JPH0213962Y2 - - Google Patents

Info

Publication number
JPH0213962Y2
JPH0213962Y2 JP13727982U JP13727982U JPH0213962Y2 JP H0213962 Y2 JPH0213962 Y2 JP H0213962Y2 JP 13727982 U JP13727982 U JP 13727982U JP 13727982 U JP13727982 U JP 13727982U JP H0213962 Y2 JPH0213962 Y2 JP H0213962Y2
Authority
JP
Japan
Prior art keywords
reaction tube
absorbance
detector
reaction
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13727982U
Other languages
Japanese (ja)
Other versions
JPS5941744U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13727982U priority Critical patent/JPS5941744U/en
Publication of JPS5941744U publication Critical patent/JPS5941744U/en
Application granted granted Critical
Publication of JPH0213962Y2 publication Critical patent/JPH0213962Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は自動化学分析装置に関し、特に分析精
度を向上させ得る自動化学分析装置に関する。
[Detailed Description of the Invention] The present invention relates to an automatic chemical analyzer, and particularly to an automatic chemical analyzer that can improve analysis accuracy.

自動化学分析装置では検体と、分析項目に応じ
た試薬とを混合して反応させ、所定の項目につい
て分析を行つている。この分析方法としては、反
応が終了した後の反応液の吸光度を測定する反応
終端分析方法、反応が進行している状態の吸光度
を測定して反応速度を求め、この反応速度から検
体中の例えば、特定酵素の量を分析する反応速度
分析方法とが使われている。
In an automatic chemical analyzer, a sample and a reagent according to an analysis item are mixed and reacted to perform an analysis on a predetermined item. This analysis method includes the end-of-reaction analysis method, which measures the absorbance of the reaction solution after the reaction has finished, and the reaction rate, which is determined by measuring the absorbance while the reaction is progressing. , a reaction rate analysis method that analyzes the amount of a specific enzyme is used.

本考案は上述した後者の分析方法、すなわち、
反応液の反応速度から特定酵素の量を測定する方
法を行うに最適な、分析精度の高い自動化学分析
装置を提供することを目的とするものである。
The present invention uses the latter analysis method mentioned above, that is,
It is an object of the present invention to provide an automatic chemical analyzer with high analysis accuracy, which is optimal for performing a method of measuring the amount of a specific enzyme from the reaction rate of a reaction solution.

本考案に基づく自動化学分析装置は反応管を移
送する手段と、該反応管の特定位置において検体
と発色反応を生ぜしめる試薬を該反応管に供給す
る手段と、該試薬供給位置に続く異つた位置にお
いて光を反応管に照射し、該反応管内の液による
光の吸収を測定するための夫々が光源と検出器と
を有した第1と第2の光学測定手段と、夫々の検
出器からの検出信号の強度変化分を定められた短
い時間内積分し、該短い時間内における吸光度変
化の傾きに応じた2種の信号を得る手段とを備
え、該2種の信号に基づいて検体中の対象項目の
分析を行うように構成している。
An automatic chemical analyzer based on the present invention includes a means for transporting a reaction tube, a means for supplying a reagent to the reaction tube that causes a color reaction with an analyte at a specific position of the reaction tube, and a means for supplying a reagent to the reaction tube that causes a color reaction with an analyte at a specific position of the reaction tube, and a different first and second optical measuring means each having a light source and a detector for irradiating light onto a reaction tube at a position and measuring absorption of light by a liquid in the reaction tube; means for integrating the change in intensity of the detection signal within a predetermined short time to obtain two types of signals corresponding to the slope of the change in absorbance within the short time; The system is configured to analyze target items.

以下本考案の一実施例を添付図面に基づき詳述
する。
An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

