20)の緊急
停止が行われると共に、正常作業時各センサ(32)
(35)(36)の検出に基づくエンジン(20)デー
タの受信や車速データのカウントが行われるもので、前
記自動スイッチ(28)がオンの自動車速制御開始直後
の一定猶予時間内にあってはエンジン(20)回転数を
所定の初期モードで制御し、車速も初期の設定速度で走
行を行う。
Now, reference values and detected values of the respective modules are initialized, and the sensors (29) to (33), (35), (3)
6) The detection value is input, and the emergency signal of the engine (20) is output when an emergency signal is output at the time of abnormal work in the cutting unit (8), the threshing unit (4), the straw cutter unit, or the traveling unit. During normal operation, the sensors are stopped (32)
(35) Reception of engine (20) data and counting of vehicle speed data based on the detection of (36) are performed. If the automatic switch (28) is turned on within a certain grace period immediately after the start of vehicle speed control, Controls the number of revolutions of the engine (20) in a predetermined initial mode, and runs at the initial set speed.

【0014】そして一定猶予時間経過後にあってはエン
ジン(20)の入力データから現在の車速に対する増減
速を必要とする目標の車速偏差値(VE)をファジィ推
論に基づき演算出力させて目標の車速に制御しての走行
を行うものである。
After a lapse of a predetermined delay time, a target vehicle speed deviation value (VE) requiring acceleration / deceleration with respect to the current vehicle speed is calculated and output based on fuzzy inference from the input data of the engine (20) to obtain the target vehicle speed. The vehicle travels under controlled conditions.

【0015】次に図5乃至図6を参照して車速偏差値
(VE)を算出するうえでのファジィ推論制御を説明す
る。
Next, the fuzzy inference control for calculating the vehicle speed deviation value (VE) will be described with reference to FIGS.

【0016】図6に示す如き、入力される電子ガバナ
(25)のラック位置(燃料噴射量)とエンジン回転数
との関係を最大負荷曲線(RMAX)及び無負荷曲線
(RIDL)で表す特性図に基づきラック位置偏差値
(RE)とその変化率(RD)及び最大出力偏差値(R
M)を算出するもので、定格回転 N rpm、目標の
最大噴射量となるラックの最大目標値がA、無負荷時の
噴射量となるラックの無負荷値がBとなって、負荷率8
0%を設定したときの目標噴射量である目標ラック値
(RACT)の値Cが、80%=C−B/A−Bの関係
式から算出される。つまり実際の出力のデータ(rac
t)をD、そのときエンジン(20)の回転数の一定制
御により電子ガバナコントローラである制御回路(3
4)から出力される制限最大噴射量値Eとすると、目標
ラック値C、最大目標値Aからラック偏差値RE(=D
−C)、最大目標偏差値RM(=E−A)と一定時間間
の偏差値(RE)の変化率(RD)とをファジィ推論の
入力値とさせる。なお、エンジンの回転数の一定制御
(例えば2625rpm一定制御)を行っているが、ラ
ック位置調節機構(25a)等の制御遅れや段階的な制
御や負荷の急激な変動等により、回転センサ(35)の
値が同じでも、最大負荷曲線により決定される最大目標
値(例えばA)と電子ガバナコントローラから出力され
る制限最大噴射量Eは、実際上一致しない。(但し一致
する場合もありうる。)そして図7に示す如く、PB
(正で大きい)、PS(正で小さい)、ZO(ゼロ)、
NS(負で小さい)、NB(負で大きい)の5つファジ
ィ集合で表されるメンバシップ関数に対応するようにこ
れら値の(RE)(RD)(RM)の正規化が行われて
ファジィ変数(re)(rd)(rm)に変換される。
As shown in FIG. 6, the relationship between the input rack position (fuel injection amount) of the electronic governor (25) and the engine speed is represented by a maximum load curve (RMAX) and a no-load curve (RIDL). The rack position deviation value (RE), its rate of change (RD) and the maximum output deviation value (R
M), where the rated speed N rpm, the maximum target value of the rack that becomes the target maximum injection amount is A, and the no-load value of the rack that becomes the injection amount at no load is B, and the load factor is 8
The value C of the target rack value (RACT), which is the target injection amount when 0% is set, is calculated from the relational expression of 80% = CB / AB. That is, the actual output data (rac
t) is D, at which time the control circuit (3) which is an electronic governor controller by constant control of the rotation speed of the engine (20).
4), the target rack value C and the rack deviation value RE from the maximum target value A (= D
-C), the maximum target deviation value RM (= EA) and the rate of change (RD) of the deviation value (RE) during a certain period of time are input as fuzzy inference values. Although constant control of the number of revolutions of the engine (for example, constant control of 2625 rpm) is performed, the rotation sensor (35) is controlled due to control delay of the rack position adjusting mechanism (25a) or the like, stepwise control, rapid fluctuation of load, or the like. ), The maximum target value (for example, A) determined by the maximum load curve does not substantially match the limited maximum injection amount E output from the electronic governor controller. (However, they may coincide with each other.) Then, as shown in FIG.
(Positive and large), PS (positive and small), ZO (zero),
These values (RE), (RD), and (RM) are normalized to correspond to a membership function represented by five fuzzy sets of NS (negative and small) and NB (negative and large), and are fuzzy. It is converted into variables (re), (rd), and (rm).

