JPS59107223A - Spectrochemical analyzer - Google Patents

Spectrochemical analyzer

Info

Publication number
JPS59107223A
JPS59107223A JP21546682A JP21546682A JPS59107223A JP S59107223 A JPS59107223 A JP S59107223A JP 21546682 A JP21546682 A JP 21546682A JP 21546682 A JP21546682 A JP 21546682A JP S59107223 A JPS59107223 A JP S59107223A
Authority
JP
Japan
Prior art keywords
light
sample
reaction cell
cell
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21546682A
Other languages
Japanese (ja)
Inventor
Takehiko Onuma
武彦 大沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21546682A priority Critical patent/JPS59107223A/en
Publication of JPS59107223A publication Critical patent/JPS59107223A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To execute correct and precise absorbance measurement by continuously moving a reaction cell at a constant speed, exactly detecting the end face of this cell, and measuring light after a prescribed time. CONSTITUTION:Reaction cells 7 are fixed to a reaction table 6 at prescribed intervals and immersed in an annular thermostat water vessel 5. They are moved at a constant speed by rotation of the table 6. Light emitted from a light source 1 illuminates a sample in each cell through a light transmitting window 3, and the light transmitted through the sample is divided with a light dispersing element 10 into each monochromatic light of each wavelength, and converted into each electric signal with a detector 11. These signals are passed through amplifiers 15, 16, 17 and sample holding circuits 18, 19, 20, selected with a multiplexer 21, and converted into a digital quantity with an A/D converter 22. A CPU system 24 calculates a value of absorbance and stores it, and a series of processing is executed. The results of calculation are intermittently outputted with a timer 23.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は反応容齢(以下反応セルという)中の試料の吸
光度を測定する装置(1関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an apparatus (1) for measuring the absorbance of a sample in a reaction cell (hereinafter referred to as a reaction cell).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、試料の入った反応セルを移送させつつ光を照射し
て反応セル中の試料の吸光度を測定するいわゆる直接測
光方式の場合(二は、反応セルを測光時に機構的に固定
して測光する方法や、反応セルを連続的に移動させて測
光位置の通過時を伺らかのセンサで検知する方法が考え
られていた。しかし、機構的に反応セルを固定して測定
する方法は、比較的C1径の大きな反応セルを使用した
場合ζ二は測定可能であるが、小口径の円形セルを用い
た時には再現性可能な状態で固定できない欠点があった
。又、フォトインクラブタ等のセンサで検知する方法は
、円形反応セルの中心にきたときをセンサの信号によっ
て検知する方法であるが、七のセンサの精度が問題だし
、その位置決めも難かしく、常に一定の状態で正確な吸
光度を測定することが困難であった。
Conventionally, in the case of the so-called direct photometry method, in which the absorbance of the sample in the reaction cell is measured by irradiating light while moving the reaction cell containing the sample (the second method is to mechanically fix the reaction cell during photometry) A method has been considered in which the reaction cell is moved continuously and a sensor is used to detect when the reaction cell passes the photometric position.However, the method of mechanically fixing the reaction cell and measuring When a reaction cell with a large diameter C1 is used, ζ2 can be measured, but when a circular cell with a small diameter is used, there is a drawback that it cannot be fixed in a reproducible state. The method of detection with a sensor is to detect when the sensor reaches the center of the circular reaction cell, but the accuracy of the sensor is a problem, and its positioning is difficult, so it is difficult to always obtain accurate absorbance in a constant state. was difficult to measure.

更には、吸光度のピークをとらえて測定する方法も案出
されたが、実際にwJ1図(二示すよう(1水槽中を円
形セルを移動させてその時の出力波形を調べてみると、
セルが円形のため屈折率の違いで光が曲げられて入射ス
リット上を像が移動するので、光吸収を持つ試料を観測
すると@2図C二示す12,13,14の如くに波形が
変化して行き、この波形からピークを正確に求めること
は難がしく、又、厳密に光学調整を行なわないと試料の
濃”   度によって波形の対称性も変化することもわ
かり、いずれにしても波形のピークからは正確且つ精密
な吸光度測定を行なうことは困難であった。
Furthermore, a method was devised to capture and measure the peak of absorbance;
Since the cell is circular, the light is bent due to the difference in refractive index and the image moves on the entrance slit, so when observing a sample that absorbs light, the waveform changes as shown in 12, 13, and 14 shown in @2 Figure C2. It was found that it is difficult to accurately determine the peak from this waveform, and that the symmetry of the waveform changes depending on the concentration of the sample unless precise optical adjustment is performed. It was difficult to perform accurate and precise absorbance measurements from this peak.