第1図において、1は例えば、特公昭53−
34079号に示されている如き回転反応器であり、
該反応器1は回転駆動機構によつて回転される回
転体2を有しており、該回転体2には多数の反応
管3が等間隔で配置されている。該反応管3は回
転体2の回転によつて異つた処理位置に移送さ
れ、各種の処理が行われる。該反応管3の位置A
は第1試薬と共に試料検体が反応管に供給される
位置であり、Bは第2試薬の供給位置である。該
第2試薬の供給位置Bの直前の位置Cは、第1の
吸光度測定位置であり、そのため移送される反応
管に光を照射するための光源4と該反応管を透過
した光を検出する検出器5が配置されている。該
光源4と反応管3との間には集光レンズ6及び干
渉フイルター7が設けられているが、該フイルタ
ーは各種のものが選択して光路上に配置できるよ
うに構成されており、透過する光の波長は分析を
行う項目に応じて任意に変え得るように構成され
ている。該第2試薬の供給位置Bに続く位置D,
Eは夫々第2及び第3の吸光度測定位置であり、
位置D,Eには夫々、光源8,9、検出器10,
11、集光レンズ12,13、干渉フイルター1
4,15が配置されている。該第2と第3の検出
器10,11の出力信号はスイツチS1,S2によつ
て切換えられ、夫々積分器16,17、あるいは
データ処理装置18に供給されており、該積分器
の各出力信号はデータ処理装置18に第1の検出
器5の信号と共に供給されている。
In Figure 1, 1 is, for example,
A rotary reactor as shown in No. 34079,
The reactor 1 has a rotating body 2 rotated by a rotational drive mechanism, and a large number of reaction tubes 3 are arranged at equal intervals on the rotating body 2. The reaction tube 3 is transferred to different processing positions by the rotation of the rotating body 2, and various treatments are performed thereon. Position A of the reaction tube 3
B is the position where the sample specimen is supplied to the reaction tube together with the first reagent, and B is the position where the second reagent is supplied. The position C immediately before the second reagent supply position B is the first absorbance measurement position, and therefore the light source 4 for irradiating light onto the reaction tube being transferred and the light transmitted through the reaction tube are detected. A detector 5 is arranged. A condensing lens 6 and an interference filter 7 are provided between the light source 4 and the reaction tube 3, and the filter is configured so that various filters can be selected and placed on the optical path. The wavelength of the light to be analyzed can be changed arbitrarily depending on the item to be analyzed. a position D following the supply position B of the second reagent;
E are the second and third absorbance measurement positions, respectively;
At positions D and E, light sources 8 and 9, detectors 10,
11, condensing lens 12, 13, interference filter 1
4 and 15 are arranged. The output signals of the second and third detectors 10 and 11 are switched by switches S 1 and S 2 and supplied to integrators 16 and 17 or data processing device 18, respectively, and the output signals of the integrators are Each output signal is fed to a data processing device 18 together with the signal of the first detector 5.

