JPS5899733A - Turbidimeter - Google Patents

Turbidimeter

Info

Publication number
JPS5899733A
JPS5899733A JP19917981A JP19917981A JPS5899733A JP S5899733 A JPS5899733 A JP S5899733A JP 19917981 A JP19917981 A JP 19917981A JP 19917981 A JP19917981 A JP 19917981A JP S5899733 A JPS5899733 A JP S5899733A
Authority
JP
Japan
Prior art keywords
light
liquid
turbidity
cell
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19917981A
Other languages
Japanese (ja)
Inventor
Takahei Kuwata
桑田 貴平
Kazuo Takashima
和夫 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19917981A priority Critical patent/JPS5899733A/en
Publication of JPS5899733A publication Critical patent/JPS5899733A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/534Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke by measuring transmission alone, i.e. determining opacity

Abstract

PURPOSE:To make it possible to accurately measure the turbidity of a liquid to be measured having a low turbidity without requiring increasing the measuring apparatus in size, by repeatedly passing light through the liquid and then, detecting the light quantity ratio between the transmitted light and the light-source light. CONSTITUTION:The beam of light emitted from a light-source lamp 13 is formed into a parallel beam by a convex lens 14 and is projected onto a cell 12. Then, the light beam is passed through a liquid 11 to be measured, where the beam is reduced in luminous intensity, and enters a rectangular prism 17. The light beam is 90 deg. reflected by the upper oblique side 21 of the rectangular prism 17 to travel downward and is 90 deg. reflected by the lower oblique side 28 so as to be projected onto the cell 12 again and is then passed through the liquid 11 to enter a rectangular prism 18. Further, the light beam is passed through the liquid 11, the rectangular prism 17, the liquid 11 and the rectangular prism 18 and is projected onto the cell 12, and after repeatedly passing through the liquid 11 five times, the light beam enters a photocell 15 for transmitted light. The turbidity of the liquid 11 is calculated by an arithmetic device 25 from the luminous intensity of the transmitted light and that of the light-source light detected by a photocell 16 for light-source light.

Description

【発明の詳細な説明】 本発明は水等の濁度な精度良(測定することができる光
学的な濁度計に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical turbidity meter that can measure the turbidity of water, etc. with high accuracy.

従来、この種の装置としては第1図に示すような構造の
ものが用いられ九い−た。この図において、(1)は濁
度を測定しよ5とする被測定液、(2)は−被測定液(
1)を通、遇させるための透明なセル、(3)は光源ラ
ンプ、(4)は光源ランプ(3)の光線を平行にするた
めの凸レンズであり、(5)は被測定液(1)を透過し
た測定光を受光して電気信号に変換するための透過光用
フォトセル、(6)は光源ラング(3)の光線を直接受
光して電気信号に変換するための光源モニター用フォト
セル、(7)は上記2つのフォトセル(5)? (6)
によって得られた信号の比の対数を演算して濁度χを算
出する演算器、(8)は演算器(7)の出力端である。
Conventionally, as this type of apparatus, one having a structure as shown in FIG. 1 has been used. In this figure, (1) is the liquid to be measured whose turbidity is to be measured, and (2) is - the liquid to be measured (5).
(1) is a transparent cell for passing through and exposing the liquid to be measured (1), (3) is a light source lamp, (4) is a convex lens to make the light beam of the light source lamp (3) parallel, and (5) is a transparent cell for passing through the liquid to be measured (1). ) is a photocell for transmitted light that receives the measurement light transmitted through the light source rung and converts it into an electrical signal, and (6) is a light source monitor photocell that directly receives the light beam from the light source rung (3) and converts it into an electrical signal. Cell, (7) is the above two photocells (5)? (6)
An arithmetic unit (8) is an output terminal of the arithmetic unit (7) which calculates the turbidity χ by calculating the logarithm of the ratio of the signals obtained.

