JP2002067742A - Combined harvester and thresher - Google Patents

Combined harvester and thresher

Info

Publication number
JP2002067742A
JP2002067742A JP2001186078A JP2001186078A JP2002067742A JP 2002067742 A JP2002067742 A JP 2002067742A JP 2001186078 A JP2001186078 A JP 2001186078A JP 2001186078 A JP2001186078 A JP 2001186078A JP 2002067742 A JP2002067742 A JP 2002067742A
Authority
JP
Japan
Prior art keywords
engine
vehicle speed
controller
governor
threshing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001186078A
Other languages
Japanese (ja)
Other versions
JP3652626B2 (en
Inventor
Wataru Nakagawa
渉 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Agricultural Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Agricultural Equipment Co Ltd filed Critical Yanmar Agricultural Equipment Co Ltd
Priority to JP2001186078A priority Critical patent/JP3652626B2/en
Publication of JP2002067742A publication Critical patent/JP2002067742A/en
Application granted granted Critical
Publication of JP3652626B2 publication Critical patent/JP3652626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Harvester Elements (AREA)
  • Motor Power Transmission Devices (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Combines (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Transmission Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a designing and manufacturing property and a handling property, etc., by arranging a car speed controller 27 at a position of a governor controller 34 and changing a structure and a function of one of the car speed controller 27 and the governor controller 34 by commonly using the other of them. SOLUTION: The car speed controller 27 furnished with a grain threshing part 4 and a harvesting part 8, to thresh grains by continuously reaping stalks and to automatically control travelling speed and the governor controller 34 to control engine speed of an engine 20 are furnished separately, a hydraulic pump 18 and a hydraulic motor 19 to constitute a stepless speed change mechanism 17 are provided, the hydraulic pump 18 is connected to the engine 20, and the hydraulic motor 19 is connected to a transmission case 23 to drive a travelling crawler 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【津名の属する技術分野】本発明は例えば穀稈を刈取っ
て脱穀するコンバインなどの移動農機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mobile agricultural machine such as a combine harvester for cutting and threshing grain culms.

【0002】[0002]

【従来の技術】従来、特開昭64−67108号公報、
及び特開平2−100616号公報に示す如く、エンジ
ンの燃料噴射量を自動制御してエンジンの回転を設定回
転に保つ電子ガバナを設けると共に、走行変速制御して
車速を変更する技術がある。
2. Description of the Related Art Conventionally, Japanese Unexamined Patent Publication No.
As disclosed in Japanese Patent Application Laid-Open No. Hei 2-100616, there is a technology for automatically controlling the fuel injection amount of the engine to provide an electronic governor for keeping the rotation of the engine at a set rotation, and for controlling the traveling speed to change the vehicle speed.

【0003】[0003]

【発明が解決しようとする課題】前記従来技術は、同一
のコントローラによってエンジン回転数と走行変速の両
方を制御するから、電子ガバナまたは走行変速のいずれ
か一方だけの構造または機能などの変更により、前記コ
ントローラも変更させる必要があり、コントローラなど
の設計製作が面倒であり、製造コストを容易に低減し得
ず、また交換修理用の部品保管コストも低減し得ない等
の製造上及び取扱い上の問題がある。
In the prior art, since both the engine speed and the traveling speed are controlled by the same controller, the structure or function of only one of the electronic governor and the traveling speed is changed. The controller also needs to be changed, and the design and manufacture of the controller and the like are troublesome, and the manufacturing cost cannot be easily reduced, and the cost of storing parts for replacement and repair cannot be reduced. There's a problem.

【0004】[0004]

【課題を解決するための手段】然るに、本発明は、脱穀
部及び刈取部を備え、穀稈を連続的に刈取って脱穀する
と共に、走行速度を自動制御する車速コントローラと、
エンジンの回転数を制御するガバナコントローラとを各
別に備え、無段変速機構を構成する油圧ポンプと油圧モ
ータとを設け、エンジンに油圧ポンプを連結させ、走行
クローラを駆動するミッションケースに油圧モータを連
結させるもので、例えばエンジンから離れた運転操作部
またはミッションケースなどの近くに車速コントローラ
を配設させても、車速コントローラによる走行クローラ
の走行変速制御と、ガバナコントローラによるエンジン
の回転数制御とを、互に関連させて適正に行わせ得ると
共に、車速コントローラを共用して電子ガバナの構造及
び機能などを変更し得、またガバナコントローラを共用
して車速コントローラの構造及び機能などを変更し得、
設計製造及び取扱い性の向上などを容易に図り得るもの
である。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a vehicle speed controller having a threshing unit and a reaping unit for continuously cutting and threshing a grain stalk and automatically controlling a traveling speed.
A governor controller that controls the number of revolutions of the engine is provided separately, a hydraulic pump and a hydraulic motor that constitute a continuously variable transmission mechanism are provided, a hydraulic pump is connected to the engine, and a hydraulic motor is mounted on a transmission case that drives the traveling crawler. Even if a vehicle speed controller is arranged near a driving operation unit or a transmission case away from the engine, for example, the traveling speed control of the traveling crawler by the vehicle speed controller and the engine speed control by the governor controller are connected. In addition to being able to perform properly in connection with each other, the structure and function of the electronic governor can be changed by sharing the vehicle speed controller, and the structure and function of the vehicle speed controller can be changed by sharing the governor controller,
It is possible to easily improve design, manufacture, and handling.