上述した如き構成において、検体中の特定項目
を反応速度法によつて分析する場合、Aの位置で
第1試薬と試料検体が反応管に導入され、更に、
位置Bにおいて第2試薬が反応管の中に導入され
る。尚、この時、Cの位置で反応管を透過して光
が照射され、第1試薬と検体の混合された液の吸
光度が測定されるが、反応速度の測定においては
この測定結果は使用されない。又、スイツチS1
S2は各検出器からの信号が積分器16,17に供
給されるように切換えられる。該第2試薬の供給
によつて検体と第2試薬とは発色反応を開始し、
第2試薬が供給されてから所定の時間が経過した
Dの位置において、第1回目の吸光度が測定され
る。該測定は短い時間、例えば、数秒間行われ、
その間の検出信号は積分器16に供給される。該
積分器16は第2図に示す如く、T1からT2まで
の測定時間tの間に変化する信号の変化量を積分
し、データ処理装置18にその積分値を供給す
る。該積分値は信号の変化量が大きい場合、すな
わち、反応速度が速い場合には大きくなり、逆に
反応速度が遅い場合には小さくなり、その値は反
応速度に比例したものとなる。その後、該回転体
2の回転に伴い、位置Dで吸光度が測定された反
応管が位置Eに移送されると、該位置Dと同様に
反応液の吸光度が測定される。該吸光度の測定は
前述したと同様な方法で行われ、第2図に示す如
く時刻T3からT4までの時間tの間に行われ、位
置Eにおける吸光度変化に対応した積分器17か
らの信号はデータ処理装置18に供給される。該
データ処理装置18は両信号の平均値を求め、そ
の値を検体中の目的項目の分析値としている。そ
のため、測定時間が2倍となるだけでなく、実質
的に時刻T1から時刻T4までの間における吸光度
変化に応じた信号が得られることになり、測定精
度の向上が可能となる。尚、時刻T1と時刻T4
おいて夫々瞬間的に吸光度を測定し、2種の吸光
度から吸光度変化の傾きが測定できるが、このよ
うな方法は2点での測定によるものであるため、
いずれか一方の検出信号にノイズが混入すると、
得られた傾きを示す信号は不正確なものとなる。
又、上述した構成による別の測定方法としては、
該2種の信号を夫々予め測定項目毎に設定された
基準値と比較し、該基準値と掛離れた信号値の場
合は、何等かの誤差信号として除去し、一方の信
号値のみを分析値とすれば、ノイズの影響をなく
した正確な分析を行うことができる。
In the configuration as described above, when a specific item in a sample is analyzed by the reaction rate method, the first reagent and the sample sample are introduced into the reaction tube at position A, and further,
At position B a second reagent is introduced into the reaction tube. At this time, light is irradiated through the reaction tube at position C, and the absorbance of the mixed liquid of the first reagent and sample is measured, but this measurement result is not used in measuring the reaction rate. . Also, switch S 1 ,
S 2 is switched so that the signals from each detector are fed to integrators 16 and 17. By supplying the second reagent, the specimen and the second reagent start a coloring reaction,
The first absorbance is measured at position D after a predetermined time has elapsed since the second reagent was supplied. the measurement is carried out for a short period of time, e.g. a few seconds;
The detection signal during this period is supplied to the integrator 16. As shown in FIG. 2, the integrator 16 integrates the amount of change in the signal that changes during the measurement time t from T 1 to T 2 and supplies the integrated value to the data processing device 18 . The integral value becomes large when the amount of change in the signal is large, that is, when the reaction rate is fast, and conversely becomes small when the reaction rate is slow, and its value is proportional to the reaction rate. Thereafter, as the rotating body 2 rotates, the reaction tube whose absorbance was measured at position D is transferred to position E, and the absorbance of the reaction liquid is measured in the same manner as at position D. The absorbance measurement is performed in the same manner as described above, and is performed during the time t from time T 3 to T 4 as shown in FIG. The signal is provided to a data processing device 18. The data processing device 18 calculates the average value of both signals and uses that value as the analysis value of the target item in the sample. Therefore, not only the measurement time is doubled, but also a signal corresponding to the change in absorbance between time T 1 and time T 4 can be obtained, thereby making it possible to improve measurement accuracy. Incidentally, the absorbance can be measured instantaneously at time T 1 and time T 4 , respectively, and the slope of the change in absorbance can be measured from the two kinds of absorbance, but since such a method is based on measurement at two points,
If noise gets mixed into either one of the detection signals,
The resulting slope signal will be inaccurate.
In addition, another measurement method using the above-mentioned configuration is as follows.
The two types of signals are compared with a reference value set in advance for each measurement item, and if the signal value is far from the reference value, it is removed as an error signal of some kind, and only one signal value is analyzed. If it is a value, accurate analysis can be performed without the influence of noise.

第1図の構成において、反応の終了した後の吸
光度を測定し、反応終端分析法で検体中の特定項
目の分析を行う場合、位置Aで検体が導入され、
位置Bで発色反応を行うための試薬が供給され、
例えば、位置Eで反応終了後の反応液の吸光度が
測定される。この時、スイツチS2が切換えられ、
検出器11からの信号は積分器17を介さずにデ
ータ処理装置18に供給される。該装置において
検出器11からの信号と検出器5の信号との差信
号が得られ、その差信号が反応終端時の吸光度と
して使用される。該検出器5の信号は検体が血清
の場合には、溶血、黄疸等に基づく吸光度を示す
ものであるため、上述した差信号は溶血、黄疸等
の影響のない反応による吸光度を示すものとな
り、正確な測定を行うことが可能となる。
In the configuration shown in FIG. 1, when measuring the absorbance after the reaction is completed and analyzing a specific item in the sample using the end-of-reaction analysis method, the sample is introduced at position A,
Reagents for carrying out a color reaction at position B are supplied;
For example, at position E, the absorbance of the reaction solution after the reaction is completed is measured. At this time, switch S2 is switched,
The signal from the detector 11 is supplied to the data processing device 18 without passing through the integrator 17. In this apparatus, a difference signal between the signal from the detector 11 and the signal from the detector 5 is obtained, and the difference signal is used as the absorbance at the end of the reaction. When the sample is serum, the signal from the detector 5 indicates the absorbance due to hemolysis, jaundice, etc., so the above-mentioned difference signal indicates the absorbance due to reactions that are not affected by hemolysis, jaundice, etc. It becomes possible to perform accurate measurements.