【0017】例えばこれに数値をあてはめ説明すると、
N=2625rpm、目標負荷率を80%、A=18
9、B=102とするとき、C=172が算出され、D
=176、E=187のとき、RE=4、RM=−2が
算出されて、電子ガバナ(25)からの入力データとし
てRE=4、RD=0、RM=−2が入力されるとき、
メンバシップ関数に対応するようにre=18、rd=
14、rm=12の入力変数に変換が行われる。
For example, by applying a numerical value to this,
N = 2625 rpm, target load factor 80%, A = 18
9, when B = 102, C = 172 is calculated, and D
= 176, E = 187, RE = 4, RM = -2 are calculated, and when RE = 4, RD = 0, RM = -2 are input as input data from the electronic governor (25),
Re = 18, rd = so as to correspond to the membership function
14, a conversion is made to rm = 12 input variables.

【0018】変数(re)(rd)(rm)の値がこれ
ら5つの集合に含まれる度合(グレード)を図7の三角
型のメンバシップ関数の重みとしてそれぞれ求める。
The degree (grade) at which the values of the variables (re), (rd), and (rm) are included in these five sets is obtained as the weight of the triangular membership function in FIG.

【0019】例えば、 re=18の場合 NB=0 NS=4 ZO=11 PS=12 PB=5 rd=14の場合 NB=1 NS=8 ZO=15 PS=8 PB=1 rm=12の場合 NB=3 NS=10 ZO=13 PS=6 PB=0For example, when re = 18 NB = 0 NS = 4 ZO = 11 PS = 12 PB = 5 rd = 14 NB = 1 NS = 8 ZO = 15 PS = 8 PB = 1 rm = 12 NB = 3 NS = 10 ZO = 13 PS = 6 PB = 0

【0020】各ルールに対してルールの前件部である変
数つまり各メンバシップ値(re)(rd)(rm)の
適応度を図8などより算出する。
For each rule, the fitness as a variable that is the antecedent of the rule, ie, the membership values (re), (rd), and (rm) are calculated from FIG.

【0021】例えば、ファジィ制御のif−then型
式ルールの0で、「もしreがZOで、rdがZOで、
rmがNBならば、目標の車速偏差値veをZOとす
る」と推論すると、re=18の値がルールの前件部
「reがZO」に対する適応度は図8より11、またr
d=14の値が「rdがZO」に対する適応度は15、
さらにrm=12の値が「rmがNB」に対する適応度
は3となる。
For example, in the if-then type rule 0 of fuzzy control, "if re is ZO, rd is ZO,
If rm is NB, the target vehicle speed deviation value ve is set to ZO. "If the value of re = 18 is 11, the fitness to the antecedent part" re is ZO "of the rule is 11 from FIG.
If the value of d = 14 is “rd is ZO”, the fitness is 15,
Furthermore, the fitness of rm = 12 for “rm is NB” is 3.

【0022】各ルールにおいてそれぞれ算出される前件
部の適応度をミニマム合成(各値の中から1番小さな値
をとる)して求める。例示の場合min(11、15、
3)=3。
The fitness of the antecedent part calculated in each rule is obtained by minimum synthesis (taking the smallest value from each value). In the case of illustration, min (11, 15,
3) = 3.

【0023】図9に示す如く、各ルール後件部の出力フ
ァジィを求める。同図はルール0のve=ZOの場合。
As shown in FIG. 9, the output fuzzy of each rule consequent is obtained. The figure shows the case where ve = ZO of rule 0.

【0024】図10に示す如く、各ルールの前件部の適
応度で後件部の出力ファジィ集合の頭をカットする。例
示の場合3でカットする。
As shown in FIG. 10, the head of the output fuzzy set of the consequent part is cut by the fitness of the antecedent part of each rule. In the case of illustration, it cuts in 3.