〔発明の目的〕[Purpose of the invention]

そこで本発明は上記事情に鑑みてなされたものであり、
円形セル、特に径の小さなセルを使用した場合でも正確
且つ精密な吸光度測定を行ない得る分光分析装置を提供
することを目的とするものである。
Therefore, the present invention has been made in view of the above circumstances, and
It is an object of the present invention to provide a spectroscopic analyzer that can perform accurate and precise absorbance measurements even when using a circular cell, especially a small diameter cell.

〔発明の仲、要〕[Nakama of invention]

本発明は、反応セルを一定速度で連続移動させ、反応セ
ルの端面を正確に検知すると共に成る一定時間後(通常
は反応セルの中心を光が透過した時)(=測光すること
を基本原理としている。
The basic principle of the present invention is to continuously move a reaction cell at a constant speed, accurately detect the end face of the reaction cell, and perform photometry after a certain period of time (usually when light passes through the center of the reaction cell). It is said that

〔発明の実施例〕[Embodiments of the invention]

次に本発明の一実施例(二ついて図面を参照しながら説
明する。第6図は本発明の一実施例を示すブロック図で
あり、第4図は測光信号の波形を示す説明図である。本
発明の吸光度測定装置は、主として、試料を透過した光
を所定の単色光に分散する分光手段と、分光した単色光
を光電変換する検出手段と、検出手段により出力される
電流に基づき吸光度を演算する演算処理手段(以下CP
Uシステムという)、及びCPUシステム(二接続され
て一定時間毎にパルス信号を発信するタイマー装置とか
ら成る。すなわち、第6図(−示すように、7は一定の
間隔を置いて反応テーブル6(二増付けられ且つ輪状の
恒温水槽5の中(−浸漬している反応セルであり、該反
応セルフは反応テーブル乙の回転(二よって一定速度を
保って移送されている。
Next, one embodiment of the present invention will be explained with reference to the drawings. Fig. 6 is a block diagram showing an embodiment of the present invention, and Fig. 4 is an explanatory diagram showing the waveform of a photometric signal. The absorbance measuring device of the present invention mainly includes a spectroscopic means for dispersing light transmitted through a sample into predetermined monochromatic light, a detecting means for photoelectrically converting the separated monochromatic light, and absorbance measurement based on the current output by the detecting means. Arithmetic processing means (hereinafter referred to as CP) that calculates
A CPU system (called U system), and a timer device which are connected to each other and emit a pulse signal at regular intervals.As shown in FIG. (The reaction cell is immersed in the ring-shaped thermostatic water tank 5, which has been added twice.) The reaction cell is transported at a constant speed by the rotation of the reaction table (2).

一方、光源1からの光は恒温水槽5に浸漬した反応セル
中の試料に光透過窓6,4を介して照射される。反応セ
ル及び試料を透過した光は、分散素子10により分光し
た各波長の単色光を検出器11(二よって電気信号に変
換される。その信号は増幅器15.Is、17及びサン
プルホールド回路18.19.20を通り、マルチプレ
クサ21で遣損されてAD変換器22でディジタル量に
変換され、史(二CPUシステム24で吸光度の値が計
算されて記憶され一連の処理がなされるが、該CPUシ
ステム24(=は間隔をおいて動作指令を入力し、演算
結果を出力するだめのタイマー装@23が接続されてい
る。尚、2,8はレンズであり、9は入射スリットであ
る。
On the other hand, light from the light source 1 is applied to the sample in the reaction cell immersed in the constant temperature water bath 5 through the light transmission windows 6 and 4. The light transmitted through the reaction cell and the sample is separated into monochromatic lights of each wavelength by a dispersion element 10 and converted into an electrical signal by a detector 11 (2).The signal is sent to an amplifier 15. 19.20, it is discarded by the multiplexer 21, converted into a digital quantity by the AD converter 22, and stored (the absorbance value is calculated and stored in the two-CPU system 24, and a series of processing is performed. A system 24 (= is connected to a timer device @ 23 which inputs operation commands at intervals and outputs calculation results. Reference numerals 2 and 8 are lenses, and 9 is an entrance slit.