第3図は第1図に示された反応管3、光源8、
レンズ12、フイルター14、検出器10の関係
を示したもので、この図では、位置Dにおける光
学測定系を例としているが、他の位置C,Eも同
様な光学系となつている。該干渉フイルター14
を透過した特定波長の光はハーフミラー20によ
つて2光束に分割され、一方は反応管3を透過し
て反応管側の検出器10aに、他方は参照用検出
器10bに向けられる。該両検出器10a,10
bの検出信号は補正回路21に供給され、検出器
10aからの信号は検出器10bからの信号によ
つて補正されて積分器16に供給される。このよ
うに構成すれば、光源が不安定であつても、反応
管側の検出器10aからの信号は、実質的に光量
の変動に応じた検出器10bからの信号によつて
補正されることになり、光源の不安定さの影響を
無くして、より正確な測定を行うことができる。
又、従来においては、装置の始動時には光源が安
定となるまでの間、測定を行うことができなかつ
たが、この実施例では、参照用検出器10bから
の信号を補正信号としているため、装置始動後で
あつても、直ちに測定を行うことができる。
FIG. 3 shows the reaction tube 3, light source 8, and
This figure shows the relationship among the lens 12, filter 14, and detector 10. In this figure, the optical measurement system at position D is taken as an example, but the other positions C and E are also similar optical systems. The interference filter 14
The light of a specific wavelength that has passed through is split into two beams by the half mirror 20, one of which passes through the reaction tube 3 and is directed to the reaction tube side detector 10a, and the other to the reference detector 10b. Both detectors 10a, 10
The detection signal b is supplied to the correction circuit 21, and the signal from the detector 10a is corrected by the signal from the detector 10b and supplied to the integrator 16. With this configuration, even if the light source is unstable, the signal from the detector 10a on the reaction tube side can be substantially corrected by the signal from the detector 10b in accordance with fluctuations in the amount of light. This eliminates the effects of light source instability and allows for more accurate measurements.
In addition, in the past, it was not possible to perform measurement until the light source became stable when the device was started, but in this embodiment, the signal from the reference detector 10b is used as the correction signal, so the device cannot be measured. Measurements can be taken immediately even after startup.

以上詳述した如く、本考案により、高い測定精
度の自動化学分析装置が提供される。尚、本考案
は上述した実施例に限定されることなく幾多の変
形が可能である。例えば、光源からの光を干渉フ
イルターを介して反応管に照射するようにした
が、白色光を反応管に照射し、該反応管を透過し
た光を分光し、特定波長の光を検出するように構
成しても良い。又、反応管を回転させて各位置に
移送するようにしたが、多数の反応管を直線状に
移送するように構成しても良い。
As detailed above, the present invention provides an automatic chemical analyzer with high measurement accuracy. Note that the present invention is not limited to the embodiments described above, and can be modified in many ways. For example, light from a light source is irradiated onto a reaction tube through an interference filter, but it is also possible to irradiate a reaction tube with white light, separate the light that passes through the reaction tube, and detect light of a specific wavelength. It may be configured as follows. Furthermore, although the reaction tubes are rotated and transferred to each position, a configuration may be adopted in which a large number of reaction tubes are transferred linearly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す図、第2図は
検出信号を示す図、第3図は第1図において用い
た吸光度測定の光学系の詳細を示す図である。 2:回転体、3:反応管、4,8,9:光源、
5,10,11:検出器、7,14,15:干渉
フイルター、16,17:積分器、8:データ処
理装置。
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing a detection signal, and FIG. 3 is a diagram showing details of the optical system for absorbance measurement used in FIG. 1. 2: rotating body, 3: reaction tube, 4, 8, 9: light source,
5, 10, 11: detector, 7, 14, 15: interference filter, 16, 17: integrator, 8: data processing device.

Claims (1)

【実用新案登録請求の範囲】 1 反応管を移送する手段と、該反応管の特定位
置において検体と発色反応を生ぜしめる試薬を
該反応管に供給する手段と、該試薬供給位置に
続く異つた位置において光を反応管に照射し、
該反応管内の液による光の吸収を測定するため
の夫々が光源と検出器とを有した第1と第2の
光学測定手段と、夫々の検出器からの検出信号
の強度変化分を定められた短い時間内積分し、
該短い時間内における吸光度変化の傾きに応じ
た2種の信号を得る手段とを備え、該2種の信
号に基づいて検体中の対象項目の分析を行うよ
うに構成した自動化学分析装置。 2 該吸光度変化の傾きに応じた2種の信号の平
均値を得て、該検体中の特定項目の分析を行う
ようにした実用新案登録請求の範囲第1項記載
の自動化学分析装置。 3 該光源からの光は2光束に分離され、一方が
反応管に照射されて反応液の吸光度の測定に供
され、他方が参照用検出器に導かれ、該吸光度
の測定値を該参照用検出器からの信号によつて
補正するようにした実用新案登録請求の範囲第
1項乃至第2項記載の自動化学分析装置。
[Claims for Utility Model Registration] 1. A means for transporting a reaction tube, a means for supplying a reagent that causes a color reaction with a specimen at a specific position of the reaction tube, and a different method following the reagent supply position. irradiate the reaction tube with light at the position,
first and second optical measuring means each having a light source and a detector for measuring absorption of light by the liquid in the reaction tube; and determining an amount of change in intensity of a detection signal from each detector. Integrate over a short period of time,
An automatic chemical analyzer comprising: means for obtaining two types of signals according to the slope of absorbance change within the short period of time, and configured to analyze a target item in a sample based on the two types of signals. 2. The automatic chemical analyzer according to claim 1, which analyzes a specific item in the sample by obtaining an average value of two types of signals corresponding to the slope of the change in absorbance. 3 The light from the light source is separated into two beams, one of which is irradiated onto the reaction tube and used to measure the absorbance of the reaction solution, and the other is guided to a reference detector, and the measured value of the absorbance is used for the reference. An automatic chemical analyzer according to claim 1 or 2, wherein the automatic chemical analyzer is corrected by a signal from a detector.
JP13727982U 1982-09-09 1982-09-09 automatic chemical analyzer Granted JPS5941744U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13727982U JPS5941744U (en) 1982-09-09 1982-09-09 automatic chemical analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13727982U JPS5941744U (en) 1982-09-09 1982-09-09 automatic chemical analyzer

Publications (2)

Publication Number Publication Date
JPS5941744U JPS5941744U (en) 1984-03-17
JPH0213962Y2 true JPH0213962Y2 (en) 1990-04-17

Family

ID=30308396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13727982U Granted JPS5941744U (en) 1982-09-09 1982-09-09 automatic chemical analyzer

Country Status (1)

Country Link
JP (1) JPS5941744U (en)

Also Published As

Publication number Publication date
JPS5941744U (en) 1984-03-17

Similar Documents

Publication Publication Date Title
US5478750A (en) Methods for photometric analysis
US4160646A (en) Method of analyzing liquid samples and system for continuously automatically analyzing same
JPH0746111B2 (en) Sample analysis method and automatic analyzer using the same
JPH0619351B2 (en) Latex agglutination reaction measuring device
JPH01145552A (en) Automatic apparatus for analysis
EP0121404B1 (en) A photometric light absorption measuring apparatus
JP3203798B2 (en) How to measure chromogen
US4939095A (en) Automatic chemical analyzer
JPS5852550A (en) Dissolution method for ghost peak of flow injection analysis
US4377342A (en) Zeeman atomic absorption spectrophotometer
US4877583A (en) Fluorescent analyzer
JPH0213962Y2 (en)
JPS6327661B2 (en)
JPS5944584B2 (en) Automatic analysis method
JPH0547782B2 (en)
JPH0514855B2 (en)
JPS6111642A (en) Chemical analysis instrument
JP2002257723A (en) Method and instrument for determining concentration of liquid sample
JP2003329581A (en) Optical fiber type multiple wavelength spectrometric apparatus and multiple wavelength spectrometric method using optical fiber
JPS6118982B2 (en)
JPS59107223A (en) Spectrochemical analyzer
JP2008058155A (en) Medical photometer
JP2007057317A (en) Automatic analyzer
JP2611308B2 (en) Water determination using Karl Fischer reagent
JPH0130100B2 (en)