【0005】また、脱穀部及び刈取部を備え、穀稈を連
続的に刈取って脱穀すると共に、走行速度を自動制御す
る車速コントローラと、エンジンの回転数を制御するガ
バナコントローラとを各別に備え、無段変速機構を構成
する油圧ポンプと油圧モータとを設け、エンジンに油圧
ポンプを連結させ、走行クローラを駆動するミッション
ケースに油圧モータを連結させると共に、負荷が一定以
上のときは、ガバナコントローラによりエンジンをRM
AX(馬力アップモード)で回転負荷制御し、車速コン
トローラによって無段変速機構を減速するもので、車速
コントローラによる走行クローラの走行変速制御と、ガ
バナコントローラによるエンジンの回転数制御とを、互
に関連させて適正に行わせ得ると共に、車速コントロー
ラを共用して電子ガバナの構造及び機能などを変更し
得、またガバナコントローラを共用して車速コントロー
ラの構造及び機能などを変更し得、さらに高負荷での収
穫作業でもエンジンが停止したり脱穀部の回転が低下す
る等の不具合を容易になくし得、脱穀部を適正回転で駆
動して高負荷作業性の向上などを容易に図り得るもので
ある。
Further, a threshing section and a cutting section are provided, and a vehicle speed controller for automatically cutting the culm and threshing and automatically controlling the running speed and a governor controller for controlling the engine speed are separately provided. A hydraulic pump and a hydraulic motor that constitute a continuously variable transmission mechanism are provided, a hydraulic pump is connected to the engine, a hydraulic motor is connected to a transmission case that drives the traveling crawler, and a governor controller is provided when the load is equal to or more than a certain value. RM engine by
AX (horsepower up mode) controls the rotational load, and the vehicle speed controller decelerates the continuously variable transmission mechanism. The vehicle speed controller controls the traveling speed of the traveling crawler and the governor controller controls the engine speed. It is possible to change the structure and function of the electronic governor by sharing the vehicle speed controller, and to change the structure and function of the vehicle speed controller by sharing the governor controller. It is possible to easily eliminate problems such as stop of the engine and decrease in rotation of the threshing unit even in the harvesting operation, and to easily improve high-load workability by driving the threshing unit with proper rotation.

【0006】[0006]

【発明の実施の形態】以下本発明の一実施例を図面に基
づいて詳述する。図1は制御回路図、図2はコンバイン
の全体側面図であり、図中(1)は走行クローラ(2)
をトラックフレーム(3)に装備する機台、(4)は軸
流式のスクリュ形扱胴(5)及び選別機構(6)を備え
ていて前記機台(1)に搭載する脱穀部、(7)は脱穀
部(4)からの穀粒を溜める穀物タンク、(8)は前記
脱穀部(4)の下部前方に油圧シリンダ(9)を介して
昇降可能に装設する刈取部、(10)は運転席及び運転
操作部を備えていて前記穀物タンク(7)の前方に固設
させる運転室、(11)は前記穀物タンク(7)内の穀
粒を取出す穀粒搬出オーガである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail with reference to the drawings. 1 is a control circuit diagram, and FIG. 2 is an overall side view of the combine, in which (1) is a traveling crawler (2).
(4) is a threshing unit equipped with an axial-flow screw-type handling cylinder (5) and a sorting mechanism (6) and mounted on the machine (1); 7) is a grain tank for storing grains from the threshing unit (4), (8) is a harvesting unit which is installed in a lower front of the threshing unit (4) via a hydraulic cylinder (9) so as to be able to move up and down, (10) ) Is a driver's cab provided with a driver's seat and a driving operation unit and fixed in front of the grain tank (7), and (11) is a grain carrying auger for taking out grains in the grain tank (7).

【0007】そして前記刈取部(8)は、未刈り穀稈を
取入れる穀物ヘッダー(11)と、該ヘッダー(11)
の後部略中央に連結させて刈取り穀稈を脱穀部(4)に
送給する供給室(12)によって構成すると共に、未刈
り穀稈掻込み用リール(13)及び往復駆動型刈刃(1
4)及び穀稈掻込ドラム(15)とを前記穀物ヘッダー
(11)に備え、前記ヘッダー(11)に取込まれる刈
取穀稈を供給室(12)に内設する供給チェンコンベア
(16)を介し脱穀部(4)に送り込んで脱穀処理する
ように構成している。
The cutting section (8) includes a cereal header (11) for incorporating uncut culms, and the header (11).
And a feed chamber (12) for feeding the harvested grain culm to the threshing unit (4) by being connected to the approximate center of the rear part, and a reel (13) for scraping the uncut grain culm and a reciprocating drive type cutting blade (1).
4) and a grain stalk scraping drum (15) in the grain header (11), and a supply chain conveyor (16) in which a harvested grain culm to be taken into the header (11) is provided in a supply chamber (12). Through the threshing unit (4) for threshing.

【0008】図3に示す如く、このコンバインの車速の
変速はHSTである無段変速機構(17)を構成する可
変容量形油圧ポンプ(18)と油圧モータ(19)とで
行うもので、エンジン(20)の出力軸(20a)にベ
ルト伝達機構(21)を介し前記油圧ポンプ(18)の
入力軸(18a)を連動連結させ、前記走行クローラ
(2)の駆動スプロケット(22)を有するミッション
ケース(23)に前記油圧モータ(19)の出力軸(1
9a)を連動連結させる一方、前記扱胴(5)の扱胴入
力軸(5a)をベルト及びギヤ伝達機構(24)を介し
エンジン(20)の入力軸(20a)に連動連結させて
いる。
As shown in FIG. 3, the vehicle speed of the combine is changed by a variable displacement hydraulic pump (18) and a hydraulic motor (19) constituting a continuously variable transmission mechanism (17) which is an HST. A transmission having a drive sprocket (22) for the traveling crawler (2) by interlockingly connecting an input shaft (18a) of the hydraulic pump (18) to an output shaft (20a) of (20) via a belt transmission mechanism (21). The output shaft (1) of the hydraulic motor (19) is attached to the case (23).
9a), the handle cylinder input shaft (5a) of the handle cylinder (5) is linked to the input shaft (20a) of the engine (20) via a belt and a gear transmission mechanism (24).

【0009】また、前記エンジン(20)には燃料噴射
ポンプの燃料噴射量を噴射量調整用ラックで制御して回
転数を一定保持する電子ガバナ(25)を有すると共
に、前記油圧ポンプ(18)には斜板角を制御して油圧
吐出量の調整を行うDC形サーボモータ(26)を有し
て、該モータ(26)の正逆駆動でもって車速の増減速
制御を行うように構成している。
The engine (20) has an electronic governor (25) for controlling a fuel injection amount of a fuel injection pump by an injection amount adjusting rack to maintain a constant rotation speed, and the hydraulic pump (18). Has a DC servomotor (26) for controlling the swash plate angle to adjust the hydraulic discharge amount, and is configured to control the increase / decrease of the vehicle speed by forward / reverse drive of the motor (26). ing.