本発明)二よると、光が照射される反応セルの一定位置
で常(二側光できるようにしたものであるが、これを具
体的(=第4図を参照して説明する。すなわち、第4図
は、この装置で測定した成る波長の測光信号を示すもの
で、反応セルの管壁を通過しているのが25.27で、
試料中を光が透過している区間が26である。測光する
方法は端面から試料を光が透過している一定位置までの
時間toを設定して、そのt。
According to the present invention), two-sided light is always emitted at a certain position of the reaction cell where light is irradiated, and this will be specifically explained with reference to FIG. 4. That is, Figure 4 shows photometric signals of wavelengths of 25.27 and 25.27 that pass through the tube wall of the reaction cell measured with this device.
There are 26 sections in which light passes through the sample. The method of photometry is to set the time t from the end face to a certain position where light is passing through the sample, and then measure the time t.

時(1常に測光しようとするものである。具体的に端面
な検知する方法としては、光が試料(Fかかった状態2
6であると試料の吸光度(−よって波形が変わるので、
試料のかからない組曲25(二おいて成るスレッショル
ドレベルを定め、これをハードウェア又はソフトウェア
のコンパレータで判断スればよいっ光源の変動(二よっ
て波形の大きさは変わるが、波形の形自体は変化しない
ので、例えはスレッショルドレベルを水槽中通過時のレ
ベルTのTと定めておけは、光量変化に追従して常(二
同じ位置における端面の検出ができること(二なる。
When the light is applied to the sample (2)
If it is 6, the absorbance of the sample (- will change the waveform, so
Suite 25 with no sample applied (2) It is sufficient to set a threshold level consisting of 2 and judge this using a hardware or software comparator. Fluctuations in the light source (2 causes the size of the waveform to change, but the shape of the waveform itself changes. For example, if the threshold level is set to T of the level T when passing through the aquarium, it is possible to always detect the end face at the same position by following changes in the amount of light.