【0025】各ルールにおけるこのような処理が全て終
了すると、図11に示す如く、 総てのルールに対する
出力ファジィ集合のマキシム合成を行う。
When all such processes for each rule are completed, as shown in FIG. 11, the output fuzzy sets for all rules are subjected to the maximal synthesis.

【0026】合成された出力ファジィ集合より非ファジ
ィ処理でもって重心を求めて、中央値との偏差である出
力ファジィ変数veを算出する。
The center of gravity is obtained by non-fuzzy processing from the synthesized output fuzzy set, and an output fuzzy variable ve which is a deviation from a median is calculated.

【0027】出力ファジィ変数(ve)を実際の車速制
御出力である車速偏差値(VE)に変換する。
The output fuzzy variable (ve) is converted into a vehicle speed deviation value (VE) which is an actual vehicle speed control output.

【0028】このようなファジィ推論を車速制御に用い
た場合、容易に多次元の非線型関数が実現できると共
に、非線型関数のパラメータをファジィルールによって
感覚的に設定・変更でき、適応性を拡大させることがで
きる。
When such fuzzy inference is used for vehicle speed control, a multidimensional nonlinear function can be easily realized, and parameters of the nonlinear function can be set and changed intuitively by fuzzy rules, thereby expanding adaptability. Can be done.

【0029】[0029]

【発明の効果】以上実施例から明らかなように本発明
は、脱穀部(4)及び刈取部(8)を備え、穀稈を連続
的に刈取って脱穀すると共に、走行速度を自動制御する
車速コントローラ(27)と、エンジン(20)の回転
数を制御するガバナコントローラ(34)を備えるコン
バインにおいて、前記車速コントローラ(27)とガバ
ナコントローラ(34)を通信接続させるもので、例え
ばエンジン(20)から離れた運転操作部またはミッシ
ョンケース(23)などの近くに車速コントローラ(2
7)を配設させても、車速コントローラ(27)による
走行クローラ(2)の走行変速制御と、ガバナコントロ
ーラ(34)によるエンジン(20)の回転数制御と
を、互に関連させて適正に行わせることができると共
に、車速コントローラ(27)を共用してエンジン(2
0)または電子ガバナ(25)の構造及び機能などを変
更でき、またガバナコントローラ(34)を共用して車
速コントローラ(27)の構造及び機能などを変更で
き、設計製造及び取扱い性の向上などを容易に図ること
ができるものである。
As is apparent from the above embodiments, the present invention comprises a threshing unit (4) and a cutting unit (8), and continuously cuts and threshes the culm and automatically controls the traveling speed. In a combine including a vehicle speed controller (27) and a governor controller (34) for controlling the number of revolutions of the engine (20), the vehicle speed controller (27) and the governor controller (34) are communicatively connected. ) And a vehicle speed controller (2) near a driving operation unit or a transmission case (23).
7), the traveling speed control of the traveling crawler (2) by the vehicle speed controller (27) and the rotation speed control of the engine (20) by the governor controller (34) are properly related to each other. And the engine (2) is shared with the vehicle speed controller (27).
0) or the structure and function of the electronic governor (25) can be changed, and the structure and function of the vehicle speed controller (27) can be changed by sharing the governor controller (34) to improve design, manufacture and handling. This can be easily achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】制御回路図。FIG. 1 is a control circuit diagram.

【図2】コンバインの全体側面図。FIG. 2 is an overall side view of the combine.

【図3】エンジン駆動系の部分説明図。FIG. 3 is a partial explanatory view of an engine drive system.

【図4】車速制御のフローチャート。FIG. 4 is a flowchart of vehicle speed control.

【図5】ファジィ制御のフローチャート。FIG. 5 is a flowchart of fuzzy control.

【図6】エンジンとラック位置の関係を示す特性図。FIG. 6 is a characteristic diagram showing a relationship between an engine and a rack position.

【図7】三角型ファジィ変数を表す説明図。FIG. 7 is an explanatory diagram showing a triangular fuzzy variable.

【図8】ファジィ変数の各ルールに対する適応度を表す
説明図。
FIG. 8 is an explanatory diagram showing the fitness of each rule of a fuzzy variable.

【図9】出力ファジィ集合の説明図。FIG. 9 is an explanatory diagram of an output fuzzy set.

【図10】出力ファジィ集合のカット説明図。FIG. 10 is an explanatory diagram of a cut of an output fuzzy set.

【図11】出力ファジィ集合のマキシム合成説明図。FIG. 11 is an explanatory diagram of the maximum synthesis of an output fuzzy set.