【0010】そして図1に示す如く、前記サーボモータ
(26)を駆動制御するファジィ推論車速演算回路であ
る車速制御回路(27)に、車速の自動制御を行う自動
スイッチ(28)と、前記刈取部(8)での刈取負荷の
一定以上を検出する刈取負荷センサ(29)と、前記脱
穀部(4)での扱胴(5)など脱穀負荷の一定以上を検
出する脱穀負荷センサ(30)と、排藁カッタでの切断
負荷の一定以上を検出する排藁切断負荷センサ(31)
と、車速を検出する車速センサ(32)と、HST油圧
センサ(33)とを入力接続させる一方、燃料噴射ポン
プの噴射量を調整するガバナ(25)のラック位置調節
機構(25a)を駆動制御するガバナ制御回路(34)
に、前記エンジン(20)での回転を検出するエンジン
回転センサ(35)と、前記ガバナ(25)での噴射量
調整用ラックの位置を検出するガバナラック位置センサ
(36)とを入力接続させ、前記制御回路(27)(3
4)間を通信接続させて、これら各センサ(29)(3
0)(31)(32)(33)(35)(36)の検出
に基づいてエンジン(20)回転数の一定制御やエンジ
ン(20)の緊急停止やファジィ推論に基づく車速制御
を行うように構成している。
As shown in FIG. 1, a vehicle speed control circuit (27), which is a fuzzy inference vehicle speed calculation circuit for driving and controlling the servo motor (26), includes an automatic switch (28) for automatically controlling the vehicle speed, and A threshing load sensor (29) for detecting a certain level of the mowing load in the section (8), and a threshing load sensor (30) for detecting a certain level of the threshing load such as the handling cylinder (5) in the threshing section (4). And a straw cutting load sensor (31) for detecting a certain or more cutting load on the straw cutter
And a vehicle speed sensor (32) for detecting a vehicle speed and an HST oil pressure sensor (33), and drive control of a rack position adjusting mechanism (25a) of a governor (25) for adjusting an injection amount of a fuel injection pump. Governor control circuit (34)
And an engine rotation sensor (35) for detecting the rotation of the engine (20) and a governor rack position sensor (36) for detecting the position of the injection amount adjusting rack in the governor (25). , The control circuit (27) (3
4) to make a communication connection between these sensors (29) (3)
0) (31) (32) (33) (35) (36) Based on the detection of the engine (20) constant speed control, emergency stop of the engine (20) and vehicle speed control based on fuzzy inference. Make up.

【0011】上記から明らかなように、脱穀部(4)及
び刈取部(8)を備え、穀稈を連続的に刈取って脱穀す
ると共に、走行速度を自動制御する車速コントローラで
ある車速制御回路(27)と、エンジン(20)の回転
数を制御するガバナコントローラであるガバナ制御回路
(34)とを各別に備え、無段変速機構(17)を構成
する油圧ポンプ(18)と油圧モータ(19)とを設
け、エンジン(20)に油圧ポンプ(18)を連結さ
せ、走行クローラ(2)を駆動するミッションケース
(23)に油圧モータ(19)を連結させる。そして、
例えば電子ガバナ(25)を設けるエンジン(20)の
近くにガバナ制御回路(34)を配設させる構造で、例
えばエンジン(20)から離れた運転操作部またはミッ
ションケース(23)などの近くに車速制御回路(2
7)を配設させても、車速制御回路(27)による走行
クローラ(2)の走行変速制御と、ガバナ制御回路(3
4)によるエンジン(20)の回転数制御とを、互に関
連させて適正に行わせると共に、車速制御回路(27)
を共用して電子ガバナ(25)の構造及び機能などを変
更させ、またガバナ制御回路(34)を共用して車速制
御回路(27)の構造及び機能などを変更させ、設計製
造及び取扱い性の向上などを図る。
As is apparent from the above, a vehicle speed control circuit which is a vehicle speed controller having a threshing unit (4) and a reaping unit (8) and continuously cutting and threshing a grain culm and automatically controlling a traveling speed. (27) and a governor control circuit (34) that is a governor controller for controlling the number of revolutions of the engine (20). The hydraulic pump (18) and the hydraulic motor ( 19), a hydraulic pump (18) is connected to the engine (20), and a hydraulic motor (19) is connected to a transmission case (23) for driving the traveling crawler (2). And
For example, a governor control circuit (34) is arranged near an engine (20) provided with an electronic governor (25). For example, the vehicle speed is near an operation unit or a transmission case (23) remote from the engine (20). Control circuit (2
7), the traveling speed control of the traveling crawler (2) by the vehicle speed control circuit (27) and the governor control circuit (3).
The control of the number of revolutions of the engine (20) according to 4) is appropriately performed in association with each other, and the vehicle speed control circuit (27)
To change the structure and function of the electronic governor (25), and to change the structure and function of the vehicle speed control circuit (27) by sharing the governor control circuit (34), thereby improving the design, manufacturing and handling. Improve, etc.