この端面の通過から一定時間後、例えは反応セルの中心
が通過するまでの時間toを探し出し、このtoをタイ
マー装置26(ニセットしておき、その時点(二おける
多波長をサンプリングすると共に吸光度を測定すれは、
常に一定の位置で反応セル中の試料の測光ができること
(二なる。その時点toを見つけるC二は、一度水ブラ
ンク測定と試料測定とをtoを変化させて測定し、吸光
度が最大となる所を探せばよい。尚、個々の反応セルで
厳密C二は端面から中心(1至るまでの時間を記憶して
おく必要があるが、実際のセル製作精度は径及び反応管
内外壁の偏心率など十分なものであり、同じものと取り
扱ってさしつかえない。又、反応セルの増付けに関して
も傾き(二よる光路長誤差は問題(−ならず、反応テー
ブルへの取付は位置も反応セル自体が端面検出のセンサ
の役目をしているので、精度が要求されないという利点
もある。円形セルの場合の測光位置は任意でもよいが、
最大吸収を持ち光路長の管理のしやすいセルの中心を通
る位置が最も有利である。
After a certain period of time from the passage of this end face, for example, find the time to until the center of the reaction cell passes, set this to in the timer device 26 (Ni), sample multiple wavelengths at that point (2), and measure the absorbance. To measure,
It is possible to measure the light of the sample in the reaction cell at a constant position at all times. For each reaction cell, it is necessary to memorize the exact time from the end face to the center (1), but the actual cell manufacturing accuracy depends on the diameter, eccentricity of the inner and outer walls of the reaction tube, etc. This is sufficient and can be treated as the same product.Also, when adding reaction cells, the optical path length error due to the inclination (-2) is not a problem (-), and the mounting position on the reaction table is such that the reaction cell itself is on the end face. Since it serves as a detection sensor, it also has the advantage that accuracy is not required.In the case of a circular cell, the photometry position can be arbitrary, but
The most advantageous position is through the center of the cell, where the absorption is maximum and the optical path length is easily controlled.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれは、一定の速度で移動する反
応セルの端面通過を正確に検知し、一定時間後に反応セ
ルの常(=同じ位置(同じ光路長)での測光が反復して
可能になるので、円形セル、特に小口径の円形セルの吸
光度測定を正確且つ精密に行ない得る顕著な効果を発揮
する。殊に、円形セルは角形セルに比べ、セルの作り易
さ及び洗浄効果からいっても都合がよいので、本発明の
装置は自動生化学分析における使用において太い(二貢
献できるものである。
As described above, according to the present invention, passage of the end face of a reaction cell moving at a constant speed is accurately detected, and photometry at the same position (same optical path length) of the reaction cell is repeated after a certain period of time. This makes it possible to accurately and precisely measure the absorbance of circular cells, especially small-diameter circular cells.In particular, circular cells are easier to manufacture and have better cleaning efficiency than square cells. Due to its advantages, the device of the present invention can be of great use in automated biochemical analysis.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光学系を示す説明図、第2図は測光信号を示す
説明図、第6図は本発明における装置の一実施例を示す
ブロック図、第4図は測光信号の波形を示す説明図であ
る。 1・・・光源、  2,8・・・レンズ、 6,4・・
・光透過窓、 5・・・恒温槽、 6・・・反応テーブ
ル、  7・・・反応セル、 9・・・入射スリット、
 10・・・分散素子、 11・・・検出器、 15,
16.17・・・増幅器、18.19.20・・・サン
プルホールド回路、 21・・・マルチプレクサ、 2
2・・・AD変換器、 26・・・タイマ、  24・
・・CPUシステム、 25.27・・・反応管壁、 
 26・・・試料通過域。 代理人 弁理士  則 近 憲 佑(ほか1名)第  
1 図 第  2 図
Fig. 1 is an explanatory diagram showing the optical system, Fig. 2 is an explanatory diagram showing a photometric signal, Fig. 6 is a block diagram showing an embodiment of the device according to the present invention, and Fig. 4 is an explanatory diagram showing the waveform of the photometric signal. It is a diagram. 1...Light source, 2,8...Lens, 6,4...
・Light transmission window, 5... constant temperature bath, 6... reaction table, 7... reaction cell, 9... entrance slit,
10... Dispersion element, 11... Detector, 15,
16.17...Amplifier, 18.19.20...Sample and hold circuit, 21...Multiplexer, 2
2...AD converter, 26...timer, 24.
...CPU system, 25.27...Reaction tube wall,
26...Sample passage area. Agent Patent Attorney Kensuke Chika (and 1 other person) No.
1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 試料を透過した光を単色光に分光し、該光を光電変換す
ることによって吸光度を測定する分光分析装置で、反応
セルを移送させる移送手段と、反応セルに光を照射し、
試料を透過した光を分光する分光手段と、この分光を検
出して電気信号(二変換する検出手段と、光電変換され
た信号を入力してこれの吸光度を演算処理する演算処理
手段を有し、検出手段の出力に基づいて反応セルの進行
方向における前壁の通過を検知、判断し、所定時間後設
光度測定を行うことを特徴とする分光分析装置。
A spectroscopic analyzer that spectrally spectra the light transmitted through a sample into monochromatic light and photoelectrically convert the light to measure the absorbance, which includes a transport means for transporting a reaction cell, a means for transporting a reaction cell, irradiating the reaction cell with light,
It has a spectroscopic means for dispersing the light transmitted through the sample, a detecting means for detecting the spectroscopic light and converting it into an electric signal (two electric signals), and an arithmetic processing means for inputting the photoelectrically converted signal and calculating the absorbance thereof. 1. A spectroscopic analysis device characterized by detecting and determining the passage of the front wall in the direction of movement of the reaction cell based on the output of the detection means, and measuring the light intensity after a predetermined period of time.
JP21546682A 1982-12-10 1982-12-10 Spectrochemical analyzer Pending JPS59107223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21546682A JPS59107223A (en) 1982-12-10 1982-12-10 Spectrochemical analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21546682A JPS59107223A (en) 1982-12-10 1982-12-10 Spectrochemical analyzer