【符号の説明】[Explanation of symbols]

(4) 脱穀部 (8) 刈取部 (20) エンジン (27) 車速制御回路(車速コントローラ) (34) ガバナ制御回路(ガバナコントローラ) (4) Threshing unit (8) Cutting unit (20) Engine (27) Vehicle speed control circuit (vehicle speed controller) (34) Governor control circuit (governor controller)

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 29/00 F02D 29/00 B 3G301 41/04 360 41/04 360G 41/40 41/40 K 45/00 305 45/00 305D 312 312M Fターム(参考) 2B074 AA05 AC02 BA15 CD02 DA02 DB01 DB03 DB04 GJ04 3D044 AA01 AA21 AA45 AA50 AB04 AC03 AC05 AC21 AC26 AC41 AD02 AD06 AD16 AE03 AE21 3G060 AA08 AC08 BA02 CA01 FA06 GA01 GA03 3G084 AA01 AA07 BA03 DA03 FA05 FA18 FA33 3G093 AA09 AB01 BA26 CA05 DA01 DB05 EA03 EB02 FA04 3G301 HA28 JA35 LB07 PE01A PE01Z PF01Z Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F02D 29/00 F02D 29/00 B 3G301 41/04 360 41/04 360G 41/40 41/40 K 45/00 305 45 / 00D 305D 312 312M F-term (reference) 2B074 AA05 AC02 BA15 CD02 DA02 DB01 DB03 DB04 GJ04 3D044 AA01 AA21 AA45 AA50 AB04 AC03 AC05 AC21 AC26 AC41 AD02 AD06 AD16 AE03 AE21 3G060 AA08 AC08 BA02 CA03 FA03 FA18 FA33 3G093 AA09 AB01 BA26 CA05 DA01 DB05 EA03 EB02 FA04 3G301 HA28 JA35 LB07 PE01A PE01Z PF01Z

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 脱穀部(4)及び刈取部(8)を備え、
穀稈を連続的に刈取って脱穀すると共に、走行速度を自
動制御する車速コントローラ(27)と、エンジン(2
0)の回転数を制御するガバナコントローラ(34)を
備えるコンバインにおいて、前記車速コントローラ(2
7)とガバナコントローラ(34)を通信接続させるこ
とを特徴とするコンバイン。
1. A threshing unit (4) and a reaping unit (8),
A vehicle speed controller (27) for continuously cutting and threshing the culm and automatically controlling the traveling speed, and an engine (2)
0) in a combine equipped with a governor controller (34) for controlling the rotation speed of the vehicle speed controller (2).
And a governor controller (34) for communication connection.
JP2001186077A 2001-06-20 2001-06-20 Combine Pending JP2002054473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001186077A JP2002054473A (en) 2001-06-20 2001-06-20 Combine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001186077A JP2002054473A (en) 2001-06-20 2001-06-20 Combine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8171491A Division JP3240444B2 (en) 1991-03-20 1991-03-20 Combine

Publications (1)

Publication Number Publication Date
JP2002054473A true JP2002054473A (en) 2002-02-20

Family

ID=19025559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001186077A Pending JP2002054473A (en) 2001-06-20 2001-06-20 Combine

Country Status (1)

Country Link
JP (1) JP2002054473A (en)

Similar Documents

Publication Publication Date Title
EP0122343B1 (en) Combine harvester
US6315658B1 (en) Arrangement for the control of the forward propulsion speed of a harvesting machine with fuzzy logic
US11612102B2 (en) Drive system for a harvester
JP2009072068A (en) Combine harvester
JPS6342284B2 (en)
JP2538297Y2 (en) Combine drive controller
JP3240444B2 (en) Combine
JP3652626B2 (en) Combine
JP2002054473A (en) Combine
JP2002192982A (en) Combine harvester
JP3563416B2 (en) Combine
JP3831243B2 (en) Combine
JP2002337569A (en) Working part auxiliary output device for movable agliculture machine
JPH09215433A (en) Combine harvester
JP3138881B2 (en) Vehicle speed control device for mobile agricultural machine
JP2736884B2 (en) Harvester vehicle speed control device
JP3138882B2 (en) Combine speed controller
JPH094481A (en) Engine output control device for running working machine
JPS6244109Y2 (en)
JP3138880B2 (en) Vehicle speed control device for mobile agricultural machine
JP3146433B2 (en) Automatic constant rotation control mechanism for work equipment
JP3440478B2 (en) Combine speed control system
JP3138879B2 (en) Combine
JP3121004B2 (en) Power detector for working unit in harvester
JPH10229732A (en) Combine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040517

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050405