【0012】さらに、エンジン(20)の燃料噴射量を
制御する電子ガバナ(25)と、車速を検出する車速セ
ンサ(32)と、車速を変更する走行変速部材であるサ
ーボモータ(26)を設けると共に、少なくとも電子ガ
バナ(25)が制御する燃料噴射量と、該燃料噴射量の
変化率とにより目標車速をファジィ推論によって演算
し、前記目標車速と車速センサ(32)の車速検出値と
により走行変速出力をファジィ推論によって演算し、前
記走行変速出力によって走行変速サーボモータ(26)
を自動制御する車速コントローラである車速制御回路
(27)を設けるコンバインにおいて、車速の自動制御
を行う自動スイッチ(28)と、刈取部(8)での刈取
負荷の一定以上を検出する刈取負荷センサ(29)と、
脱穀部(4)での扱胴(5)など脱穀負荷の一定以上を
検出する脱穀負荷センサ(30)と、排藁カッタでの切
断負荷の一定以上を検出する排藁切断負荷センサ(3
1)と、車速を検出する車速センサ(32)と、HST
油圧センサ(33)とを、車速制御回路(27)に入力
接続させる一方、燃料噴射ポンプの噴射量を調整するガ
バナ(25)を駆動制御するガバナ制御回路(34)
に、前記エンジン(20)での回転を検出するエンジン
回転センサ(35)と、前記ガバナ(25)での噴射量
調整用ラックの位置を検出するガバナラック位置センサ
(36)とを入力接続させ、前記各制御回路(27)
(34)間を通信接続させ、前記自動スイッチ(28)
がオンの自動車速制御開始直後の一定猶予時間内にあっ
てはエンジン(20)回転数を所定の初期モードで制御
し、車速も初期の設定速度で走行を行った後、エンジン
(20)回転数の一定制御やエンジン(20)の緊急停
止やファジィ推論に基づく車速制御を行うように構成す
る。そして、自動車速制御開始直後の一定猶予時間内で
初期モード制御を行い、初期設定したエンジン(20)
回転数及び車速で自動作業を開始させ、ファジィ推論に
基づく自動車速制御をスムーズに開始させ、自動作業の
開始前後でエンジン(20)の回転数または車速の差が
大きくなる場合でもエンジン(20)を適正回転に維持
させ、過負荷によってエンジン(20)回転が変更され
て収穫作業速度が変化する不具合をなくし、またエンジ
ン(20)回転が低下して走行クローラ(2)駆動力が
不足する不具合をなくし、車速コントローラ(27)に
よる走行クローラ(2)駆動速度制御を適正に行わせ、
作業者の人為運転操作の簡略化並びに収穫作業能率の向
上などを図る。
Further, an electronic governor (25) for controlling a fuel injection amount of the engine (20), a vehicle speed sensor (32) for detecting a vehicle speed, and a servomotor (26) as a traveling speed change member for changing the vehicle speed are provided. At the same time, the target vehicle speed is calculated by fuzzy inference based on at least the fuel injection amount controlled by the electronic governor (25) and the rate of change of the fuel injection amount, and the vehicle travels based on the target vehicle speed and the vehicle speed detection value of the vehicle speed sensor (32). The shift output is calculated by fuzzy inference, and the shift servomotor (26) is operated based on the shift output.
In a combine provided with a vehicle speed control circuit (27) which is a vehicle speed controller for automatically controlling the speed, an automatic switch (28) for automatically controlling the vehicle speed, and a cutting load sensor for detecting a certain or more cutting load in the cutting unit (8). (29)
A threshing load sensor (30) for detecting a certain or more threshing load, such as a handling cylinder (5) in a threshing unit (4), and a straw cutting load sensor (3) for detecting a certain or more cutting load with a straw cutter.
1) a vehicle speed sensor (32) for detecting a vehicle speed;
A governor control circuit (34) that drives and controls a governor (25) that adjusts the injection amount of the fuel injection pump while connecting the hydraulic pressure sensor (33) to the vehicle speed control circuit (27).
And an engine rotation sensor (35) for detecting the rotation of the engine (20) and a governor rack position sensor (36) for detecting the position of the injection amount adjusting rack in the governor (25). , Each of the control circuits (27)
(34) is connected for communication, and the automatic switch (28)
During a certain grace period immediately after the start of the vehicle speed control, the engine (20) speed is controlled in a predetermined initial mode, the vehicle speed is also driven at the initial set speed, and then the engine (20) speed is turned on. It is configured to perform constant control of the number, emergency stop of the engine (20), and vehicle speed control based on fuzzy inference. Then, the initial mode control is performed within a certain grace period immediately after the start of the vehicle speed control, and the initially set engine (20)
The automatic work is started at the rotation speed and the vehicle speed, and the vehicle speed control based on the fuzzy inference is smoothly started. Is maintained at an appropriate speed, eliminating the problem that the engine (20) rotation is changed due to overload and the harvesting speed is changed, and the problem that the engine (20) rotation is reduced and the driving force of the traveling crawler (2) is insufficient. The vehicle speed controller (27) controls the traveling crawler (2) drive speed appropriately,
The simplification of the manual operation of the worker and the improvement of the efficiency of the harvest work are aimed at.

【0013】本実施例は上記の如く構成するものにし
て、以下図4のフローチャートを参照してこの車速制御
を説明する。
This embodiment is configured as described above, and the vehicle speed control will be described below with reference to the flowchart of FIG.

【0014】今各モジュールである基準値や検出値が初
期化され、各センサ(29)〜(33)(35)(3
6)での検出値が入力され、刈取部(8)や脱穀部
(4)や排藁カッタ部や走行部での異常作業時にあっ
て、緊急信号が出力されるときエンジン(20)の緊急
停止が行われると共に、正常作業時各センサ(32)
(35)(36)の検出に基づくエンジン(20)デー
タの受信や車速データのカウントが行われるもので、前
記自動スイッチ(28)がオンの自動車速制御開始直後
の一定猶予時間内にあってはエンジン(20)回転数を
所定の初期モードで制御し、車速も初期の設定速度で走
行を行う。
Now, the reference value and the detection value of each module are initialized, and the sensors (29) to (33) (35) (3)
6) The detection value is input, and the emergency signal of the engine (20) is output when an emergency signal is output at the time of abnormal work in the cutting unit (8), the threshing unit (4), the straw cutter unit, or the traveling unit. During normal operation, the sensors are stopped (32)
(35) Reception of engine (20) data and counting of vehicle speed data based on the detection of (36) are performed. If the automatic switch (28) is turned on within a certain grace period immediately after the start of vehicle speed control, Controls the number of revolutions of the engine (20) in a predetermined initial mode, and the vehicle speed also runs at the initial set speed.