Publications (1)

Publication Number Publication Date
JPS59107223A true JPS59107223A (en) 1984-06-21

Family

ID=16672839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21546682A Pending JPS59107223A (en) 1982-12-10 1982-12-10 Spectrochemical analyzer

Country Status (1)

Country Link
JP (1) JPS59107223A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004505860A (en) * 2000-08-09 2004-02-26 ホワイト・キャップ・インコーポレーテッド Closure cap with injection molded annular gasket and method of manufacturing the closure cap
JP2005207833A (en) * 2004-01-21 2005-08-04 Sysmex Corp Optical device for turbidity detection, and turbidity detection device using it
JP2008020393A (en) * 2006-07-14 2008-01-31 Wako Pure Chem Ind Ltd Method for detecting state of fluid and analyzing apparatus
JP2008273133A (en) * 2007-05-07 2008-11-13 Central Glass Co Ltd Injection mold

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364084A (en) * 1976-11-19 1978-06-08 Hitachi Ltd System spectometer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364084A (en) * 1976-11-19 1978-06-08 Hitachi Ltd System spectometer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004505860A (en) * 2000-08-09 2004-02-26 ホワイト・キャップ・インコーポレーテッド Closure cap with injection molded annular gasket and method of manufacturing the closure cap
JP2005207833A (en) * 2004-01-21 2005-08-04 Sysmex Corp Optical device for turbidity detection, and turbidity detection device using it
JP2008020393A (en) * 2006-07-14 2008-01-31 Wako Pure Chem Ind Ltd Method for detecting state of fluid and analyzing apparatus
JP2008273133A (en) * 2007-05-07 2008-11-13 Central Glass Co Ltd Injection mold

Similar Documents

Publication Publication Date Title
US4549809A (en) Method for photometric measurement of light absorption of liquid samples in cuvettes
JPH0134337B2 (en)
EP0121404B1 (en) A photometric light absorption measuring apparatus
ATE443858T1 (en) DATA PROCESSING DEVICE FOR X-RAY FLUORESCENCE SPECTROSCOPY WHICH TAKES INTO ACCOUNT THE SENSITIVITY OF THE MEASURING DEVICE FOR THE CHEMICAL ELEMENTS INDEPENDENT OF THE MEASURING CONDITIONS
JPH08327545A (en) Infrared gas analyzer
JPS59107223A (en) Spectrochemical analyzer
US4377342A (en) Zeeman atomic absorption spectrophotometer
YU38192A (en) GAS ANALYSIS PROCEDURE AND DEVICE
JP2002257723A (en) Method and instrument for determining concentration of liquid sample
JPH01284758A (en) Automatic chemical analysis apparatus
US4417812A (en) Circuit arrangement for determining the characteristics of liquids and/or gases, in particular the hemoglobin content of the blood
JP2560231B2 (en) Sulfate ion concentration detection sensor by wavelength in mid-infrared region and sulfate ion concentration detection method
JPH03220444A (en) Measuring method of absorbing state and measuring apparatus of absorption
JPS61226639A (en) Throw type component analyzer
SU1081429A1 (en) Device for optical determination of micro-quantities of substances
JP2007057317A (en) Automatic analyzer
SU1453182A1 (en) Method of measuring absolute spectral sensitivity of radiation receivers
JPH0213962Y2 (en)
JP2005274143A (en) Method for analyzing multicomponent aqueous solution
JPH05196573A (en) Light value measurement of moving cell
JPS6243502B2 (en)
JPS601412Y2 (en) Automatic inspection device for chemical reaction test pieces
JPS63165736A (en) Biochemical analyser
JPS62226038A (en) Photometer
JPH02184740A (en) Absorbancy measuring instrument