光源ランプ(3)は凸レンズ(りの焦点に設けられてお
り、光源ランプ(3)から放射された光線は凸レンズ(
4)で平行光線とされ、被測定液(1)を透過し、被測
定液(1)の濁度に応じて減光されて、透過光用フォト
セル(5)−によってその光度を検出される。透過光用
フオトセ“ル(5)によって検出される透過光の光度I
と光源光用フォトセル(6)によって検出される光、減
光の光度工。との間には(1)式ゐ関係(Lamber
t −Beerの法則)−が成立する。
The light source lamp (3) is provided at the focal point of the convex lens (ri), and the light rays emitted from the light source lamp (3) pass through the convex lens (ri).
4), the light is converted into parallel light, passes through the liquid to be measured (1), is attenuated according to the turbidity of the liquid to be measured (1), and its luminous intensity is detected by the transmitted light photocell (5). Ru. Luminous intensity I of transmitted light detected by the transmitted light photocell (5)
and the light detected by the light source photocell (6), the photometric process for attenuation. There is a relationship between Equation (1) (Lamber
t -Beer's law)- holds true.

I = IoeXP (−etz )  ’     
−−−(1)ここで、Io:光源の光度、I:透過光の
光度。
I = IoeXP (-etz)'
---(1) Here, Io: luminous intensity of the light source, I: luminous intensity of transmitted light.

χ:濁度9.ξ:減光係数、t:セルの長さこの法則に
よれば、濁度χが低い時には吸収あるいは散乱によって
減じられる光量は少ないため、透過光用7オト4ル(5
)によって検出される透過光の光度工は光源ランプ(3
)の光度IOと殆んど変わらない。従って、従来の濁度
計で濁度χを測定する場合は低濃度領′域のS/N比は
悪く、測定誤差が大きくなる。このため、従来の濁度計
で低濁度の被測定液を測定する場合には、S/N比を高
めるためにセル(2)の長さtを太き(取って透過光の
減光量を太き(する必要があり、その結果、装置全体が
太き(なるとC・う欠点があった。
χ: Turbidity 9. ξ: Attenuation coefficient, t: Cell length According to this law, when the turbidity χ is low, the amount of light attenuated by absorption or scattering is small.
) is the light intensity of the transmitted light detected by the light source lamp (3
) is almost the same as the luminosity IO. Therefore, when measuring turbidity χ with a conventional turbidity meter, the S/N ratio in the low concentration region is poor and the measurement error becomes large. For this reason, when measuring a liquid to be measured with low turbidity with a conventional turbidity meter, the length t of the cell (2) must be increased (by increasing the amount of light attenuation of the transmitted light) in order to increase the S/N ratio. It was necessary to make the device thicker, and as a result, the entire device became thicker.

本発明は、上記従来のものの欠点を解消するもので、透
過光を被測定液に反覆透過させることにより、装置を太
き(することなく、低濁度の被測定液の濁度を精度よく
測定することのできる濁度計を提供することを目的とす
る。
The present invention solves the above-mentioned drawbacks of the conventional methods, and allows the turbidity of low-turbidity test liquids to be accurately measured without making the device thicker by repeatedly transmitting transmitted light through the test liquid. The purpose is to provide a turbidity meter that can measure turbidity.

本発明は被測定液を透過した透過光と光源光との光量些
を検出する濁度計において、透過光を被測定液に反覆透
過させる光学系を有することを要旨とするものであり、
透過光を被測定液に反覆透過させる光♀系としては例え
ば2つの直角プリズムを用いるものである。
The gist of the present invention is a turbidity meter that detects the amount of light transmitted through a liquid to be measured and light source light, which has an optical system that repeatedly transmits the transmitted light to the liquid to be measured.
For example, two right-angled prisms are used as the light system that repeatedly transmits the transmitted light through the liquid to be measured.

以下、本発明の一実施例を図面に基づいて説明する。Hereinafter, one embodiment of the present invention will be described based on the drawings.

第2図において、(6)は被測定液(1mを連続的に通
過させることのできる透明なセルである。該セル(2)
の一方の側には光源ランプ(2)を設け、光源ランプ(
6)とセル(6)との間には凸レンズα◆を設ける2、
凸レンズQ4は光源ランプ(至)から放射された光線を
平行光線とするため、その焦点が光源ランプ(2)と重
なるよ5に配置する。光源ランプ(至)の近傍には光源
ランプ(6)の光度をモニターする光源光モニター用フ
ォトセルcLQを設ける。
In Fig. 2, (6) is a transparent cell through which the liquid to be measured (1 m) can be passed continuously.The cell (2)
A light source lamp (2) is provided on one side of the light source lamp (2).
6) and the cell (6) is provided with a convex lens α◆2,
The convex lens Q4 is arranged at 5 so that its focal point overlaps with the light source lamp (2) in order to convert the light rays emitted from the light source lamp (to) into parallel rays. A light source light monitoring photocell cLQ for monitoring the luminous intensity of the light source lamp (6) is provided near the light source lamp (6).

次に、2つの直角プリズム(ロ)、(至)を光源ランプ
(至)と凸レンズαゆとの略延長位置にセル(6)を挾
むようにして設ける。七°ル(ロ)を介して光源ランプ
(6)と反対側の直角プリズム(ロ)はその長辺(ト)
をセル(ロ)の右側面に)IC沿わせ、上部斜辺(2I
)が光源ランプ(至)と凸レンズa◆との延長線と交わ
るように配置する。
Next, two right angle prisms (b) and (to) are provided at substantially extended positions of the light source lamp (to) and the convex lens α so as to sandwich the cell (6). The right angle prism (B) on the opposite side of the light source lamp (6) through the 7° lens (B) has its long side (G)
along the right side of the cell (B) IC, and align the upper hypotenuse (2I
) is arranged so that it intersects with the extension line of the light source lamp (to) and the convex lens a◆.

光源ランプに)側の直角プリズムに)も反対側の直角プ
リズム(ロ)と同様にその長辺■をセル(2)の左側面
(ハ)に沿わせ、上部斜辺(財)が凸レンズα◆からの
測定  。
Similarly to the right-angle prism (b) on the opposite side, the right-angle prism (on the side of the light source lamp) has its long side ■ along the left side (c) of the cell (2), and its upper hypotenuse (good) is a convex lens α◆ Measurements from .

光を遮らない程度に反対側の直角プリズム(ロ)の下方
にずらせ【配置する。
Shift it below the right angle prism (b) on the opposite side so as not to block the light.

更に、セル(6)を介して光源ランプ(至)と反対側に
透過光用フォトセル(ト)を設け、前記光源モニター用
フォトセル(ト)とともにその出力端を両フォトセル(
ト)、αQの出力比の対数を演算する演算器(25)に
接続する。透過光用フォトセル(ト)は光源ランプに)
側の直角プリズムに)の下方の斜辺(イ)に対応した位
置に配置する−(5)は演算器(ハ)の出力端である。
Furthermore, a transmitted light photocell (g) is provided on the opposite side of the light source lamp (to) via the cell (6), and its output end is connected to both photocells (g) together with the light source monitor photocell (g).
g), is connected to an arithmetic unit (25) that calculates the logarithm of the output ratio of αQ. Transmitted light photocell (g) is used as a light source lamp)
-(5) is the output end of the arithmetic unit (c), which is placed at a position corresponding to the lower hypotenuse (a) of the right-angle prism on the side.

次に本発明の詳細な説明する1、光源ランプ(至)を出
た光線は凸レンズ倶ゆで平行光線に形成され、セル(6
)に投射され、被測定液(ロ)を透過して光度を減じら
れ直角プリズム(ロ)に入る。光線は直角プリズムα力
の上部斜辺(21)で90°反射されて下方に行き、下
部斜辺(至)で90’反射されてセル(2)に投射さ紅
、被測定液α壇を透過して光度を減じられ直角プリズム
(ハ)に入る。光線は直角プリズムに)の下部斜辺(ハ
)で90゜反射されて上方へ行き、上部斜辺(財)で9
0”反射されて七−(6)に投射さ績被測定液(lを透
過して光度を減じられ直角プリズム(ロ)に入る。光線
は直角プリズム的の下部斜辺(ハ)で90°反射されて
上方へ行き、上部斜辺(21)で90°反射されてセル
(ロ)に投射され、被測定液α優に透過して光度を減じ
られて直角プリズムα峰に入る。光線は直角プリズム(
118の上部斜辺(2)で90’反射されて下方に行き
、下部斜辺(イ)で90°反射されてセル(6)に投射
され、被測定液(ロ)を透過して光度を減じられて透過
光用フォトセル(ト)に入る。
Next, the present invention will be explained in detail. 1. The light rays emitted from the light source lamp (6) are formed into parallel light rays by the convex lens, and
), passes through the liquid to be measured (b), reduces the luminous intensity, and enters a right-angled prism (b). The light beam is reflected by 90 degrees from the upper hypotenuse (21) of the right angle prism and goes downward, and is reflected by 90 degrees from the lower hypotenuse (to) and is projected onto the cell (2). Its luminous intensity is reduced and it enters a right-angled prism (c). The ray of light is reflected by 90 degrees at the lower hypotenuse (c) of the right-angled prism () and goes upwards, and by 90 degrees at the upper hypotenuse (good).
The light beam is reflected at 7-(6) and is transmitted through the liquid to be measured (l) to reduce its luminous intensity and enters the right-angle prism (b).The light beam is reflected at 90 degrees at the lower hypotenuse (c) of the right-angle prism. The light beam travels upward, is reflected by 90 degrees at the upper hypotenuse (21), is projected onto the cell (b), and is transmitted through the sample liquid α, where its luminous intensity is reduced and enters the right angle prism α peak. (
It is reflected by 90 degrees from the upper hypotenuse (2) of 118 and goes downward, reflected by 90 degrees from the lower hypotenuse (A) and projected onto the cell (6), and transmitted through the liquid to be measured (B) to reduce its luminous intensity. and enters the transmitted light photocell (g).

しかして透過光は被測定液(ロ)中を5回反覆透過して
セル長tを5倍にしたと同様に光度を減じられ、 る。
Therefore, the luminous intensity of the transmitted light is reduced in the same way as when the cell length t is increased by five times by repeatedly passing through the liquid to be measured (b) five times.

濁度χは前記(A)式を変形した下記(B)式に従い、
演算器(ホ)で算出する。
The turbidity χ is calculated according to the following equation (B), which is a modification of the above equation (A),
Calculate with arithmetic unit (e).

算出して得られた濁度2は演算器(ハ)の出力端面に接
続された表示器(図示候ず)で民示される。
The calculated turbidity 2 is displayed on a display (not shown) connected to the output end of the computing unit (c).

なお、上記実施例ではプリズムを2個用いる場合につい
て説明したが、用いるプリズムのイi数は6個以上でも
また1個でもよい。2個以上用いる場合は感度を高める
ことができるから低濁度の場合に、また1個の場合は比
較的高濁度の場合に適している。
In the above embodiment, the case where two prisms are used has been described, but the number of prisms used may be six or more, or may be one. When two or more are used, the sensitivity can be increased, so it is suitable for low turbidity, and when one is used, it is suitable for relatively high turbidity.

本発明は、゛以上説明したような構成であ−るから装置
を大きくすることなく、測定値(濁度)の精度を高める
ことができる効果がある。
Since the present invention has the configuration as described above, it has the effect of increasing the accuracy of measured values (turbidity) without increasing the size of the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の濁度計の説明図、第2図は本発明の一実
施例である濁度計の説明図である。 11−被測定液、12−セル、13−光源ランプ、14
−凸レンズ、15−透過光用フオドセル、16−光源光
モニター用フォトセル、 17.18−直角プリズム 代理人 弁理士  葛 野 信 −
FIG. 1 is an explanatory diagram of a conventional turbidity meter, and FIG. 2 is an explanatory diagram of a turbidity meter that is an embodiment of the present invention. 11-Measurement liquid, 12-cell, 13-light source lamp, 14
- Convex lens, 15 - Photocell for transmitted light, 16 - Photocell for monitoring light source light, 17.18 - Right angle prism agent Patent attorney Shin Kuzuno -

Claims (1)

【特許請求の範囲】[Claims] 被測定液を透過した透過光と光源光との光量比を検出す
る濁度計において、透過光を被測定液に反覆透過させる
光学系を有することを特徴とする濁度計。
A turbidity meter that detects the light intensity ratio between transmitted light transmitted through a liquid to be measured and light from a light source, the turbidity meter comprising an optical system that repeatedly transmits the transmitted light through the liquid to be measured.
JP19917981A 1981-12-08 1981-12-08 Turbidimeter Pending JPS5899733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19917981A JPS5899733A (en) 1981-12-08 1981-12-08 Turbidimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19917981A JPS5899733A (en) 1981-12-08 1981-12-08 Turbidimeter

Publications (1)

Publication Number Publication Date
JPS5899733A true JPS5899733A (en) 1983-06-14

Family

ID=16403456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19917981A Pending JPS5899733A (en) 1981-12-08 1981-12-08 Turbidimeter

Country Status (1)

Country Link
JP (1) JPS5899733A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176826A2 (en) * 1984-09-24 1986-04-09 Kollmorgen Technologies Corporation Method and apparatus for dual-beam spectral transmission measurements
JPH0385562U (en) * 1989-12-21 1991-08-29
US8355132B2 (en) 2007-04-06 2013-01-15 Qiagen Gaithersburg, Inc. Sample adequacy measurement system having a plurality of sample tubes and using turbidity light scattering techniques
JP2013186096A (en) * 2012-03-11 2013-09-19 Hideki Tsujimura Transparency measuring instrument
US8877507B2 (en) 2007-04-06 2014-11-04 Qiagen Gaithersburg, Inc. Ensuring sample adequacy using turbidity light scattering techniques

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176826A2 (en) * 1984-09-24 1986-04-09 Kollmorgen Technologies Corporation Method and apparatus for dual-beam spectral transmission measurements
EP0176826A3 (en) * 1984-09-24 1987-09-02 Kollmorgen Technologies Corporation Method and apparatus for dual-beam spectral transmission measurements
JPH0385562U (en) * 1989-12-21 1991-08-29
US8355132B2 (en) 2007-04-06 2013-01-15 Qiagen Gaithersburg, Inc. Sample adequacy measurement system having a plurality of sample tubes and using turbidity light scattering techniques
US8877507B2 (en) 2007-04-06 2014-11-04 Qiagen Gaithersburg, Inc. Ensuring sample adequacy using turbidity light scattering techniques
JP2013186096A (en) * 2012-03-11 2013-09-19 Hideki Tsujimura Transparency measuring instrument

Similar Documents

Publication Publication Date Title
JPH08304282A (en) Gas analyzer
JPS5847657B2 (en) Ryu Taibun Sekiki
US3775013A (en) Optical turbidimeter apparatus
JPS5899733A (en) Turbidimeter
US3177760A (en) Apparatus embodying plural light paths for measuring the turbidity of a fluid
JPH06331543A (en) Floating-particle-concentration measuring apparatus
US3506359A (en) Apparatus for measuring light absorption of a sample
JPH01277740A (en) Submerged turbidity meter
JPH0585020B2 (en)
JPS6366441A (en) Refractive index meter
JPH0415543A (en) Method and instrument for measuring ozone concentration
Von Halban et al. On the measurement of light absorption
JPS57111435A (en) Measuring device for absorption intensity of infrared ray by atr method
JPS6385336A (en) Turbidity meter
JPH03220444A (en) Measuring method of absorbing state and measuring apparatus of absorption
JPS642888B2 (en)
JP3139628B2 (en) Spectrophotometer
US20230098744A1 (en) Multi-Wavelength Ozone Concentration Sensor and Method of Use
JPS59107223A (en) Spectrochemical analyzer
CN108562551B (en) Method for accurately measuring concentration of sulfur dioxide gas by detector
TW201809630A (en) Gas detection device and method for detecting gas concentration
JP4536501B2 (en) Method and apparatus for measuring ozone concentration in ozone water
JPS58204343A (en) Measuring apparatus of hydrogen ion concentration
JP2560231B2 (en) Sulfate ion concentration detection sensor by wavelength in mid-infrared region and sulfate ion concentration detection method
JPS61226619A (en) Spectrophotometer using integrating sphere