【0015】そして一定猶予時間経過後にあってはエン
ジン(20)の入力データから現在の車速に対する増減
速を必要とする目標の車速偏差値(VE)をファジィ推
論に基づき演算出力させて目標の車速に制御しての走行
を行うもので、脱穀部(4)及び刈取部(8)を備え、
穀稈を連続的に刈取って脱穀すると共に、走行速度を自
動制御する車速制御回路(27)と、エンジン(20)
の回転数を制御するガバナ制御回路(34)とを各別に
備え、無段変速機構(17)を構成する油圧ポンプ(1
8)と油圧モータ(19)とを設け、エンジン(20)
に油圧ポンプ(18)を連結させ、走行クローラ(2)
を駆動するミッションケース(23)に油圧モータ(1
9)を連結させると共に、負荷が一定以上のときは、ガ
バナ制御回路(34)によりエンジン(20)をRMA
X(馬力アップモード)で回転負荷制御し、車速制御回
路(27)によって無段変速機構(17)を減速させ
る。そして、車速制御回路(27)による走行クローラ
(2)の走行変速制御と、ガバナ制御回路(34)によ
るエンジン(20)の回転数制御とを、互に関連させて
適正に行わせると共に、車速制御回路(27)を共用し
て電子ガバナ(25)の構造及び機能などを変更させ、
またガバナ制御回路(34)を共用して車速制御回路
(27)の構造及び機能などを変更させ、さらに高負荷
での収穫作業でもエンジン(20)が停止したり脱穀部
(4)の回転が低下する等の不具合を容易になくし、脱
穀部(4)を適正回転で駆動して高負荷作業性の向上な
どを図る。
After a lapse of a predetermined delay time, a target vehicle speed deviation value (VE) requiring acceleration / deceleration with respect to the current vehicle speed is calculated and output based on fuzzy inference from the input data of the engine (20) to obtain the target vehicle speed. And a threshing unit (4) and a reaping unit (8).
A vehicle speed control circuit (27) for continuously cutting and threshing the culm and automatically controlling the running speed, and an engine (20)
And a governor control circuit (34) for controlling the number of revolutions of the hydraulic pump (1) constituting the continuously variable transmission mechanism (17).
8) and a hydraulic motor (19).
To the traveling crawler (2)
The hydraulic motor (1) is attached to the transmission case (23)
9), and when the load is equal to or greater than a predetermined value, the governor control circuit (34) switches the engine (20) to the RMA.
The rotational load is controlled in X (horsepower up mode), and the continuously variable transmission mechanism (17) is decelerated by the vehicle speed control circuit (27). The traveling speed control of the traveling crawler (2) by the vehicle speed control circuit (27) and the rotation speed control of the engine (20) by the governor control circuit (34) are appropriately performed in association with each other. The control circuit (27) is shared to change the structure and function of the electronic governor (25),
In addition, the governor control circuit (34) is shared to change the structure and function of the vehicle speed control circuit (27), and the engine (20) stops or the threshing unit (4) rotates even in a high load harvesting operation. Problems such as lowering are easily eliminated, and the threshing unit (4) is driven by appropriate rotation to improve high-load workability.

【0016】次に図5乃至図6を参照して車速偏差値
(VE)を算出するうえでのファジィ推論制御を説明す
る。
Next, the fuzzy inference control for calculating the vehicle speed deviation value (VE) will be described with reference to FIGS.

【0017】図6に示す如き、入力される電子ガバナ
(25)のラック位置(燃料噴射量)とエンジン回転数
との関係を最大負荷曲線(RMAX)及び無負荷曲線
(RIDL)で表す特性図に基づきラック位置偏差値
(RE)とその変化率(RD)及び最大出力偏差値(R
M)を算出するもので、定格回転 N rpm、目標の
最大噴射量となるラックの最大目標値がA、無負荷時の
噴射量となるラックの無負荷値がBとなって、負荷率8
0%を設定したときの目標噴射量である目標ラック値
(RACT)の値Cが、80%=C−B/A−Bの関係
式から算出される。つまり実際の出力のデータ(rac
t)をD、そのときエンジン(20)の回転数の一定制
御により電子ガバナコントローラである制御回路(3
4)から出力される制限最大噴射量値Eとすると、目標
ラック値C、最大目標値Aからラック偏差値RE(=D
−C)、最大目標偏差値RM(=E−A)と一定時間の
偏差値(RE)の変化率(RD)とをファジィ推論の入
力値とさせる。なお、エンジンの回転数の一定制御(例
えば2625rpm一定制御)を行っているが、ラック
位置調節機構(25a)等の制御遅れや段階的な制御や
負荷の急激な変動等により、回転センサ(35)の値が
同じでも、最大負荷曲線により決定される最大目標値
(例えばA)と電子ガバナコントローラから出力される
制限最大噴射量Eは、実際上一致しない。(但し一致す
る場合もありうる。)そして図7に示す如く、PB(正
で大きい)、PS(正で小さい)、ZO(ゼロ)、NS
(負で小さい)、NB(負で大きい)の5つファジィ集
合で表されるメンバシップ関数に対応するようにこれら
値の(RE)(RD)(RM)の正規化が行われてファ
ジィ変数(re)(rd)(rm)に変換される。
As shown in FIG. 6, the relationship between the input rack position (fuel injection amount) of the electronic governor (25) and the engine speed is represented by a maximum load curve (RMAX) and a no-load curve (RIDL). The rack position deviation value (RE), its rate of change (RD) and the maximum output deviation value (R
M), where the rated speed N rpm, the maximum target value of the rack that becomes the target maximum injection amount is A, and the no-load value of the rack that becomes the injection amount at no load is B, and the load factor is 8
The value C of the target rack value (RACT), which is the target injection amount when 0% is set, is calculated from the relational expression of 80% = CB / AB. That is, the actual output data (rac
t) is D, at which time the control circuit (3) which is an electronic governor controller by constant control of the rotation speed of the engine (20).
4), the target rack value C and the rack deviation value RE from the maximum target value A (= D
-C), the maximum target deviation value RM (= EA) and the rate of change (RD) of the deviation value (RE) over a certain period of time are input as fuzzy inference values. Although constant control of the number of revolutions of the engine (for example, constant control of 2625 rpm) is performed, the rotation sensor (35) is controlled due to control delay of the rack position adjusting mechanism (25a) or the like, stepwise control, rapid fluctuation of load, or the like. ), The maximum target value (for example, A) determined by the maximum load curve does not substantially match the limited maximum injection amount E output from the electronic governor controller. (However, they may coincide with each other.) And, as shown in FIG. 7, PB (positive and large), PS (positive and small), ZO (zero), NS
(RE) (RD) (RM) of these values are normalized to correspond to the membership function represented by five fuzzy sets of (negative and small) and NB (negative and large), and the fuzzy variable (Re), (rd), and (rm).

【0018】例えばこれに数値をあてはめ説明すると、
N=2625rpm、目標負荷率を80%、A=18
9、B=102とするとき、C=172が算出され、D
=176、E=187のとき、RE=4、RM=−2が
算出されて、電子ガバナ(25)からの入力データとし
てRE=4、RD=0、RM=−2が入力されるとき、
メンバシップ関数に対応するようにre=18、rd=
14、rm=12の入力変数に変換が行われる。
For example, by applying a numerical value to this,
N = 2625 rpm, target load factor 80%, A = 18
9, when B = 102, C = 172 is calculated, and D
= 176, E = 187, RE = 4, RM = -2 are calculated, and when RE = 4, RD = 0, RM = -2 are input as input data from the electronic governor (25),
Re = 18, rd = so as to correspond to the membership function
14, a conversion is made to rm = 12 input variables.

【0019】変数(re)(rd)(rm)の値がこれ
ら5つの集合に含まれる度合(グレード)を図7の三角
型のメンバシップ関数の重みとしてそれぞれ求める。
The degree (grade) in which the values of the variables (re), (rd), and (rm) are included in these five sets is determined as the weight of the triangular membership function in FIG.

【0020】例えば、 re=18の場合 NB=0 NS=4 ZO=11
PS=12 PB=5 rd=14の場合 NB=1 NS=8 ZO=15
PS=8 PB=1 rm=12の場合 NB=3 NS=10 ZO=13
PS=6 PB=0
For example, when re = 18, NB = 0 NS = 4 ZO = 11
When PS = 12 PB = 5 rd = 14 NB = 1 NS = 8 ZO = 15
PS = 8 PB = 1 When rm = 12 NB = 3 NS = 10 ZO = 13
PS = 6 PB = 0

【0021】各ルールに対してルールの前件部である変
数つまり各メンバシップ値(re)(rd)(rm)の
適応度を図8などより算出する。
For each rule, the fitness as the antecedent of the rule, that is, the fitness of each of the membership values (re), (rd), and (rm) is calculated from FIG.

【0022】例えば、ファジィ制御のif−then型
式ルールの0で、「もしreがZOで、rdがZOで、
rmがNBならば、目標の車速偏差値veをZOとす
る」と推論すると、re=18の値がルールの前件部
「reがZO」に対する適応度は図8より11、またr
d=14の値が「rdがZO」に対する適応度は15、
さらにrm=12の値が「rmがNB」に対する適応度
は3となる。
For example, in the if-then type rule 0 of fuzzy control, "if re is ZO, rd is ZO,
If rm is NB, the target vehicle speed deviation value ve is set to ZO. "If the value of re = 18 is 11, the fitness to the antecedent part" re is ZO "of the rule is 11 from FIG.
If the value of d = 14 is “rd is ZO”, the fitness is 15,
Furthermore, the fitness of rm = 12 for “rm is NB” is 3.

【0023】各ルールにおいてそれぞれ算出される前件
部の適応度をミニマム合成(各値の中から1番小さな値
をとる)して求める。例示の場合min(11、15、
3)=3。
The fitness of the antecedent part calculated in each rule is obtained by minimum synthesis (taking the smallest value from each value). In the case of illustration, min (11, 15,
3) = 3.

【0024】図9に示す如く、各ルール後件部の出力フ
ァジィを求める。同図はルール0のve=ZOの場合。
As shown in FIG. 9, the output fuzzy of each rule consequent is obtained. The figure shows the case where ve = ZO of rule 0.

【0025】図10に示す如く、各ルールの前件部の適
応度で後件部の出力ファジィ集合の頭をカットする。例
示の場合3でカットする。
As shown in FIG. 10, the head of the output fuzzy set of the consequent part is cut according to the fitness of the antecedent part of each rule. In the case of illustration, it cuts in 3.

【0026】各ルールにおけるこのような処理が全て終
了すると、図11に示す如く、 総てのルールに対する
出力ファジィ集合のマキシム合成を行う。
When all such processes for each rule are completed, as shown in FIG. 11, the maximal synthesis of the output fuzzy sets for all the rules is performed.

【0027】合成された出力ファジィ集合より非ファジ
ィ処理でもって重心を求めて、中央値との偏差である出
力ファジィ変数veを算出する。
The center of gravity is obtained from the synthesized output fuzzy set by non-fuzzy processing, and an output fuzzy variable ve which is a deviation from a median value is calculated.

【0028】出力ファジィ変数(ve)を実際の車速制
御出力である車速偏差値(VE)に変換する。
The output fuzzy variable (ve) is converted into a vehicle speed deviation value (VE) which is an actual vehicle speed control output.

【0029】このようなファジィ推論を車速制御に用い
た場合、容易に多次元の非線型関数が実現できると共
に、非線型関数のパラメータをファジィルールによって
感覚的に設定・変更でき、適応性を拡大させることがで
きる。
When such fuzzy inference is used for vehicle speed control, a multidimensional nonlinear function can be easily realized, and parameters of the nonlinear function can be set and changed intuitively by fuzzy rules, thereby expanding adaptability. Can be done.

【0030】[0030]

【発明の効果】以上実施例から明らかなように本発明
は、脱穀部(4)及び刈取部(8)を備え、穀稈を連続
的に刈取って脱穀すると共に、走行速度を自動制御する
車速コントローラ(27)と、エンジン(20)の回転
数を制御するガバナコントローラ(34)とを各別に備
え、無段変速機構(17)を構成する油圧ポンプ(1
8)と油圧モータ(19)とを設け、エンジン(20)
に油圧ポンプ(18)を連結させ、走行クローラ(2)
を駆動するミッションケース(23)に油圧モータ(1
9)を連結させるもので、例えばエンジン(20)から
離れた運転操作部またはミッションケース(23)など
の近くに車速コントローラ(27)を配設させても、車
速コントローラ(27)による走行クローラ(2)の走
行変速制御と、ガバナコントローラ(34)によるエン
ジン(20)の回転数制御とを、互に関連させて適正に
行わせることができると共に、車速コントローラ(2
7)を共用して電子ガバナ(25)の構造及び機能など
を変更でき、またガバナコントローラ(34)を共用し
て車速コントローラ(27)の構造及び機能などを変更
でき、設計製造及び取扱い性の向上などを容易に図るこ
とができるものである。
As is apparent from the above embodiments, the present invention comprises a threshing unit (4) and a cutting unit (8), and continuously cuts and threshes the culm and automatically controls the traveling speed. A hydraulic pump (1) comprising a vehicle speed controller (27) and a governor controller (34) for controlling the number of revolutions of the engine (20), and constituting a continuously variable transmission mechanism (17)
8) and a hydraulic motor (19).
To the traveling crawler (2)
The hydraulic motor (1) is attached to the transmission case (23)
9), for example, even if the vehicle speed controller (27) is arranged near the driving operation unit or the transmission case (23) remote from the engine (20), the traveling crawler (27) by the vehicle speed controller (27) is used. The traveling speed control (2) and the rotation speed control of the engine (20) by the governor controller (34) can be appropriately performed in association with each other.
7) can be used to change the structure and function of the electronic governor (25), and the governor controller (34) can be used to change the structure and function of the vehicle speed controller (27). Improvement can be easily achieved.

【0031】また、脱穀部(4)及び刈取部(8)を備
え、穀稈を連続的に刈取って脱穀すると共に、走行速度
を自動制御する車速コントローラ(27)と、エンジン
(20)の回転数を制御するガバナコントローラ(3
4)とを各別に備え、無段変速機構(17)を構成する
油圧ポンプ(18)と油圧モータ(19)とを設け、エ
ンジン(20)に油圧ポンプ(18)を連結させ、走行
クローラ(2)を駆動するミッションケース(23)に
油圧モータ(19)を連結させると共に、負荷が一定以
上のときは、ガバナコントローラ(34)によりエンジ
ン(20)をRMAX(馬力アップモード)で回転負荷
制御し、車速コントローラ(27)によって無段変速機
構(17)を減速するもので、車速コントローラ(2
7)による走行クローラ(2)の走行変速制御と、ガバ
ナコントローラ(34)によるエンジン(20)の回転
数制御とを、互に関連させて適正に行わせることができ
ると共に、車速コントローラ(27)を共用して電子ガ
バナ(25)の構造及び機能などを変更でき、またガバ
ナコントローラ(34)を共用して車速コントローラ
(27)の構造及び機能などを変更でき、さらに高負荷
での収穫作業でもエンジン(20)が停止したり脱穀部
(4)の回転が低下する等の不具合を容易になくすこと
ができ、脱穀部(4)を適正回転で駆動して高負荷作業
性の向上などを容易に図ることができるものである。
A vehicle speed controller (27) for continuously cutting and threshing grain stalks and automatically controlling the running speed, comprising a threshing unit (4) and a cutting unit (8), and an engine (20). Governor controller (3
4), a hydraulic pump (18) and a hydraulic motor (19) that constitute a continuously variable transmission mechanism (17) are provided, and the hydraulic pump (18) is connected to the engine (20). 2) A hydraulic motor (19) is connected to a transmission case (23) for driving the engine, and when the load is higher than a predetermined value, the governor controller (34) controls the engine (20) by RMAX (horsepower up mode). The continuously variable transmission mechanism (17) is decelerated by a vehicle speed controller (27).
7) The traveling speed control of the traveling crawler (2) by the traveling crawler (2) and the rotation speed control of the engine (20) by the governor controller (34) can be appropriately performed in association with each other, and the vehicle speed controller (27) Can be used to change the structure and function of the electronic governor (25), and the governor controller (34) can be used to change the structure and function of the vehicle speed controller (27). Problems such as stop of the engine (20) and reduction of rotation of the threshing unit (4) can be easily eliminated, and the threshing unit (4) can be driven with proper rotation to easily improve high-load workability. It can be aimed at.

【図面の簡単な説明】[Brief description of the drawings]

【図1】制御回路図。FIG. 1 is a control circuit diagram.

【図2】コンバインの全体側面図。FIG. 2 is an overall side view of the combine.

【図3】エンジン駆動系の部分説明図。FIG. 3 is a partial explanatory view of an engine drive system.

【図4】車速制御のフローチャート。FIG. 4 is a flowchart of vehicle speed control.

【図5】ファジィ制御のフローチャート。FIG. 5 is a flowchart of fuzzy control.

【図6】エンジンとラック位置の関係を示す特性図。FIG. 6 is a characteristic diagram showing a relationship between an engine and a rack position.

【図7】三角型ファジィ変数を表す説明図。FIG. 7 is an explanatory diagram showing a triangular fuzzy variable.

【図8】ファジィ変数の各ルールに対する適応度を表す
説明図。
FIG. 8 is an explanatory diagram showing the fitness of each rule of a fuzzy variable.

【図9】出力ファジィ集合の説明図。FIG. 9 is an explanatory diagram of an output fuzzy set.

【図10】出力ファジィ集合のカット説明図。FIG. 10 is an explanatory diagram of a cut of an output fuzzy set.

【図11】出力ファジィ集合のマキシム合成説明図。FIG. 11 is an explanatory diagram of the maximum synthesis of an output fuzzy set.

【符号の説明】[Explanation of symbols]

(2) 走行クローラ (4) 脱穀部 (8) 刈取部 (17) 無段変速機構 (18) 油圧ポンプ (19) 油圧モータ (20) エンジン (23) ミッションケース (27) 車速制御回路(車速コントローラ) (34) ガバナ制御回路(ガバナコントローラ) (2) Traveling crawler (4) Threshing unit (8) Cutting unit (17) Continuously variable transmission mechanism (18) Hydraulic pump (19) Hydraulic motor (20) Engine (23) Transmission case (27) Vehicle speed control circuit (vehicle speed controller) (34) Governor control circuit (Governor controller)

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B60K 41/00 301 B60K 41/00 301A 3G093 301D 3J552 F02D 29/02 301 F02D 29/02 301C F16H 61/02 F16H 61/02 // F16H 59:14 59:14 59:42 59:42 59:44 59:44 59:50 59:50 63:06 63:06 Fターム(参考) 2B074 AA05 AC02 BA15 CD02 DA02 DB01 DB03 DB04 DC01 EA13 EB04 EC02 GB02 GJ04 2B076 AA04 DB08 EA01 EC01 ED01 ED11 3D041 AA11 AA41 AA66 AB04 AC01 AC19 AC22 AD00 AD02 AD09 AD51 AE03 AE07 AE30 AF05 3D042 AA00 AA06 AB10 AB11 BA04 BB03 BC05 BD02 BD03 BD06 BD09 3D044 AA01 AA21 AB04 AC00 AC05 AC26 AD02 AD06 AD17 AE01 AE04 AE31 3G093 AA06 AA09 BA14 BA23 CA05 CA09 CB01 CB10 DA01 DA10 DB00 DB05 EA03 EA05 EB03 EC02 FA02 FA03 FA11 FA12 3J552 MA10 NA07 NB01 PA01 PA22 RB00 RC14 RC19 SA31 SB02 TA18 TB07 UA08 VA52Z VB01Z VC01Z VC03Z Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) B60K 41/00 301 B60K 41/00 301A 3G093 301D 3J552 F02D 29/02 301 F02D 29/02 301C F16H 61/02 F16H 61 / 02 // F16H 59:14 59:14 59:42 59:42 59:44 59:44 59:50 59:50 63:06 63:06 F term (reference) 2B074 AA05 AC02 BA15 CD02 DA02 DB01 DB03 DB04 DC01 EA13 EB04 EC02 GB02 GJ04 2B076 AA04 DB08 EA01 EC01 ED01 ED11 3D041 AA11 AA41 AA66 AB04 AC01 AC19 AC22 AD00 AD02 AD09 AD51 AE03 AE07 AE30 AF05 3D042 AA00 AA06 AB10 AB11 BA04 BB03 BC05 BD02 AD03 AD06 AD09 AE04 AE31 3G093 AA06 AA09 BA14 BA23 CA05 CA09 CB01 CB10 DA01 DA10 DB00 DB05 EA03 EA05 EB03 EC02 FA02 FA03 FA11 FA12 3J552 MA10 NA07 NB01 PA01 PA22 RB00 RC14 RC19 SA31 SB02 TA18 TB07 UA08 VA52Z VC03Z VC

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 脱穀部(4)及び刈取部(8)を備え、
穀稈を連続的に刈取って脱穀すると共に、走行速度を自
動制御する車速コントローラ(27)と、エンジン(2
0)の回転数を制御するガバナコントローラ(34)と
を各別に備え、無段変速機構(17)を構成する油圧ポ
ンプ(18)と油圧モータ(19)とを設け、エンジン
(20)に油圧ポンプ(18)を連結させ、走行クロー
ラ(2)を駆動するミッションケース(23)に油圧モ
ータ(19)を連結させることを特徴とするコンバイ
ン。
1. A threshing unit (4) and a reaping unit (8),
A vehicle speed controller (27) for continuously cutting and threshing the culm and automatically controlling the traveling speed, and an engine (2)
0), a governor controller (34) for controlling the number of revolutions is provided separately, a hydraulic pump (18) and a hydraulic motor (19) constituting a continuously variable transmission mechanism (17) are provided, and a hydraulic pressure is supplied to the engine (20). A combine having a pump (18) connected thereto and a hydraulic motor (19) connected to a transmission case (23) for driving the traveling crawler (2).
【請求項2】 脱穀部(4)及び刈取部(8)を備え、
穀稈を連続的に刈取って脱穀すると共に、走行速度を自
動制御する車速コントローラ(27)と、エンジン(2
0)の回転数を制御するガバナコントローラ(34)と
を各別に備え、無段変速機構(17)を構成する油圧ポ
ンプ(18)と油圧モータ(19)とを設け、エンジン
(20)に油圧ポンプ(18)を連結させ、走行クロー
ラ(2)を駆動するミッションケース(23)に油圧モ
ータ(19)を連結させると共に、負荷が一定以上のと
きは、ガバナコントローラ(34)によりエンジン(2
0)をRMAX(馬力アップモード)で回転負荷制御
し、車速コントローラ(27)によって無段変速機構
(17)を減速することを特徴とするコンバイン。
2. A threshing unit (4) and a reaping unit (8),
A vehicle speed controller (27) for continuously cutting and threshing the culm and automatically controlling the traveling speed, and an engine (2)
0), a governor controller (34) for controlling the number of revolutions is provided separately, a hydraulic pump (18) and a hydraulic motor (19) constituting a continuously variable transmission mechanism (17) are provided, and a hydraulic pressure is supplied to the engine (20). A pump (18) is connected, and a hydraulic motor (19) is connected to a transmission case (23) for driving the traveling crawler (2). When the load is equal to or more than a predetermined value, the governor controller (34) controls the engine (2).
0) controlling the rotational load in RMAX (horsepower up mode) and decelerating the continuously variable transmission mechanism (17) by a vehicle speed controller (27).
JP2001186078A 2001-06-20 2001-06-20 Combine Expired - Fee Related JP3652626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001186078A JP3652626B2 (en) 2001-06-20 2001-06-20 Combine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001186078A JP3652626B2 (en) 2001-06-20 2001-06-20 Combine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8171491A Division JP3240444B2 (en) 1991-03-20 1991-03-20 Combine

Publications (2)

Publication Number Publication Date
JP2002067742A true JP2002067742A (en) 2002-03-08
JP3652626B2 JP3652626B2 (en) 2005-05-25

Family

ID=19025560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001186078A Expired - Fee Related JP3652626B2 (en) 2001-06-20 2001-06-20 Combine

Country Status (1)

Country Link
JP (1) JP3652626B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101319407B1 (en) * 2013-05-24 2013-10-17 김남임 Self-propelled bean threshing machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105746076A (en) * 2016-04-22 2016-07-13 张飞 Frequency-converter-control-type combined harvester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101319407B1 (en) * 2013-05-24 2013-10-17 김남임 Self-propelled bean threshing machine

Also Published As

Publication number Publication date
JP3652626B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
JPH10191762A (en) Driving power controller for combine harvester
JP3652626B2 (en) Combine
JP2538297Y2 (en) Combine drive controller
JPS6342284B2 (en)
JP3240444B2 (en) Combine
JP4795563B2 (en) Auxiliary output device for work section of mobile agricultural machine
JP2002054473A (en) Combine
JP2002192982A (en) Combine harvester
JP3831243B2 (en) Combine
JPH09215433A (en) Combine harvester
JP3138881B2 (en) Vehicle speed control device for mobile agricultural machine
CN112005707A (en) Motor drive-based automatic variable speed control system and device for harvester
JP3563416B2 (en) Combine
JP3601035B2 (en) Combine
JP3138882B2 (en) Combine speed controller
JP3138880B2 (en) Vehicle speed control device for mobile agricultural machine
JPH0249050Y2 (en)
JP2736884B2 (en) Harvester vehicle speed control device
JP3440478B2 (en) Combine speed control system
JP3138879B2 (en) Combine
JPS635455Y2 (en)
JPH09294453A (en) Car speed controlling device for combine harvester
JP3121004B2 (en) Power detector for working unit in harvester
JPH10229732A (en) Combine
JP2541447Y2 (en) Combine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040517

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040623

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050223

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees