TW201809630A - Gas detection device and method for detecting gas concentration - Google Patents

Gas detection device and method for detecting gas concentration Download PDF

Info

Publication number
TW201809630A
TW201809630A TW105116265A TW105116265A TW201809630A TW 201809630 A TW201809630 A TW 201809630A TW 105116265 A TW105116265 A TW 105116265A TW 105116265 A TW105116265 A TW 105116265A TW 201809630 A TW201809630 A TW 201809630A
Authority
TW
Taiwan
Prior art keywords
light
gas
concentration
cavity
sensing unit
Prior art date
Application number
TW105116265A
Other languages
Chinese (zh)
Other versions
TWI592647B (en
Inventor
林增隆
余少雲
古勤徽
Original Assignee
熱映光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 熱映光電股份有限公司 filed Critical 熱映光電股份有限公司
Priority to TW105116265A priority Critical patent/TWI592647B/en
Application granted granted Critical
Publication of TWI592647B publication Critical patent/TWI592647B/en
Publication of TW201809630A publication Critical patent/TW201809630A/en

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The instant disclosure provides a gas detection device and method for detecting gas concentration. The gas detection device includes a chamber module, a light module, an optical sensing module, and a light splitting module. The chamber module includes a light guide chamber, a first sampling chamber, and a second sampling chamber. The light module disposed on the light guide chamber to generate a projection light beam. The optical sensing module includes a first optical sensing unit which disposed in the first sampling chamber, and a second optical sensing unit which disposed in the second sampling chamber. The light splitting module disposed in the chamber module. The projection light beam splitting by the light splitting module to generate a first splitting light beam and a second splitting light beam.

Description

氣體測量裝置及氣體濃度測量方法 Gas measuring device and gas concentration measuring method

本發明涉及一種氣體測量裝置及氣體濃度測量方法,特別是涉及一種可同時測量不同氣體濃度的氣體測量裝置及氣體濃度測量方法。 The invention relates to a gas measuring device and a gas concentration measuring method, in particular to a gas measuring device and a gas concentration measuring method capable of simultaneously measuring different gas concentrations.

首先,現在市面上販售的二氧化碳偵測裝置或二氧化碳分析儀,幾乎都是採用非分散式紅外線(Non-dispersive Infrared,NDIR)吸收法來偵測氣體濃度,其主要依據比爾-朗伯定律(Beer-Lambert law)進行計算。它的原理係利用氣體對紅外線特殊波長的吸收特性以及氣體濃度與吸收量成正比的特性,來偵測特定氣體濃度。例如一氧化碳對4.7微米(μm)波長、二氧化碳對4.3微米(μm)波長的紅外線的吸收性最強。 First of all, the carbon dioxide detection devices or carbon dioxide analyzers currently on the market almost all use the non-dispersive infrared (NDIR) absorption method to detect the gas concentration, which is mainly based on the Beer-Lambert law. Beer-Lambert law) for calculations. Its principle is to use a gas to absorb the specific wavelength of infrared rays and the concentration of gas is proportional to the amount of absorption to detect a specific gas concentration. For example, carbon monoxide has the strongest absorption of 4.7 micrometer (μm) wavelength and carbon dioxide to infrared light having a wavelength of 4.3 micrometers (μm).

然而,目前市面上的氣體濃度測量裝置的測量精度,仍然受限於氣體採樣室的結構設計,僅能夠測量特定濃度範圍的氣體。以非分散式紅外線吸收法來偵測氣體濃度而言,氣體對紅外線的吸收強度將與長度及濃度成正比。但是現有氣體濃度測量裝置的氣體採樣室的長度僅為單一且固定的長度,在採樣室長度過長且所欲測量的氣體濃度較高的情況下,將會因為高濃度的氣體過度的吸收發光單元所產生的紅外線能量,而導致光感測單元接收不到訊號而無法測量高濃度的氣體。另外,在採樣室長度過短且所欲測量的氣體濃度較低的情況下,將會因為低濃度的氣體對紅外 線的吸收量極少,且發光單元所產生的紅外線能量投射至光感測單元的距離短,而導致紅外線能量幾乎沒有被吸收就投射到光感測單元上。再者,當光感測單元接收到的紅外線能量過低時,也容易因為雜訊的干擾,而造成測量精度不準確知問題產生。 However, the measurement accuracy of the gas concentration measuring device currently on the market is still limited by the structural design of the gas sampling chamber, and it is only possible to measure the gas in a specific concentration range. In terms of non-dispersive infrared absorption method to detect gas concentration, the absorption intensity of gas by infrared rays will be proportional to the length and concentration. However, the length of the gas sampling chamber of the existing gas concentration measuring device is only a single and fixed length. In the case where the sampling chamber length is too long and the gas concentration to be measured is high, the high concentration gas will be excessively absorbed and emitted. The infrared energy generated by the unit causes the light sensing unit to receive no signal and cannot measure a high concentration of gas. In addition, in the case where the length of the sampling chamber is too short and the gas concentration to be measured is low, it will be due to the low concentration of gas to the infrared. The absorption of the line is extremely small, and the distance from the infrared energy generated by the light-emitting unit to the light-sensing unit is short, and the infrared energy is projected onto the light-sensing unit with little absorption. Moreover, when the infrared energy received by the light sensing unit is too low, it is easy to cause an inaccurate measurement accuracy due to noise interference.

進一步來說,目前市面上氣體濃度測量裝置僅能夠測量一種氣體,無法同時針對多種氣體進行測量。 Further, the gas concentration measuring device currently available on the market can only measure one gas and cannot measure at the same time for a plurality of gases.

藉此,如何提供一種能夠測量多種不同氣體,或者是測量高低濃度差值大的氣體的環境,以克服上述的缺失,已然成為該項技術所欲解決的重要課題。 Therefore, how to provide an environment capable of measuring a plurality of different gases or measuring a gas having a large difference between high and low concentrations to overcome the above-mentioned defects has become an important subject to be solved by the technology.

本發明所要解決的技術問題在於,針對現有技術的不足提供一種氣體測量裝置及氣體濃度測量方法。本發明所提供的氣體測量裝置及氣體濃度測量方法,能夠利用一個發光模組對應於多個光感測單元而同時測量多種不同氣體,或是適用於測量氣體高低濃度差值大的環境。 The technical problem to be solved by the present invention is to provide a gas measuring device and a gas concentration measuring method for the deficiencies of the prior art. The gas measuring device and the gas concentration measuring method provided by the invention can simultaneously measure a plurality of different gases by using one light emitting module corresponding to a plurality of light sensing units, or can be suitable for measuring an environment with a large difference between high and low gas concentrations.

本發明所採用的其中一種技術方案是提供一種氣體測量裝置,其包括一腔體模組、一發光模組、一光感測模組以及一分光模組。所述腔體模組包括一導光腔體、一連接於所述導光腔體的第一採樣腔體以及一連接於所述導光腔體的第二採樣腔體。所述發光模組設置於所述導光腔體中,所述發光模組用以產生一投射光束。所述光感測模組包括一設置於所述第一採樣腔體的第一光感測單元以及一設置於所述第二採樣腔體的第二光感測單元。所述分光模組設置於所述腔體模組內。其中,所述發光模組產生的所述投射光束通過所述分光模組的分光,以形成一投向所述第一光感測單元的第一分光光束以及一投向所述第二光感測單元的第二分光光束。 One of the technical solutions adopted by the present invention is to provide a gas measuring device, which comprises a cavity module, a light emitting module, a light sensing module and a beam splitting module. The cavity module includes a light guiding cavity, a first sampling cavity connected to the light guiding cavity, and a second sampling cavity connected to the light guiding cavity. The light emitting module is disposed in the light guiding cavity, and the light emitting module is configured to generate a projected light beam. The light sensing module includes a first light sensing unit disposed in the first sampling cavity and a second light sensing unit disposed in the second sampling cavity. The beam splitting module is disposed in the cavity module. The projection light beam generated by the light emitting module is split by the light splitting module to form a first split light beam directed to the first light sensing unit and a second light sensing unit The second beam of light.

本發明所採用的另外一種技術方案是提供一種氣體濃度測量方法,所述氣體濃度測量方法包括:提供一發光模組,所述發光 模組產生一通過一第一採樣腔體以投射至一第一光感測單元上的第一分光光束,且所述發光模組產生一通過一第二採樣腔體以投射至一第二光感測單元上的第二分光光束,其中所述第一採樣腔體的尺寸大於所述第二採樣腔體的尺寸,所述第一採樣腔體中具有一第一氣體,所述第二採樣腔體中具有一第二氣體;計算所述第一光感測單元所接收到的一第一分光光束能量相對於一第一曲線方程式的一第一切線斜率,以及計算所述第二光感測單元所接收到的一第二分光光束能量相對於一第二曲線方程式的一第二切線斜率;以及判斷所述第一切線斜率的絕對值是否大於所述第二切線斜率的絕對值;其中,當所述第一切線斜率的絕對值是大於所述第二切線斜率的絕對值或者是所述第一切線斜率的絕對值等於所述第二切線斜率的絕對值時,輸出所述第一氣體的濃度;其中,當所述第一切線斜率的絕對值小於所述第二切線斜率的絕對值時,輸出所述第二氣體的濃度。 Another technical solution adopted by the present invention is to provide a gas concentration measuring method, the gas concentration measuring method comprising: providing a light emitting module, the light emitting The module generates a first split beam that is projected through a first sampling cavity onto a first photo sensing unit, and the illumination module generates a second sampling cavity to project to a second light. a second beam splitting beam on the sensing unit, wherein a size of the first sampling cavity is larger than a size of the second sampling cavity, the first sampling cavity has a first gas, and the second sampling Having a second gas in the cavity; calculating a first tangential slope of the first beam splitting beam energy received by the first light sensing unit relative to a first curve equation, and calculating the second light a second tangential slope of the second split beam energy received by the sensing unit relative to a second curve equation; and determining whether an absolute value of the first tangential slope is greater than an absolute value of the second tangential slope Wherein, when an absolute value of the first tangent slope is greater than an absolute value of the second tangent slope or an absolute value of the first tangent slope is equal to an absolute value of the second tangent slope, an output Concentration of the first gas ; Wherein, when the absolute value of the slope is less than the first tangent line tangent slope of the second absolute value, the output of the second gas concentration.

本發明所採用的再一種技術方案是提供一種氣體濃度測量方法,所述氣體濃度測量方法包括:提供一發光模組,所述發光模組產生一通過一第一採樣腔體以投射至一第一光感測單元上的第一分光光束,且所述發光模組產生一通過一第二採樣腔體以投射至一第二光感測單元上的第二分光光束,其中所述第一採樣腔體的尺寸大於所述第二採樣腔體的尺寸;依據所述第一光感測單元所接收到的一第一分光光束能量計算所述第一採樣腔體內的一第一氣體的濃度,以及依據所述第二光感測單元所接收到的一第二分光光束能量計算所述第二採樣腔體內的一第二氣體的濃度;以及判斷所述第一氣體的濃度及所述第二氣體的濃度是否大於一預設閥值;其中,當所述第一氣體的濃度及所述第二氣體的濃度是大於所述預設閥值時,輸出所述第二氣體的濃度;其中,當所述第一氣體的濃度及所述第二氣體的濃度小於所述預設閥值或者是等於所述預設閥值時,輸出所述第一氣體的濃度。 Another technical solution adopted by the present invention is to provide a gas concentration measuring method, the gas concentration measuring method comprising: providing a light emitting module, wherein the light emitting module generates a first sampling cavity to project to a first a first beam splitting light on a light sensing unit, and the light emitting module generates a second splitting light beam that is projected through a second sampling cavity onto a second light sensing unit, wherein the first sampling The size of the cavity is larger than the size of the second sampling cavity; and the concentration of a first gas in the first sampling cavity is calculated according to a first beam splitting energy received by the first photo sensing unit, And calculating a concentration of a second gas in the second sampling cavity according to a second beam splitting energy received by the second photo sensing unit; and determining a concentration of the first gas and the second Whether the concentration of the gas is greater than a predetermined threshold; wherein, when the concentration of the first gas and the concentration of the second gas are greater than the predetermined threshold, the concentration of the second gas is output; wherein Dang Concentration of the first gas and the second gas concentration less than the preset threshold value or is equal to the preset threshold, the output of the first gas concentration.

本發明的有益效果在於,本發明實施例所提供的氣體測量裝置及氣體濃度測量方法,利用“分光模組”的技術特徵,而使得發光模組產生的投射光束能通過分光模組的分光,而形成一投向第一光感測單元的第一分光光束以及一投向第二光感測單元的第二分光光束。同時,第一光感測單元能用於測量第一氣體的性質,第二感測單元能夠用於測量第二氣體的性質,再者,通過第一光感測單元及第二光感測單元配合投射光束所產生的第一分光光束及第二分光光束,能夠適用於測量氣體高低濃度差值大的環境。換句話說,發光模組產生的投射光束會形成至少兩個以上的分光光束以分別對應到至少兩個以上的光感測單元。 The utility model has the beneficial effects that the gas measuring device and the gas concentration measuring method provided by the embodiments of the invention utilize the technical features of the “splitting module”, so that the projection beam generated by the light emitting module can be split by the beam splitting module. And forming a first split beam directed to the first photo sensing unit and a second split beam directed to the second photo sensing unit. Meanwhile, the first light sensing unit can be used to measure the properties of the first gas, the second sensing unit can be used to measure the properties of the second gas, and further, through the first light sensing unit and the second light sensing unit The first split beam and the second split beam generated by the projection beam can be applied to an environment where the difference between the high and low concentrations of the gas is measured. In other words, the projected beam generated by the light emitting module forms at least two or more splitting beams to respectively correspond to at least two of the light sensing units.

為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與附圖,然而所提供的附圖僅提供參考與說明用,並非用來對本發明加以限制。 For a better understanding of the features and technical aspects of the present invention, reference should be made to the accompanying drawings.

Q,Q’‧‧‧氣體測量裝置 Q, Q’‧‧‧ gas measuring device

1,1’‧‧‧腔體模組 1,1'‧‧‧ cavity module

11‧‧‧導光腔體 11‧‧‧Lighting cavity

111‧‧‧導光空間 111‧‧‧Light guiding space

112‧‧‧反射面 112‧‧‧reflecting surface

12‧‧‧第一採樣腔體 12‧‧‧First sampling chamber

121‧‧‧第一採樣空間 121‧‧‧First sampling space

122‧‧‧第一容置空間 122‧‧‧First accommodation space

123‧‧‧第一氣體擴散槽 123‧‧‧First gas diffusion tank

13‧‧‧第二採樣腔體 13‧‧‧Second sampling chamber

131‧‧‧第二採樣空間 131‧‧‧Second sampling space

132‧‧‧第二容置空間 132‧‧‧Second accommodation space

133‧‧‧第二氣體擴散槽 133‧‧‧Second gas diffusion tank

14‧‧‧第三採樣腔體 14‧‧‧ third sampling chamber

141‧‧‧第三採樣空間 141‧‧‧ third sampling space

142‧‧‧第三容置空間 142‧‧‧ third accommodating space

143‧‧‧第三氣體擴散槽 143‧‧‧ Third gas diffusion tank

15‧‧‧第四採樣腔體 15‧‧‧four sampling chamber

151‧‧‧第四採樣空間 151‧‧‧fourth sampling space

152‧‧‧第四容置空間 152‧‧‧ fourth accommodating space

153‧‧‧第四氣體擴散槽 153‧‧‧fourth gas diffusion tank

2‧‧‧發光模組 2‧‧‧Lighting module

21‧‧‧發光單元 21‧‧‧Lighting unit

22‧‧‧連接線 22‧‧‧Connecting line

3‧‧‧光感測模組 3‧‧‧Light sensing module

31‧‧‧第一光感測單元 31‧‧‧First light sensing unit

32‧‧‧第二光感測單元 32‧‧‧Second light sensing unit

33‧‧‧第三光感測單元 33‧‧‧ Third Light Sensing Unit

34‧‧‧第四光感測單元 34‧‧‧Fourth light sensing unit

35‧‧‧連接線 35‧‧‧Connecting line

4‧‧‧分光模組 4‧‧‧Distribution Module

41‧‧‧第一分光面 41‧‧‧The first specular surface

42‧‧‧第二分光面 42‧‧‧Second specular surface

43‧‧‧第三分光面 43‧‧‧The third specular surface

44‧‧‧第四分光面 44‧‧‧ fourth specular surface

5‧‧‧基板模組 5‧‧‧Substrate module

51‧‧‧運算單元 51‧‧‧ arithmetic unit

52‧‧‧顯示單元 52‧‧‧Display unit

T‧‧‧投射光束 T‧‧‧projection beam

T1‧‧‧第一分光光束 T1‧‧‧first split beam

T11‧‧‧第一投射光束 T11‧‧‧first projection beam

T12‧‧‧第一反射光束 T12‧‧‧First reflected beam

T13‧‧‧第一入射光束 T13‧‧‧first incident beam

T2‧‧‧第二分光光束 T2‧‧‧Second split beam

T21‧‧‧第二投射光束 T21‧‧‧second projection beam

T22‧‧‧第二反射光束 T22‧‧‧second reflected beam

T23‧‧‧第二入射光束 T23‧‧‧second incident beam

F‧‧‧焦點 F‧‧‧ focus

P‧‧‧光軸 P‧‧‧ optical axis

I‧‧‧中心軸線 I‧‧‧ center axis

L1‧‧‧第一預設長度 L1‧‧‧First preset length

L2‧‧‧第二預設長度 L2‧‧‧Second preset length

X,Y,Z‧‧‧方向 X, Y, Z‧‧ Direction

S102~S110、S202~S210‧‧‧步驟 S102~S110, S202~S210‧‧‧ steps

x1,x2,x3,x4‧‧‧濃度值 X1, x2, x3, x4‧‧‧ concentration values

x5‧‧‧預設閥值 X5‧‧‧Preset threshold

圖1為本發明第一實施例氣體測量裝置的其中一立體組合示意圖。 1 is a schematic perspective view of one of the gas measuring devices of the first embodiment of the present invention.

圖2為本發明第一實施例氣體測量裝置的其中一立體分解示意圖。 2 is a perspective exploded view of the gas measuring device of the first embodiment of the present invention.

圖3為本發明第一實施例氣體測量裝置的模組方塊示意圖。 3 is a block diagram of a module of a gas measuring device according to a first embodiment of the present invention.

圖4為圖1的Ⅳ-Ⅳ剖線的剖視示意圖。 Figure 4 is a cross-sectional view taken along line IV-IV of Figure 1.

圖5為本發明第一實施例氣體測量裝置的其中一光束投射示意圖。 Fig. 5 is a schematic view showing a light beam projection of the gas measuring device according to the first embodiment of the present invention.

圖6為本發明第一實施例氣體測量裝置的另外一光束投射示意圖。 Fig. 6 is a schematic view showing another beam projection of the gas measuring device of the first embodiment of the present invention.

圖7為圖1的Ⅶ-Ⅶ剖線的剖視示意圖。 Fig. 7 is a schematic cross-sectional view taken along line VII-VII of Fig. 1;

圖8為本發明第一實施例氣體測量裝置的另外一種實施方式的側視剖面示意圖。 Figure 8 is a side cross-sectional view showing another embodiment of the gas measuring device of the first embodiment of the present invention.

圖9為本發明第二實施例氣體測量裝置的立體組合示意圖。 Figure 9 is a perspective assembled view of a gas measuring device according to a second embodiment of the present invention.

圖10為圖9的X-X剖線的剖視示意圖。 Fig. 10 is a cross-sectional view taken along line X-X of Fig. 9.

圖11為本發明第三實施例氣體濃度測量方法的其中一流程示意圖。 Figure 11 is a flow chart showing one of the gas concentration measuring methods of the third embodiment of the present invention.

圖12為本發明第三實施例的其中一曲線方程式示意圖。 Figure 12 is a schematic diagram of one of the curve equations of the third embodiment of the present invention.

圖13為本發明第三實施例的另外一曲線方程式示意圖。 Figure 13 is a schematic diagram of another curve equation according to a third embodiment of the present invention.

圖14為本發明第三實施例氣體濃度測量方法的另外一流程示意圖。 Figure 14 is a flow chart showing another flow of the gas concentration measuring method according to the third embodiment of the present invention.

圖15為本發明第四實施例氣體濃度測量方法的流程示意圖。 Figure 15 is a flow chart showing a gas concentration measuring method according to a fourth embodiment of the present invention.

以下是通過特定的具體實例來說明本發明所公開有關“氣體測量裝置及氣體濃度測量方法”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本發明的精神下進行各種修飾與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,予以聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的技術範圍。 The following is a description of an embodiment of the present invention relating to a "gas measuring device and a gas concentration measuring method" by a specific specific example, and those skilled in the art can understand the advantages and effects of the present invention from the contents disclosed in the present specification. The present invention may be carried out or applied in various other specific embodiments, and various modifications and changes can be made without departing from the spirit and scope of the invention. In addition, the drawings of the present invention are merely illustrative and are not intended to be construed in terms of actual dimensions. The following embodiments will further explain the related technical content of the present invention, but the disclosure is not intended to limit the technical scope of the present invention.

第一實施例 First embodiment

首先,請參閱圖1至圖4所示,本發明第一實施例提供一種氣體測量裝置Q,以用於測量一氣體的濃度,其包括一腔體模組1、一發光模組2、一光感測模組3、一分光模組4、以及一基板模組5。發光模組2及光感測模組3可電性連接於基板模組5上,此外,基板模組5中包括了用於顯示氣體的濃度值的顯示單元52及用於計算氣體濃度的運算單元51。進一步來說,運算單元51電性連接於顯示單元52、發光模組2及光感測模組3。另外,舉例來說,發光模組2可為產生紅外線光源的紅外線發光器,光感測模組3 為紅外線光感測器,例如可為單通道紅外線光感測器,或者是雙通道紅外線光感測器(其中一個紅外線收集窗口可用來偵測氣體濃度,另外一個紅外線收集窗口可用來偵測紅外線光源是否老化的問題,且兼具有相互校正的功能),然本發明不以此為限。 First, referring to FIG. 1 to FIG. 4, a first embodiment of the present invention provides a gas measuring device Q for measuring a concentration of a gas, which includes a cavity module 1, a light emitting module 2, and a The light sensing module 3, a light splitting module 4, and a substrate module 5. The light-emitting module 2 and the light-sensing module 3 are electrically connected to the substrate module 5, and the substrate module 5 includes a display unit 52 for displaying the concentration value of the gas and an operation for calculating the gas concentration. Unit 51. Further, the computing unit 51 is electrically connected to the display unit 52, the light emitting module 2, and the light sensing module 3. In addition, for example, the light-emitting module 2 can be an infrared illuminator that generates an infrared light source, and the light sensing module 3 It is an infrared light sensor, for example, a single-channel infrared light sensor or a two-channel infrared light sensor (one infrared collection window can be used to detect gas concentration, and another infrared collection window can be used to detect infrared light). Whether the light source is aging or not, and the function of mutual correction is also included, but the invention is not limited thereto.

藉此,本發明實施例所提供的氣體測量裝置Q可以測量待檢測氣體的濃度或者是其他性質,附帶一提,待檢測氣體可以是二氧化碳、一氧化碳或二氧化碳及一氧化碳的組合,本發明不以待檢測氣體為限制。換句話說,可通過不同的發光模組2及光感測模組3而測量不同的待檢測氣體。舉例來說,以測量不同的氣體濃度而言,可利用改變光感測模組3上的波長濾波器(濾波片)而測量不同的待檢測氣體。 Therefore, the gas measuring device Q provided by the embodiment of the present invention can measure the concentration of the gas to be detected or other properties. Incidentally, the gas to be detected may be a combination of carbon dioxide, carbon monoxide or carbon dioxide and carbon monoxide, and the present invention does not wait for The detection gas is a limitation. In other words, different gases to be detected can be measured by different light-emitting modules 2 and light-sensing modules 3. For example, in order to measure different gas concentrations, different wavelengths of the gas to be detected can be measured by changing the wavelength filter (filter) on the light sensing module 3.

接著,請參閱圖2至圖4所示,腔體模組1包括一導光腔體11、一連接於導光腔體11的第一採樣腔體12以及一連接於導光腔體11的第二採樣腔體13,即,導光腔體11設置於第一採樣腔體12及第二採樣腔體13之間,然本發明不以此為限。值得說明的是,為了能夠測量相同氣體的高低濃度差值大的環境,第一採樣腔體12的尺寸以及第二採樣腔體13的尺寸兩者相互不同,以本發明實施例而言,第一採樣腔體12的尺寸大於第二採樣腔體13的尺寸,即,第一採樣腔體12的長度大於第二採樣腔體13的長度,然本發明不以此為限。須說明的是,在其他實施態樣中,可不限制第一採樣腔體12的尺寸是否與第二採樣腔體13的尺寸相同或相異,只要使得第一光感測單元31及第二光感測單元32分別為適用於測量兩者不同的一第一氣體及一第二氣體即可。換句話說,第一光感測單元31可適用於測量一第一氣體的性質,第二光感測單元32可適用於測量一第二氣體的性質,且第一氣體與第二氣體兩者相互不同。藉此,可利用一個發光模組2對應至兩個以上的光感測單元以測量會造成相同氣體高低濃度差值大的環境,或者是同時測量不同氣體的性質。 As shown in FIG. 2 to FIG. 4 , the cavity module 1 includes a light guiding cavity 11 , a first sampling cavity 12 connected to the light guiding cavity 11 , and a first connecting cavity 11 connected to the light guiding cavity 11 . The second sampling chamber 13 , that is, the light guiding cavity 11 is disposed between the first sampling cavity 12 and the second sampling cavity 13 , but the invention is not limited thereto. It is to be noted that, in order to be able to measure an environment in which the difference between the high and low concentrations of the same gas is large, the size of the first sampling chamber 12 and the size of the second sampling chamber 13 are different from each other, in the embodiment of the present invention, The size of the sampling chamber 12 is greater than the size of the second sampling chamber 13 , that is, the length of the first sampling chamber 12 is greater than the length of the second sampling chamber 13 , but the invention is not limited thereto. It should be noted that, in other implementation manners, the size of the first sampling cavity 12 may not be limited to be the same as or different from the size of the second sampling cavity 13 as long as the first light sensing unit 31 and the second light are caused. The sensing unit 32 is respectively adapted to measure a first gas and a second gas that are different from each other. In other words, the first light sensing unit 31 can be adapted to measure the properties of a first gas, and the second light sensing unit 32 can be adapted to measure the properties of a second gas, and both the first gas and the second gas Different from each other. Thereby, one light-emitting module 2 can be used to correspond to two or more light sensing units to measure an environment that causes a difference in the height difference between the same gas, or simultaneously measure the properties of different gases.

舉例來說,以本發明實施例而言,第一採樣腔體12的長度方向(X方向)與導光腔體11的長度方向(Y方向)大致呈相互垂直設置,第二採樣腔體13的長度方向(X方向)與導光腔體11的長度方向(Y方向)大致呈相互垂直設置,然本發明不以此為限。換句話說,在其他實施方式中,第一採樣腔體12的長度方向及第二採樣腔體13的長度方向也可以是呈沿著Z方向的設置(例如第二實施例中所提供的第三採樣腔體14的長度方向及第四採樣腔體15的長度方向都是沿著Z方向設置)。再者,值得說明的是,在另外的實施方式中,第一採樣腔體12的長度方向及第二採樣腔體13的長度方向也可以與導光腔體11的長度方向大致呈平行設置(圖中未示出),即,導光腔體11的長度方向、第一採樣腔體12的長度方向及第二採樣腔體13的長度方向都沿著Y方向設置。 For example, in the embodiment of the present invention, the longitudinal direction (X direction) of the first sampling cavity 12 and the longitudinal direction (Y direction) of the light guiding cavity 11 are substantially perpendicular to each other, and the second sampling cavity 13 is provided. The longitudinal direction (X direction) and the longitudinal direction (Y direction) of the light guiding cavity 11 are substantially perpendicular to each other, but the invention is not limited thereto. In other words, in other embodiments, the length direction of the first sampling cavity 12 and the length direction of the second sampling cavity 13 may also be in the Z direction (for example, the second embodiment provides Both the longitudinal direction of the three sampling chambers 14 and the longitudinal direction of the fourth sampling chamber 15 are disposed along the Z direction. In addition, it should be noted that in another embodiment, the longitudinal direction of the first sampling cavity 12 and the longitudinal direction of the second sampling cavity 13 may also be substantially parallel to the longitudinal direction of the light guiding cavity 11 ( Not shown in the drawing, that is, the longitudinal direction of the light guiding cavity 11, the longitudinal direction of the first sampling cavity 12, and the longitudinal direction of the second sampling cavity 13 are all disposed along the Y direction.

接著,如圖4所示,導光腔體11具有一導光空間111及一反射面112,第一採樣腔體12具有一第一採樣空間121以及一第一容置空間122,第二採樣腔體13具有一第二採樣空間131以及一第二容置空間132,導光空間111、第一採樣空間121以及第二採樣空間131相互連通。此外,發光模組2可設置於導光腔體11中,發光模組2可包括一發光單元21及一電性連接於基板模組5的連接線22(圖中未示出連接線22與基板模組5相連),以提供電能使發光單元21產生一投射光束T(請參閱圖5及圖6所示),例如紅外線光線。另外,光感測模組3包括一第一光感測單元31以及一第二光感測單元32,第一光感測單元31可設置於第一容置空間122中,第二光感測單元32可設置於第二容置空間132中,以接收發光單元21所產生的投射光束T。光感測模組3的連接線35(第一光感測單元31的連接線35及第二光感測單元32的連接線35)可與基板模組5電性連接(圖中未示出連接線35與基板模組5相連)。須說明的是,本發明不以導光空間111、第一採樣空間121以及第二採樣空間131是否相互連通為限。 Next, as shown in FIG. 4, the light guiding cavity 11 has a light guiding space 111 and a reflecting surface 112. The first sampling cavity 12 has a first sampling space 121 and a first receiving space 122, and the second sampling. The cavity 13 has a second sampling space 131 and a second accommodating space 132. The light guiding space 111, the first sampling space 121 and the second sampling space 131 communicate with each other. In addition, the light-emitting module 2 can be disposed in the light-guiding cavity 11 , and the light-emitting module 2 can include a light-emitting unit 21 and a connecting line 22 electrically connected to the substrate module 5 (the connecting line 22 is not shown) The substrate module 5 is connected to provide electrical energy to cause the illumination unit 21 to generate a projection beam T (see FIGS. 5 and 6), such as infrared light. In addition, the light sensing module 3 includes a first light sensing unit 31 and a second light sensing unit 32. The first light sensing unit 31 can be disposed in the first receiving space 122, and the second light sensing unit The unit 32 can be disposed in the second accommodating space 132 to receive the projected light beam T generated by the light emitting unit 21. The connection line 35 of the light sensing module 3 (the connection line 35 of the first light sensing unit 31 and the connection line 35 of the second light sensing unit 32) can be electrically connected to the substrate module 5 (not shown in the figure) The connection line 35 is connected to the substrate module 5). It should be noted that the present invention is not limited to whether the light guiding space 111, the first sampling space 121, and the second sampling space 131 are connected to each other.

承上述,第一採樣腔體12的第一採樣空間121及第二採樣腔體13的第二採樣空間131可為一矩形形狀,例如長方形,然本發明不以此為限。第一採樣腔體12及第二採樣腔體13內部的各個表面,可設有一反射層(圖中未示出),反射層可通過金屬電鍍方式或塑膠電鍍方式而形成。反射層可以由含金金屬、鎳金屬或者金金屬及鎳金屬的混合物所組成。藉此,矩形形狀的第一採樣腔體12及第二採樣腔體13就如同一矩形光學積分器,藉此,使得發光模組2所產生的投射光束T通過反射層而在第一採樣空間121及第二採樣空間131中來回反射,使得發光模組2所產生的投射光束T進行光源強度的相互疊加,使得疊加起來的光線能夠均勻分佈。值得一提的是,導光腔體11的反射面上也可設置有一反射層,以提高反射效率,並提高發光模組2投射至分光模組4上的光線量。 The first sampling space 121 of the first sampling chamber 12 and the second sampling space 131 of the second sampling chamber 13 may have a rectangular shape, such as a rectangular shape, but the invention is not limited thereto. Each surface inside the first sampling cavity 12 and the second sampling cavity 13 may be provided with a reflective layer (not shown), and the reflective layer may be formed by metal plating or plastic plating. The reflective layer may be composed of a gold-containing metal, a nickel metal, or a mixture of a gold metal and a nickel metal. Thereby, the first sampling cavity 12 and the second sampling cavity 13 of a rectangular shape are like the same rectangular optical integrator, whereby the projection beam T generated by the illumination module 2 passes through the reflective layer in the first sampling space. 121 and the second sampling space 131 are reflected back and forth, so that the projection light beams T generated by the light-emitting module 2 are superimposed on each other, so that the superimposed light can be evenly distributed. It is worth mentioning that a reflective layer can also be disposed on the reflective surface of the light guiding cavity 11 to improve the reflection efficiency and increase the amount of light that the light emitting module 2 projects onto the beam splitting module 4.

接著,請同時參閱圖4至圖6所示,分光模組4可設置於第一採樣腔體12及第二採樣腔體13之間,發光模組2產生的投射光束T通過分光模組4的分光,以形成一投向第一光感測單元31的第一分光光束T1以及一投向第二光感測單元32的第二分光光束T2。舉例來說,分光模組4包括一第一分光面41以及一第二分光面42。藉此,通過第一分光面41以及一第二分光面42,可以將發光單元21所產生的投射光束T形成投射至第一光感測單元31上的第一分光光束T1,以及投射至第二光感測單元32上的第二分光光束T2。須說明的是,分光模組4不以附圖所示的菱鏡為限制,在其他實施方式中,分光模組4也可以是利用多個分光鏡將發光單元21所產生的投射光束T,形成第一分光光束T1及第二分光光束。 Then, as shown in FIG. 4 to FIG. 6 , the beam splitting module 4 can be disposed between the first sampling cavity 12 and the second sampling cavity 13 , and the projection beam T generated by the light emitting module 2 passes through the beam splitting module 4 . The light is split to form a first split light beam T1 directed to the first light sensing unit 31 and a second split light beam T2 directed to the second light sensing unit 32. For example, the beam splitting module 4 includes a first beam splitting surface 41 and a second beam splitting surface 42. Thereby, the projected light beam T generated by the light emitting unit 21 can be formed by the first light splitting surface 41 and the second light splitting surface 42 to be projected onto the first light splitting beam T1 on the first light sensing unit 31, and projected to the first The second beam splitting beam T2 on the second light sensing unit 32. It should be noted that the beam splitting module 4 is not limited to the prism shown in the drawing. In other embodiments, the beam splitting module 4 may also be a projection beam T generated by the light emitting unit 21 by using a plurality of beam splitters. A first beam splitting beam T1 and a second beam splitting beam are formed.

如圖5所示,優選地,導光腔體11的反射面112為一拋物面,拋物面具有一焦點F,發光單元21對應於焦點F設置,即,發光單元21可設置在焦點F上與焦點F重合。藉此,通過拋物面的設 置,發光單元21所投射在導光腔體11上的一第一投射光束T11以及一第二投射光束T21,可以均勻的被拋物面所反射至分光模組4上。另外,為提升拋物面的反射效率,拋物面上可設置有前面所述的反射層。 As shown in FIG. 5, preferably, the reflecting surface 112 of the light guiding cavity 11 is a paraboloid, the parabolic mask has a focus F, and the light emitting unit 21 is disposed corresponding to the focus F, that is, the light emitting unit 21 can be disposed on the focus F and the focus. F coincides. By means of parabolic design A first projection beam T11 and a second projection beam T21 projected by the illumination unit 21 on the light guiding cavity 11 can be uniformly reflected by the paraboloid onto the beam splitting module 4. In addition, in order to improve the reflection efficiency of the paraboloid, the parabolic surface may be provided with the reflection layer described above.

承上述,具體來說,投射光束T包括投射於導光腔體11的一第一投射光束T11以及一第二投射光束T21,第一投射光束T11可通過導光腔體11的拋物面的反射,以形成一投射至分光模組4的第一分光面41的第一反射光束T12,第一反射光束T12通過第一分光面41的反射,以形成一投射至第一光感測單元31上的第一分光光束T1。另外,第二投射光束T21通過導光腔體11的反射,以形成一投射至分光模組4的第二分光面42的第二反射光束T22,第二反射光束T22通過第二分光面42的反射,以形成一投射至第二光感測單元32上的第二分光光束T2。 In the above, specifically, the projection beam T includes a first projection beam T11 and a second projection beam T21 projected onto the light guiding cavity 11, and the first projection beam T11 can be reflected by the paraboloid of the light guiding cavity 11. To form a first reflected light beam T12 that is projected onto the first light splitting surface 41 of the beam splitting module 4, the first reflected light beam T12 is reflected by the first light splitting surface 41 to form a projection onto the first light sensing unit 31. The first beam splitting beam T1. In addition, the second projection beam T21 is reflected by the light guiding cavity 11 to form a second reflected light beam T22 projected to the second beam splitting surface 42 of the beam splitting module 4, and the second reflected beam T22 passes through the second beam splitting surface 42. Reflecting to form a second beam splitting beam T2 projected onto the second photo sensing unit 32.

另外,如圖6所示,發光單元21所產生的投射光束T還進一步包括直接投射於分光模組4的第一分光面41的一第一入射光束T13,以及直接投射於分光模組4的第二分光面42的一第二入射光束T23。第一入射光束T13通過第一分光面41的反射,以形成一投射至第一光感測單元31上的第一分光光束T1,第二入射光束T23通過第二分光面42的反射,以形成一投射至第二光感測單元32上的第二分光光束T2。 In addition, as shown in FIG. 6 , the projection light beam T generated by the light-emitting unit 21 further includes a first incident light beam T13 directly projected on the first light-splitting surface 41 of the beam splitting module 4 , and directly projected on the beam splitting module 4 . A second incident beam T23 of the second beam splitting surface 42. The first incident light beam T13 is reflected by the first light splitting surface 41 to form a first split light beam T1 projected onto the first light sensing unit 31, and the second incident light beam T23 is reflected by the second light splitting surface 42 to form A second beam splitting beam T2 projected onto the second photo sensing unit 32.

換句話說,發光單元21所產生的投射光束T包括投射至第一光感測單元31上的第一分光光束T1及投射至第二光感測單元32上的第二分光光束T2。投射至第一光感測單元31上的第一分光光束T1可以由第一投射光束T11、第一反射光束T12及第一入射光束T13所形成。投射至第二光感測單元32上的第二分光光束T2可以由第二投射光束T21、第二反射光束T22及第二入射光束T23所形成。須說明的是,在導光腔體11沒有設置反射面112的情況下,投射至第一光感測單元31上的第一分光光束T1可以直 接由第一入射光束T13所形成,而投射至第二光感測單元32上的第二分光光束T2可以直接由第二入射光束T23所形成。 In other words, the projected light beam T generated by the light emitting unit 21 includes a first split light beam T1 projected onto the first light sensing unit 31 and a second split light beam T2 projected onto the second light sensing unit 32. The first split light beam T1 projected onto the first light sensing unit 31 may be formed by the first projected light beam T11, the first reflected light beam T12, and the first incident light beam T13. The second split light beam T2 projected onto the second light sensing unit 32 may be formed by the second projected light beam T21, the second reflected light beam T22, and the second incident light beam T23. It should be noted that, in the case where the light guiding cavity 11 is not provided with the reflecting surface 112, the first beam splitting light beam T1 projected onto the first light sensing unit 31 may be straight. The first incident light beam T13 is formed by the first incident light beam T13, and the second split light beam T2 projected onto the second light sensing unit 32 can be directly formed by the second incident light beam T23.

另外,第一採樣腔體12上還進一步設置有第一氣體擴散槽123,第二採樣腔體13還進一步設置有第二氣體擴散槽133。另外,第一氣體擴散槽123及第二氣體擴散槽133可為長方形的形狀,以圖5至圖7來說,第一氣體擴散槽123及第二氣體擴散槽133的剖面形狀可呈一V字形的形狀,使得待檢測氣體通過白努利效應(Bernoulli's principle),讓氣體流經V字形的形狀的第一氣體擴散槽123及第二氣體擴散槽133時,因著V字形形狀的口徑大小改變,而讓氣體流速變快,以使氣體擴散更為快速而讓測量時間縮短。值得一提的是,可進一步在第一氣體擴散槽123及第二氣體擴散槽133上設置一氣體過濾膜(圖中未示出),舉例來說,氣體過濾膜可為一防水透氣膜,可避免待檢測氣體的懸浮微粒進入第一採樣空間121及第二採樣空間131當中,而造成內部污染或影響測量精度。 In addition, the first sampling cavity 12 is further provided with a first gas diffusion groove 123, and the second sampling cavity 13 is further provided with a second gas diffusion groove 133. In addition, the first gas diffusion groove 123 and the second gas diffusion groove 133 may have a rectangular shape. The cross-sectional shape of the first gas diffusion groove 123 and the second gas diffusion groove 133 may be a V as shown in FIGS. 5 to 7 . The shape of the glyph causes the gas to be detected to pass through the Bernoulli's principle, and allows the gas to flow through the V-shaped first gas diffusion groove 123 and the second gas diffusion groove 133, due to the size of the V-shaped shape. Change, and let the gas flow rate get faster, so that the gas spreads faster and the measurement time is shortened. It is worth mentioning that a gas filtering membrane (not shown) may be further disposed on the first gas diffusion tank 123 and the second gas diffusion tank 133. For example, the gas filtration membrane may be a waterproof gas permeable membrane. The suspended particles of the gas to be detected can be prevented from entering the first sampling space 121 and the second sampling space 131, causing internal pollution or affecting measurement accuracy.

值得說明的是,以本發明實施例而言,為了能夠測量氣體高低濃度差值大的環境,第一採樣腔體12具有一第一預設長度L1,第二採樣腔體13具有一第二預設長度L2,第一採樣腔體12的第一預設長度L1可大於第二採樣腔體13的第二預設長度L2。藉此,第一採樣腔體12與第二採樣腔體13相較之下,第一採樣腔體12適合用於測量濃度較低的氣體,第二採樣腔體13適合用於測量濃度較高的氣體。同時,由於第一光感測單元31及第二光感測單元32所分別接收到的第一分光光束T1及第二分光光束T2都是由同一個發光單元21所產生,因此,測量誤差值較小。 It should be noted that, in the embodiment of the present invention, in order to be able to measure an environment with a large difference between high and low gas concentrations, the first sampling cavity 12 has a first preset length L1, and the second sampling cavity 13 has a second. The first predetermined length L1 of the first sampling cavity 12 may be greater than the second preset length L2 of the second sampling cavity 13 by a preset length L2. Thereby, the first sampling cavity 12 is compared with the second sampling cavity 13, the first sampling cavity 12 is suitable for measuring a lower concentration of gas, and the second sampling cavity 13 is suitable for measuring a higher concentration. gas. At the same time, since the first splitting light beam T1 and the second splitting light beam T2 respectively received by the first light sensing unit 31 and the second light sensing unit 32 are generated by the same light emitting unit 21, the error value is measured. Smaller.

接著,請一併參閱圖5、圖6及圖8所示,由圖8與圖5的比較可知,在其他實施方式中,可以調整分光模組4的設置位置,以調整第一光感測單元31及第二光感測單元32所能夠接受到的光線能量。具體來說,如圖5及圖6所示,導光腔體11包括一反 射面112以及一通過反射面112的一焦點F的光軸P,分光模組4具有一位於第一分光面41以及第二分光面42之間的中心軸線I,中心軸線I通過導光空間111,且光軸P與中心軸線I兩者相互重合。另外,如圖8所示,導光腔體11的光軸P也可以與分光模組4的中心軸線I兩者互不重合。另外,值得說明的是,在本實施例中,由於投射光束T與第一分光光束T1兩者相互垂直,且投射光束T與第二分光光束T2兩者相互垂直,因此,第一分光面41與中心軸線I之間具有一45度的夾角,第二分光面42與中心軸線I之間具有一45度的夾角,然本發明不以此為限。 Referring to FIG. 5, FIG. 6 and FIG. 8 together, it can be seen from comparison between FIG. 8 and FIG. 5 that in other embodiments, the position of the spectroscopic module 4 can be adjusted to adjust the first light sensing. The light energy that the unit 31 and the second light sensing unit 32 can receive. Specifically, as shown in FIG. 5 and FIG. 6, the light guiding cavity 11 includes a reverse The beam 112 and the optical axis P of a focus F passing through the reflecting surface 112, the beam splitting module 4 has a central axis I between the first beam splitting surface 41 and the second beam splitting surface 42, and the central axis I passes through the light guiding space 111, and both the optical axis P and the central axis I coincide with each other. In addition, as shown in FIG. 8, the optical axis P of the light guiding cavity 11 may not coincide with the central axis I of the beam splitting module 4. In addition, in the present embodiment, since the projection beam T and the first beam splitting beam T1 are perpendicular to each other, and the projection beam T and the second beam splitting beam T2 are perpendicular to each other, the first beam splitting surface 41 is There is an angle of 45 degrees with the central axis I, and the angle between the second beam splitting surface 42 and the central axis I is 45 degrees, but the invention is not limited thereto.

第二實施例 Second embodiment

首先,請參閱圖9及圖10所示,本發明第二實施例提供一種氣體測量裝置Q’,由圖9與圖1的比較可知,第二實施例與第一實施例最大的差別在於:第二實施例所提供的腔體模組1’還進一步包括一連接於導光腔體11的第三採樣腔體14以及一連接於導光腔體11的第四採樣腔體15。第三採樣腔體14具有一第三採樣空間141以及一第三容置空間142,第四採樣腔體15具有一第四採樣空間151以及一第四容置空間152。導光空間111、第三採樣空間141以及第四採樣空間151相互連通。換句話說,第三採樣空間141及第四採樣空間151都與第一採樣空間121及第二採樣空間131相互連通。然而,須說明的是,本發明不以採樣空間是否相互連通為限,換句話說,只要使得投射光束T形成分別投射到多個光感測單元(例如第一光感測單元31及第二光感測單元32)上的多個分光光束(例如第一分光光束T1及第二分光光束T2)即可。另外,第三採樣腔體14及第四採樣腔體15上還可以如同前面所述分別設置有一第三氣體擴散槽143及一第四氣體擴散槽153,使氣體擴散更為快速而讓測量時間縮短。 First, referring to FIG. 9 and FIG. 10, a second embodiment of the present invention provides a gas measuring device Q'. As can be seen from a comparison between FIG. 9 and FIG. 1, the greatest difference between the second embodiment and the first embodiment is that: The cavity module 1' provided by the second embodiment further includes a third sampling cavity 14 connected to the light guiding cavity 11 and a fourth sampling cavity 15 connected to the light guiding cavity 11. The third sampling chamber 14 has a third sampling space 141 and a third accommodating space 142. The fourth sampling chamber 15 has a fourth sampling space 151 and a fourth accommodating space 152. The light guiding space 111, the third sampling space 141, and the fourth sampling space 151 are in communication with each other. In other words, the third sampling space 141 and the fourth sampling space 151 are both in communication with the first sampling space 121 and the second sampling space 131. However, it should be noted that the present invention is not limited to whether the sampling spaces are connected to each other, in other words, as long as the projection light beams T are formed to be respectively projected to the plurality of light sensing units (for example, the first light sensing units 31 and the second The plurality of split light beams (for example, the first split light beam T1 and the second split light beam T2) on the light sensing unit 32) may be used. In addition, the third sampling cavity 14 and the fourth sampling cavity 15 may further be provided with a third gas diffusion groove 143 and a fourth gas diffusion groove 153 as described above, so that the gas diffusion is faster and the measurement time is allowed. shorten.

承上述,分光模組4還進一步包括一第三分光面43以及一第 四分光面44,光感測模組3還進一步包括一第三光感測單元33以及一第四光感測單元34,第三光感測單元33設置於第三容置空間142中,第四光感測單元34設置於第四容置空間152中。藉此,投射光束還可以通過分光模組4的分光而進一步形成一投向所述第三光感測單元的第三分光光束(圖中未示出),以及一投向第四光感測單元的第四分光光束(圖中未示出)。 In the above, the beam splitting module 4 further includes a third beam splitting surface 43 and a first The light-sensing module 3 further includes a third light sensing unit 33 and a fourth light sensing unit 34. The third light sensing unit 33 is disposed in the third receiving space 142. The four-light sensing unit 34 is disposed in the fourth accommodating space 152. Thereby, the projection beam can further form a third beam splitting beam (not shown) directed to the third photo sensing unit through the splitting of the beam splitting module 4, and a projection to the fourth photo sensing unit. The fourth split beam (not shown).

承上述,投射光束可包括投射於導光腔體11的一第三投射光束(圖中未示出)以及一第四投射光束(圖中未示出),第三投射光束可通過導光腔體11的拋物面的反射,以形成一投射至分光模組4的第三分光面43的第三反射光束(圖中未示出),第三反射光束通過第一分光面41的反射,以形成投射至第三光感測單元33上的第三分光光束。另外,第四投射光束可通過導光腔體11的反射,以形成一投射至分光模組4的第四分光面44的第四反射光束(圖中未示出),第四反射光束通過第四分光面44的反射,以形成投射至第四光感測單元34上的第四分光光束。 In the above, the projection beam may include a third projection beam (not shown) projected onto the light guiding cavity 11 and a fourth projection beam (not shown), and the third projection beam may pass through the light guiding cavity. The parabolic reflection of the body 11 forms a third reflected beam (not shown) projected onto the third beam splitting surface 43 of the beam splitting module 4, and the third reflected beam passes through the reflection of the first beam splitting surface 41 to form The third split light beam projected onto the third light sensing unit 33. In addition, the fourth projection beam can be reflected by the light guiding cavity 11 to form a fourth reflected beam (not shown) projected onto the fourth beam splitting surface 44 of the beam splitting module 4, and the fourth reflected beam passes through The reflection of the quarter plane 44 forms a fourth beam split that is projected onto the fourth photo sensing unit 34.

另外,投射光束T還進一步包括直接投射於分光模組4的第三分光面43的一第三入射光束(圖中未示出),以及直接投射於分光模組4的第四分光面44的一第四入射光束(圖中未示出)。第三入射光束通過第三分光面43的反射,以形成一投射至第三光感測單元33上的第三分光光束,第四入射光束通過第四分光面44的反射,以形成一投射至第四光感測單元34上的第四分光光束。 In addition, the projection beam T further includes a third incident beam (not shown) directly projected on the third beam splitting surface 43 of the beam splitting module 4, and is directly projected on the fourth beam splitting surface 44 of the beam splitting module 4. A fourth incident beam (not shown). The third incident light beam is reflected by the third light splitting surface 43 to form a third split light beam projected onto the third light sensing unit 33, and the fourth incident light beam is reflected by the fourth light splitting surface 44 to form a projection to The fourth beam splitting light on the fourth light sensing unit 34.

另外,須說明的是,本發明第二實施例所提供的其他結構特徵(例如導光腔體11、第一採樣腔體12、第二採樣腔體13、發光模組2、分光模組4及投射光束T等),與前面所述的實施例相仿,在此容不再贅述。藉此,通過第三採樣腔體14及第四採樣腔體15的設置,可以增加氣體高低濃度的測量範圍,或者是增加多種氣體的性質(如不同氣體的濃度等)測量。 In addition, it should be noted that other structural features provided by the second embodiment of the present invention (eg, the light guiding cavity 11, the first sampling cavity 12, the second sampling cavity 13, the light emitting module 2, the light splitting module 4) And the projection beam T, etc., is similar to the embodiment described above, and will not be described again here. Thereby, by the arrangement of the third sampling cavity 14 and the fourth sampling cavity 15, the measurement range of the gas high and low concentration can be increased, or the properties of various gases (such as the concentration of different gases, etc.) can be increased.

第三實施例 Third embodiment

首先,請同時參閱圖5、圖6及圖11所示,本發明第三實施例提供一種氣體濃度測量方法,氣體濃度測量方法包括下列步驟。如步驟S102所示:提供一通過一第一採樣腔體12以投射至一第一光感測單元31上的第一分光光束T1,以及提供一通過一第二採樣腔體13以投射至一第二光感測單元32上的第二分光光束T2。詳細來說,可通過提供一發光模組2,以產生一投射光束T,投射光束T可以通過一分光模組4而產生第一分光光束T1及第二分光光束T2。須注意的是,為測量氣體高低濃度差值大的環境,第一採樣腔體12的尺寸大於第二採樣腔體13的尺寸,換句話說,第一採樣腔體12的長度大於第二採樣腔體13的長度。舉例來說,第三實施例中第一採樣腔體12的第一預設長度L1為第二採樣腔體13的第二預設長度L2的4倍長,即L1=4L2,其中L1為第一預設長度L1,L2為第二預設長度L2。另外,值得說明的是,在第三實施例中,投射光束T可以是一紅外線光束,第一採樣腔體12中具有一第一氣體,第二採樣腔體13中具有一第二氣體。須注意的是,第三實施例中的第一氣體及第二氣體以相同氣體(例如二氧化碳,CO2)進行說明,然本發明不以此為限。 First, please refer to FIG. 5, FIG. 6 and FIG. 11 simultaneously. The third embodiment of the present invention provides a gas concentration measuring method, and the gas concentration measuring method comprises the following steps. As shown in step S102, a first beam splitting beam T1 is projected through a first sampling chamber 12 onto a first photo sensing unit 31, and a second sampling chamber 13 is provided to project through a second sampling chamber 13. The second beam splitting beam T2 on the second light sensing unit 32. In detail, a light-emitting module 2 can be provided to generate a projection beam T, and the projection beam T can generate a first beam splitting beam T1 and a second beam splitting beam T2 through a beam splitting module 4. It should be noted that, in order to measure the environment where the difference between the high and low concentration of the gas is large, the size of the first sampling cavity 12 is larger than the size of the second sampling cavity 13 . In other words, the length of the first sampling cavity 12 is greater than the second sampling. The length of the cavity 13. For example, in the third embodiment, the first preset length L1 of the first sampling cavity 12 is 4 times longer than the second preset length L2 of the second sampling cavity 13, that is, L1=4L2, where L1 is the first A preset length L1, L2 is a second preset length L2. In addition, it should be noted that in the third embodiment, the projection beam T may be an infrared beam, the first sampling chamber 12 has a first gas, and the second sampling chamber 13 has a second gas. It should be noted that the first gas and the second gas in the third embodiment are described by the same gas (for example, carbon dioxide, CO 2 ), but the invention is not limited thereto.

接著,如步驟S104所示:計算第一光感測單元31所接收到的一第一分光光束能量相對於一第一曲線方程式的一第一切線斜率,以及計算第二光感測單元32所接收到的一第二分光光束能量相對於一第二曲線方程式的一第二切線斜率。一般來說,為測量第一氣體及第二氣體的濃度,可利用基板模組5中的運算單元51依據比爾-朗伯定律(Beer-Lambert law)進行計算。若假設I 0 為紅外線入射光的能量(紅外線被氣體吸收前的初始能量);I t 為紅外線光感測單元所接收到的紅外線能量(紅外線被氣體吸收後,紅外線光感測單元所接收到的能量);K為吸收係數,即氣體對光線的吸收係數(absorption coefficient);L為氣體吸收光線所經的總光路徑 (light path)長度;C為氣體的濃度(concentration)。藉此,依據比爾-朗伯定律的公式後可得下列關係式:I t =I 0×exp×(-(L×K×C)) Next, as shown in step S104, calculating a first tangent slope of the first split beam energy received by the first light sensing unit 31 with respect to a first curve equation, and calculating the second light sensing unit 32. A second tangential slope of the received second split beam energy relative to a second curve equation. In general, in order to measure the concentrations of the first gas and the second gas, the calculation unit 51 in the substrate module 5 can be used to calculate according to the Beer-Lambert law. If I 0 is assumed to be the energy of the infrared incident light (the initial energy before the infrared ray is absorbed by the gas); I t is the infrared energy received by the infrared light sensing unit (after the infrared ray is absorbed by the gas, the infrared light sensing unit receives Energy is); K is the absorption coefficient, that is, the absorption coefficient of the gas to the light; L is the total light path length through which the gas absorbs light; C is the concentration of the gas. Therefore, according to the formula of Beer-Lambert's law, the following relationship can be obtained: I t = I 0 × exp ×(-( L × K × C ))

接著,請一併參閱圖12及圖13所示,依據比爾-朗伯定律,將f1(x)定義為第一採樣腔體12中的第一光感測單元31所接收到的一第一分光光束能量,f2(x)定義為第二採樣腔體13中的第二光感測單元32所接收到的一第二分光光束能量。x為第一氣體或第二氣體的濃度。在本實施例中,第一採樣腔體12的第一預設長度L1為第二採樣腔體13的第二預設長度L2的4倍長,因此,第一採樣腔體12中的第一氣體的濃度計算,及第二採樣腔體13中的第二氣體的濃度計算可以定義為下列關係式:f 1(x)=I 0×exp×(-(4L×k×x))...(下稱第一曲線方程式) Next, referring to FIG. 12 and FIG. 13 together, according to the Beer-Lambert law, f 1 (x) is defined as a first received by the first light sensing unit 31 in the first sampling cavity 12. A split beam energy, f 2 (x), is defined as a second split beam energy received by the second photo sensing unit 32 in the second sampling cavity 13. x is the concentration of the first gas or the second gas. In this embodiment, the first preset length L1 of the first sampling cavity 12 is 4 times longer than the second preset length L2 of the second sampling cavity 13 , and therefore, the first in the first sampling cavity 12 The calculation of the concentration of the gas and the calculation of the concentration of the second gas in the second sampling chamber 13 can be defined as the following relationship: f 1 ( x ) = I 0 × exp × (-(4 L × k × x )) . .. (hereinafter referred to as the first curve equation)

f 2(x)=I 0×exp×(-(1L×k×x))...(下稱第二曲線方程式) f 2 ( x )= I 0 × exp ×(-(1 L × k × x ))... (hereinafter referred to as the second curve equation)

承上述,更詳細來說,第一曲線方程式及第二曲線方程式都滿足比爾-朗伯定律,運算單元51可依據第一光感測單元31所接收到的一第一分光光束能量及一第一曲線方程式計算第一採樣腔體12內的一第一氣體的濃度,且運算單元51也可依據第二光感測單元32所接收到的一第二分光光束能量及一第二曲線方程式計算第二採樣腔體13內的一第二氣體的濃度。通過取得第一曲線方程式及第二曲線方程式的斜率,可以判斷在相同的濃度區間中,第一光感測單元31或第二光感測單元32中哪一個可以獲得較大的紅外線能量變化。 In the above, in more detail, the first curve equation and the second curve equation satisfy the Beer-Lambert law, and the operation unit 51 can receive a first beam splitting energy and a first according to the first light sensing unit 31. A curve equation calculates a concentration of a first gas in the first sampling cavity 12, and the computing unit 51 can also calculate a second beam splitting energy received by the second light sensing unit 32 and a second curve equation. The concentration of a second gas in the second sampling chamber 13. By obtaining the slopes of the first curve equation and the second curve equation, it can be determined which of the first light sensing unit 31 or the second light sensing unit 32 can obtain a larger infrared energy change in the same concentration interval.

如圖12所示,為便於說明,以下先用濃度區間進行說明,圖12中的x1、x2、x3及x4分別代表著不同的濃度值。舉例來說,濃度值x1為15,000ppm(parts per million)、濃度值x2為20,000ppm、濃度值x3為30,000ppm、濃度值x4為40,000ppm。當運算單元51運算第一光感測單元31所測量到的第一氣體的濃度以及第二光感測單元32所測量到的第二氣體的濃度介於濃度值x1及x2之間時, 通過計算第一曲線方程式在濃度值x1及x2之間的一第一切線斜率及計算第二曲線方程式在濃度值x1及x2之間的一第二切線斜率,可以判斷出第一光感測單元31或第二光感測單元32中的哪一個可以可以獲得較準確的測量值。 As shown in FIG. 12, for convenience of explanation, the following description will be first made using the concentration interval, and x1, x2, x3, and x4 in FIG. 12 represent different density values, respectively. For example, the concentration value x1 is 15,000 ppm (parts per million), the concentration value x2 is 20,000 ppm, the concentration value x3 is 30,000 ppm, and the concentration value x4 is 40,000 ppm. When the operation unit 51 calculates the concentration of the first gas measured by the first light sensing unit 31 and the concentration of the second gas measured by the second light sensing unit 32 is between the concentration values x1 and x2, The first light sensing can be determined by calculating a first tangent slope between the concentration values x1 and x2 of the first curve equation and calculating a second tangent slope between the concentration values x1 and x2 of the second curve equation. Which of the unit 31 or the second light sensing unit 32 can obtain a more accurate measurement.

詳細來說,在第一氣體的濃度及第二氣體的濃度介於濃度值x1及x2之間,第一曲線方程式及第二曲線方程式相較之下,第一曲線方程式有較多的紅外線能量變化能夠對濃度介於濃度值x1及x2之間的第一氣體的濃度進行解析。換句話說,紅外線能量變化大時,較容易測量正確的濃度值。藉此,在濃度值x1及x2之間時,較適合使用第一採樣腔體12進行測量。 In detail, when the concentration of the first gas and the concentration of the second gas are between the concentration values x1 and x2, the first curve equation has more infrared energy than the second curve equation. The change can resolve the concentration of the first gas having a concentration between the concentration values x1 and x2. In other words, when the change in infrared energy is large, it is easier to measure the correct concentration value. Thereby, it is more suitable to use the first sampling cavity 12 for measurement between the concentration values x1 and x2.

另外,當運算單元51運算第一光感測單元31所測量到的第一氣體的濃度以及第二光感測單元32所測量到的第二氣體的濃度介於濃度值x3及x4之間時,通過計算第一曲線方程式在濃度值x3及x4之間的一第一切線斜率及計算第二曲線方程式在濃度值x3及x4之間的一第二切線斜率,可以判斷出第一光感測單元31或第二光感測單元32中的哪一個可以可以獲得較準確的測量值。進一步來說,如圖12所示,在第一氣體的濃度及第二氣體的濃度介於濃度值x3及x4之間,第一曲線方程式及第二曲線方程式相較之下,第二曲線方程式有較多的紅外線能量變化能夠對濃度介於濃度值x3及x4之間的第二氣體的濃度進行解析。藉此,在濃度值x3及x4之間時,較適合使用第二採樣腔體13進行測量。 In addition, when the operation unit 51 calculates the concentration of the first gas measured by the first light sensing unit 31 and the concentration of the second gas measured by the second light sensing unit 32 is between the density values x3 and x4 The first light sensation can be determined by calculating a first tangent slope between the concentration values x3 and x4 of the first curve equation and calculating a second tangent slope between the concentration values x3 and x4 of the second curve equation. Which of the measuring unit 31 or the second light sensing unit 32 can obtain a more accurate measurement value. Further, as shown in FIG. 12, when the concentration of the first gas and the concentration of the second gas are between the concentration values x3 and x4, the first curve equation and the second curve equation are compared, the second curve equation There are more changes in the infrared energy that can resolve the concentration of the second gas having a concentration between the concentration values x3 and x4. Thereby, it is more suitable to use the second sampling chamber 13 for measurement between the concentration values x3 and x4.

承上述,如圖13所示,在特定的濃度值(如圖中所示x5)下,第一曲線方程式的第一切線斜率將會等於第二曲線方程式的第二切線斜率。換句話說,濃度值(如圖中所示x5)將會是判斷應當使用第一採樣腔體12或第二採樣腔體13的判斷值。藉此,濃度值(如圖中所示x5)為一預設閥值,即,在濃度值(如圖中所示x5)的情況下,第一切線斜率及第二切線斜率兩者相同。須先說明的是,預設閥值x5將於後面第四實施例進行說明。另外,可通過微分方式 而計算出第一曲線方程式的第一切線斜率及第二曲線方程式的第二切線斜率。通過微分後,可符合下列關係式: From the above, as shown in FIG. 13, at a specific concentration value (x5 as shown in the figure), the first tangent slope of the first curve equation will be equal to the second tangent slope of the second curve equation. In other words, the concentration value (x5 as shown in the figure) will be a judgment value for judging whether the first sampling chamber 12 or the second sampling chamber 13 should be used. Thereby, the concentration value (x5 as shown in the figure) is a preset threshold, that is, in the case of the concentration value (x5 as shown in the figure), the first tangent slope and the second tangent slope are the same. . It should be noted that the preset threshold x5 will be described later in the fourth embodiment. In addition, the first tangent slope of the first curve equation and the second tangent slope of the second curve equation can be calculated by the differential method. After differentiation, the following relationship can be met:

接著,請再參閱圖11所示,如步驟S106所示:判斷第一切線斜率的絕對值是否大於第二切線斜率的絕對值。詳細來說,通過判斷第一曲線方程式的第一切線斜率及第二曲線方程式的第二切線斜率,可以判斷出第一採樣腔體12及第二採樣腔體13之中,哪一個採樣腔體較適合用於測量當前的氣體濃度。 Next, referring to FIG. 11 again, as shown in step S106, it is determined whether the absolute value of the first tangent slope is greater than the absolute value of the second tangent slope. In detail, by determining the first tangent slope of the first curve equation and the second tangent slope of the second curve equation, which of the first sampling cavity 12 and the second sampling cavity 13 can be determined The body is more suitable for measuring the current gas concentration.

接著,如步驟S108所示:輸出第一氣體的濃度。具體來說,當第一切線斜率的絕對值是大於第二切線斜率的絕對值時,第一氣體的濃度將會小於預設閥值x5,運算單元51可輸出第一氣體的濃度至顯示單元52上,以顯示目前第一氣體的濃度值。換句話說,即表示當前所測量到的氣體,適合使用第一採樣腔體12進行濃度的測量。值得說明的是,當第一切線斜率的絕對值是等於第二切線斜率的絕對值時,也可以輸出第一氣體的濃度。 Next, as shown in step S108, the concentration of the first gas is output. Specifically, when the absolute value of the first tangent slope is greater than the absolute value of the second tangent slope, the concentration of the first gas will be less than the preset threshold x5, and the operation unit 51 may output the concentration of the first gas to the display. On unit 52, to display the current concentration value of the first gas. In other words, it means that the currently measured gas is suitable for the measurement of the concentration using the first sampling chamber 12. It is worth noting that when the absolute value of the first tangent slope is equal to the absolute value of the second tangent slope, the concentration of the first gas can also be output.

接著,如步驟S110所示:輸出第二氣體的濃度。具體來說,當第一切線斜率的絕對值小於第二切線斜率的絕對值時,輸出第二氣體的濃度。即,當第一切線斜率的絕對值小於或等於第二切線斜率的絕對值時,第二氣體的濃度將會大於預設閥值x5,運算單元51可輸出第二氣體的濃度至顯示單元52上,以顯示目前第二氣體的濃度值。換句話說,即表示當前所測量到的氣體,適合使用第二採樣腔體13進行濃度的測量。 Next, as shown in step S110, the concentration of the second gas is output. Specifically, when the absolute value of the first tangent slope is smaller than the absolute value of the second tangent slope, the concentration of the second gas is output. That is, when the absolute value of the first tangent slope is less than or equal to the absolute value of the second tangent slope, the concentration of the second gas will be greater than the preset threshold x5, and the arithmetic unit 51 may output the concentration of the second gas to the display unit. 52 to display the current concentration value of the second gas. In other words, it means that the currently measured gas is suitable for the measurement of the concentration using the second sampling chamber 13.

接著,請一併參閱圖14所示,在其他實施方式中,本發明第三實施例所提供的氣體濃度測量方法,還進一步包括步驟S105:計算第一採樣腔體12內的第一氣體的濃度,以及計算第二採樣腔體13內的第二氣體的濃度。舉例來說,可依據第一光感測單元31 所接收到的第一分光光束能量及第一曲線方程式計算第一採樣腔體12內的第一氣體的濃度。同時,也可以依據第二光感測單元32所接收到的第二分光光束能量及第二曲線方程式計算第二採樣腔體13內的第二氣體的濃度。藉此,以選擇性地輸出第一採樣腔體12中第一氣體的濃度或第二樣腔體13中第二氣體的濃度至顯示單元52上。 The method for measuring the gas concentration provided by the third embodiment of the present invention further includes the step S105 of calculating the first gas in the first sampling cavity 12, as shown in FIG. The concentration, and the concentration of the second gas in the second sampling chamber 13 are calculated. For example, according to the first light sensing unit 31 The received first beam splitting beam energy and a first curve equation calculate the concentration of the first gas in the first sampling chamber 12. At the same time, the concentration of the second gas in the second sampling cavity 13 can also be calculated according to the second beam splitting beam energy received by the second light sensing unit 32 and the second curve equation. Thereby, the concentration of the first gas in the first sampling chamber 12 or the concentration of the second gas in the second sample chamber 13 is selectively outputted onto the display unit 52.

值得注意的是,雖然圖14中的步驟S105在步驟S104之後,然本發明不以步驟S105及步驟S104的優先順序為限。換句話說,步驟S105可以是在計算第一切線斜率及第二切線斜率的步驟前、計算第一切線斜率及第二切線斜率的步驟中或者是計算第一切線斜率及第二切線斜率的步驟後。換句話說,步驟S105及步驟S104的進行可以是各自獨立的。另外,須說明的是,第三實施例所提供的第一採樣腔體12、第二採樣腔體13、發光模組2、光感測模組3及基板模組5與前面所述的實施例相仿,在此容不再贅述。 It should be noted that although step S105 in FIG. 14 is after step S104, the present invention is not limited to the priority order of step S105 and step S104. In other words, step S105 may be in the step of calculating the first tangent slope and the second tangent slope, calculating the first tangent slope and the second tangent slope, or calculating the first tangent slope and the second tangent After the step of the slope. In other words, the progress of step S105 and step S104 may be independent of each other. In addition, the first sampling cavity 12, the second sampling cavity 13, the light-emitting module 2, the light sensing module 3, and the substrate module 5 provided by the third embodiment and the foregoing implementation are described. The example is similar and will not be repeated here.

第四實施例 Fourth embodiment

首先,請參閱圖15所示,本發明第四實施例提供一種氣體濃度測量方法,由圖15與圖14的比較可知,第四實施例與第三實施例最大的差別在於:第四實施例所提供的氣體濃度測量方法是直接通過判斷第一氣體的濃度及第二氣體的濃度是否大於一預設閥值,以決定當輸出第一氣體的濃度或第二氣體的濃度。 First, referring to FIG. 15 , a fourth embodiment of the present invention provides a gas concentration measuring method. As can be seen from a comparison between FIG. 15 and FIG. 14 , the fourth embodiment and the third embodiment have the greatest difference in that: the fourth embodiment The gas concentration measurement method is provided by directly determining whether the concentration of the first gas and the concentration of the second gas are greater than a predetermined threshold to determine the concentration of the first gas or the concentration of the second gas.

請同時參閱圖13及圖15所示,第四實施例所提供的氣體濃度測量方法包括下列步驟。如步驟S202所示,提供一通過一第一採樣腔體12以投射至一第一光感測單元31上的第一分光光束T1,以及提供一通過一第二採樣腔體13以投射至一第二光感測單元32上的第二分光光束T2。須說明的是,步驟S202與前面所述的步驟S102相仿,在此容不再贅述。 Referring to FIG. 13 and FIG. 15 simultaneously, the gas concentration measuring method provided by the fourth embodiment includes the following steps. As shown in step S202, a first beam splitting beam T1 is projected through a first sampling cavity 12 onto a first photo sensing unit 31, and a second sampling cavity 13 is provided to project through a second sampling cavity 13. The second beam splitting beam T2 on the second light sensing unit 32. It should be noted that step S202 is similar to step S102 described above, and details are not described herein again.

接著,如步驟S204所示:計算第一採樣腔體12內的一第一 氣體的濃度以及計算第二採樣腔體13內的一第二氣體的濃度。詳細來說,可以依據第一光感測單元31所接收到的一第一分光光束能量計算第一採樣腔體12內的一第一氣體的濃度,同時可以依據第二光感測單元32所接收到的一第二分光光束能量計算第二採樣腔體13內的一第二氣體的濃度。進一步來說,可以配合前述第三實施例所述,第一氣體的濃度可為依據第一分光光束能量及一第一曲線方程式所計算,第二氣體的濃度可為依據第二分光光束能量及一第二曲線方程式所計算,且第一曲線方程式及第二曲線方程式滿足比爾-朗伯定律。 Next, as shown in step S204: calculating a first in the first sampling cavity 12 The concentration of the gas and the concentration of a second gas in the second sampling chamber 13 are calculated. In detail, the concentration of a first gas in the first sampling cavity 12 can be calculated according to the energy of a first beam splitting beam received by the first light sensing unit 31, and can be determined according to the second light sensing unit 32. The received second beam splitting beam energy calculates the concentration of a second gas in the second sampling chamber 13. Further, as described in the foregoing third embodiment, the concentration of the first gas may be calculated according to the first split beam energy and a first curve equation, and the concentration of the second gas may be based on the second split beam energy and A second curve equation is calculated, and the first curve equation and the second curve equation satisfy the Beer-Lambert law.

接著,如步驟S206所示:判斷第一氣體的濃度及第二氣體的濃度是否大於一預設閥值x5。詳細來說,預設閥值x5的設定可以由第三實施例中所提到的第一切線斜率及第二切線斜率而得。換句話說,預設閥值x5為滿足第一氣體的濃度等於或者接近(或者接近表示計算上可省略的誤差值)第二氣體的濃度,且滿足第一氣體的濃度相對於第一曲線方程式的一第一切線斜率等於或者接近第二氣體的濃度相對於第二曲線方程式的一第二切線斜率的情況。舉例來說,如圖13所示,在23,000ppm時,第一切線斜率等於或者接近第二切線斜率,藉此,預設閥值x5可以是23,000ppm,然本發明不以此為限。值得說明的是,在其他實施方式中,第一預設長度L1可以為3公分(centimeter,cm)至6公分,以適用於測量濃度值為0~50,000ppm的二氧化碳,第二預設長度L2可以為2公分至3公分,以適用於測量濃度值為50,000ppm以上的二氧化碳。換句話說,可通過調整第一採樣腔體12具的第一預設長度L1及第二採樣腔體13的第二預設長度L2,而改變預設閥值x5。藉此,以測量氣體高低濃度差值大的環境。 Next, as shown in step S206, it is determined whether the concentration of the first gas and the concentration of the second gas are greater than a predetermined threshold x5. In detail, the setting of the preset threshold x5 can be obtained from the first tangent slope and the second tangent slope mentioned in the third embodiment. In other words, the preset threshold x5 is a concentration of the second gas that satisfies the concentration of the first gas at or near (or close to the error value that can be omitted in the calculation), and satisfies the concentration of the first gas relative to the first curve equation. A first tangential slope is equal to or close to the second tangential slope of the second gas equation. For example, as shown in FIG. 13, at 23,000 ppm, the first tangential slope is equal to or close to the second tangential slope, whereby the preset threshold x5 may be 23,000 ppm, although the invention is not limited thereto. It should be noted that, in other embodiments, the first preset length L1 may be 3 centimeters (cm) to 6 centimeters for measuring carbon dioxide having a concentration value of 0 to 50,000 ppm, and the second preset length L2. It can be from 2 cm to 3 cm for carbon dioxide with a concentration value of 50,000 ppm or more. In other words, the preset threshold x5 can be changed by adjusting the first predetermined length L1 of the first sampling chamber 12 and the second preset length L2 of the second sampling chamber 13. Thereby, an environment in which the difference between the high and low concentrations of the gas is measured is large.

接著,如步驟S208所示:輸出第二氣體的濃度。詳細來說,當第一氣體的濃度及第二氣體的濃度是大於預設閥值x5時,輸出第二氣體的濃度。換句話說,此時第一切線斜率的絕對值小於第 二切線斜率的絕對值,第二採樣腔體13較適合用於測量目前的氣體濃度,因此,運算單元51可輸出第二氣體的濃度至顯示單元52上,以顯示目前第二氣體的濃度值。 Next, as shown in step S208, the concentration of the second gas is output. In detail, when the concentration of the first gas and the concentration of the second gas are greater than a preset threshold x5, the concentration of the second gas is output. In other words, the absolute value of the first tangent slope is less than the first The absolute value of the second tangent slope, the second sampling chamber 13 is more suitable for measuring the current gas concentration, therefore, the operation unit 51 can output the concentration of the second gas to the display unit 52 to display the current concentration value of the second gas. .

接著,如步驟S210所示:輸出第一氣體的濃度。詳細來說,當第一氣體的濃度及第二氣體的濃度小於預設閥值或者是等於所述預設閥值時,輸出第一氣體的濃度。換句話說,此時第一切線斜率的絕對值是大於第二切線斜率的絕對值,第一採樣腔體12較適合用於測量目前的氣體濃度,因此,運算單元51可輸出第一氣體的濃度至顯示單元52上,以顯示目前第一氣體的濃度值。 Next, as shown in step S210, the concentration of the first gas is output. In detail, when the concentration of the first gas and the concentration of the second gas are less than a preset threshold or equal to the preset threshold, the concentration of the first gas is output. In other words, the absolute value of the slope of the first tangent is greater than the absolute value of the slope of the second tangent, and the first sampling chamber 12 is more suitable for measuring the current gas concentration. Therefore, the arithmetic unit 51 can output the first gas. The concentration is applied to the display unit 52 to display the current concentration value of the first gas.

實施例的有益效果 Advantages of the embodiment

綜上所述,本發明的有益效果在於,本發明實施例所提供的氣體測量裝置(Q,Q’)及氣體濃度測量方法,利用“分光模組4”的技術特徵,而使得發光模組2產生的投射光束T能通過分光模組4的分光,而形成一投向第一光感測單元31的第一分光光束T1以及一投向第二光感測單元32的第二分光光束T2。藉此,第一光感測單元31能用於測量第一氣體的性質,第二光感測單元32能夠用於測量第二氣體的性質,再者,通過第一光感測單元31及第二光感測單元32配合投射光束T所產生的第一分光光束T1及第二分光光束T2,也能夠適用於測量氣體高低濃度差值大的環境。 In summary, the present invention has the beneficial effects that the gas measuring device (Q, Q') and the gas concentration measuring method provided by the embodiments of the present invention utilize the technical features of the "splitting module 4" to make the light emitting module The generated projection beam T can be split by the beam splitting module 4 to form a first beam splitting beam T1 directed to the first photo sensing unit 31 and a second beam splitting beam T2 directed to the second photo sensing unit 32. Thereby, the first light sensing unit 31 can be used to measure the properties of the first gas, and the second light sensing unit 32 can be used to measure the properties of the second gas, and further, through the first light sensing unit 31 and the first The first light sensing unit 32 cooperates with the first beam splitting beam T1 and the second beam splitting beam T2 generated by the projection beam T, and can also be applied to an environment in which the difference between the high and low concentration of the gas is measured.

藉此,發光模組2產生的投射光束T會形成至少兩個以上的分光光束(第一分光光束T1及第二分光光束T2)以分別對應到至少兩個以上的光感測單元(第一光感測單元31及第二光感測單元32)。通過相同的發光模組2所形成的多個分光光束(第一分光光束T1及第二分光光束T2),可以使得氣體濃度測量值準確率較高,並減少成本。另外,通過第一採樣腔體12的尺寸大於第二採樣腔體13的尺寸,當待測量氣體濃度低時,可選擇使用尺寸較長的第一採 樣腔體12,當待測量氣體濃度高時,可選擇使用尺寸較短的第一採樣腔體12,當待測量氣體濃度等於或者接近預設閥值x5時,則選擇使用尺寸較長的第一採樣腔體12(因所接收到的紅外線能量較大)。 Thereby, the projected light beam T generated by the light-emitting module 2 forms at least two or more split light beams (the first split light beam T1 and the second split light beam T2) to respectively correspond to at least two light sensing units (first The light sensing unit 31 and the second light sensing unit 32). The plurality of split light beams (the first split light beam T1 and the second split light beam T2) formed by the same light emitting module 2 can make the gas concentration measurement value higher in accuracy and reduce the cost. In addition, when the size of the first sampling cavity 12 is larger than the size of the second sampling cavity 13, when the gas concentration to be measured is low, the first one with a longer size can be selected. In the sample cavity 12, when the gas concentration to be measured is high, the first sampling cavity 12 having a shorter size can be selected, and when the gas concentration to be measured is equal to or close to the preset threshold value x5, the first dimension is selected. A sampling chamber 12 (since the received infrared energy is large).

以上所述僅為本發明的優選可行實施例,並非因此侷限本發明的專利範圍,所以全部運用本發明說明書及附圖內容所做的等效技術變化,均包含於本發明的保護範圍內。 The above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Therefore, all equivalents of the present invention are included in the scope of the present invention.

Claims (15)

一種氣體測量裝置,其包括:一腔體模組,所述腔體模組包括一導光腔體、一連接於所述導光腔體的第一採樣腔體以及一連接於所述導光腔體的第二採樣腔體;一發光模組,所述發光模組設置於所述導光腔體中,所述發光模組用以產生一投射光束;一光感測模組,所述光感測模組包括一設置於所述第一採樣腔體的第一光感測單元以及一設置於所述第二採樣腔體的第二光感測單元;以及一分光模組,所述分光模組設置於所述腔體模組內;其中,所述發光模組產生的所述投射光束通過所述分光模組的分光,以形成一投向所述第一光感測單元的第一分光光束以及一投向所述第二光感測單元的第二分光光束。 A gas measuring device includes: a cavity module, the cavity module includes a light guiding cavity, a first sampling cavity connected to the light guiding cavity, and a light connecting to the light guiding body a second sampling cavity of the cavity; a light emitting module, the light emitting module is disposed in the light guiding cavity, the light emitting module is configured to generate a projection beam; and a light sensing module is The light sensing module includes a first light sensing unit disposed in the first sampling cavity and a second light sensing unit disposed in the second sampling cavity; and a beam splitting module, The beam splitting module is disposed in the cavity module; wherein the projection beam generated by the light emitting module is split by the beam splitting module to form a first beam to the first light sensing unit a beam splitting beam and a second beam splitting beam directed to the second photo sensing unit. 如請求項1所述的氣體測量裝置,其中,所述第一採樣腔體的尺寸以及所述第二採樣腔體的尺寸兩者相互不同。 The gas measuring device of claim 1, wherein the size of the first sampling chamber and the size of the second sampling chamber are different from each other. 如請求項1所述的氣體測量裝置,其中,所述第一光感測單元適用於測量一第一氣體的性質,所述第二光感測單元適用於測量一第二氣體的性質,所述第一氣體與所述第二氣體兩者相互不同。 The gas measuring device of claim 1, wherein the first photo sensing unit is adapted to measure a property of a first gas, and the second photo sensing unit is adapted to measure a property of a second gas, The first gas and the second gas are different from each other. 如請求項1所述的氣體測量裝置,其中,所述導光腔體包括一反射面,所述反射面為一拋物面,所述拋物面具有一焦點,且所述發光單元對應於所述焦點。 The gas measuring device according to claim 1, wherein the light guiding cavity comprises a reflecting surface, the reflecting surface is a paraboloid, the parabolic mask has a focus, and the light emitting unit corresponds to the focus. 如請求項1所述的氣體測量裝置,其中,所述第一採樣腔體的長度方向與所述導光腔體的長度方向大致呈相互垂直設置,所述第二採樣腔體的長度方向與所述導光腔體的長度方向大致呈相互垂直設置。 The gas measuring device according to claim 1, wherein a length direction of the first sampling cavity and a longitudinal direction of the light guiding cavity are substantially perpendicular to each other, and a length direction of the second sampling cavity is The longitudinal direction of the light guiding cavity is substantially perpendicular to each other. 如請求項1所述的氣體測量裝置,其中,所述導光腔體具有一導光空間,所述第一採樣腔體具有一第一採樣空間以及一第一容置空間,所述第二採樣腔體具有一第二採樣空間以及一第二容置空間,所述第一光感測單元設置於所述第一容置空間中,所述第二光感測單元設置於所述第二容置空間中,所述分光模組設置於所述第一採樣腔體及所述第二採樣腔體之間,所述分光模組包括一第一分光面以及一第二分光面。 The gas measuring device of claim 1, wherein the light guiding cavity has a light guiding space, the first sampling cavity has a first sampling space and a first receiving space, and the second The sampling cavity has a second sampling space and a second accommodating space, the first light sensing unit is disposed in the first accommodating space, and the second light sensing unit is disposed in the second In the accommodating space, the beam splitting module is disposed between the first sampling cavity and the second sampling cavity, and the beam splitting module includes a first beam splitting surface and a second beam splitting surface. 如請求項6所述的氣體測量裝置,其中,所述投射光束包括投射於所述導光腔體的一第一投射光束以及一第二投射光束,所述第一投射光束通過所述導光腔體的反射,以形成一投射至所述分光模組的所述第一分光面的第一反射光束,所述第一反射光束通過所述第一分光面的反射,以形成投射至所述第一光感測單元上的所述第一分光光束,所述第二投射光束通過所述導光腔體的反射,以形成一投射至所述分光模組的所述第二分光面的第二反射光束,所述第二反射光束通過所述第二分光面的反射,以形成投射至所述第二光感測單元上的所述第二分光光束。 The gas measuring device of claim 6, wherein the projected light beam comprises a first projected light beam projected onto the light guiding cavity and a second projected light beam, the first projected light beam passing through the light guiding light Reflecting the cavity to form a first reflected beam projected onto the first beam splitting surface of the beam splitting module, the first reflected beam passing through the reflection of the first beam splitting surface to form a projection to the The first beam splitting beam on the first light sensing unit, the second projection beam passing through the light guiding cavity to form a first projection surface projected to the second beam splitting surface of the beam splitting module a second reflected light beam, the second reflected light beam being reflected by the second light splitting surface to form the second split light beam projected onto the second light sensing unit. 如請求項6所述的氣體測量裝置,其中,所述投射光束包括投射於所述分光模組的所述第一分光面的一第一入射光束及投射於所述分光模組的所述第二分光面的一第二入射光束,所述第一入射光束通過所述第一分光面的反射,以形成投射至所述第一光感測單元上的所述第一分光光束,所述第二入射光束通過所述第二分光面的反射,以形成投射至所述第二光感測單元上的所述第二分光光束。 The gas measuring device according to claim 6, wherein the projected light beam includes a first incident light beam projected onto the first light splitting surface of the light splitting module and the first portion projected on the light splitting module a second incident beam of the dichroic surface, the first incident beam passing through the reflection of the first beam splitting surface to form the first beam splitting beam projected onto the first photo sensing unit, the first The two incident beams are reflected by the second beam splitting surface to form the second beam splitting beam projected onto the second photo sensing unit. 如請求項6所述的氣體測量裝置,其中,所述腔體模組還進一步包括一連接於所述導光腔體的第三採樣腔體以及一連接於所述導光腔體的第四採樣腔體,所述第三採樣腔體具有一第三採樣空間以及一第三容置空間,所述第四採樣腔體具有一第四 採樣空間以及一第四容置空間,所述分光模組還進一步包括一第三分光面以及一第四分光面,所述光感測模組還進一步包括一第三光感測單元以及一第四光感測單元,所述第三光感測單元設置於所述第三容置空間中,所述第四光感測單元設置於所述第四容置空間中。 The gas measuring device of claim 6, wherein the cavity module further comprises a third sampling cavity connected to the light guiding cavity and a fourth connected to the light guiding cavity a sampling chamber, the third sampling cavity has a third sampling space and a third receiving space, and the fourth sampling cavity has a fourth The light-splitting module further includes a third beam splitting surface and a fourth beam splitting surface, and the light sensing module further includes a third light sensing unit and a first The fourth light sensing unit is disposed in the third accommodating space, and the fourth light sensing unit is disposed in the fourth accommodating space. 如請求項1所述的氣體測量裝置,其中,所述導光腔體包括一反射面以及一通過所述反射面的一焦點的光軸,所述分光模組具有一位於所述第一分光面以及所述第二分光面之間的中心軸線,所述中心軸線通過所述導光空間,所述光軸與所述中心軸線兩者相互重合,或者是所述光軸與所述中心軸線兩者互不重合。 The gas measuring device of claim 1, wherein the light guiding cavity comprises a reflecting surface and an optical axis passing through a focus of the reflecting surface, and the beam splitting module has a first splitting light a central axis between the face and the second beam splitting surface, the central axis passing through the light guiding space, the optical axis and the central axis coincide with each other, or the optical axis and the central axis The two do not overlap each other. 一種氣體濃度測量方法,所述氣體濃度測量方法包括:提供一發光模組,所述發光模組產生一通過一第一採樣腔體以投射至一第一光感測單元上的第一分光光束,且所述發光模組產生一通過一第二採樣腔體以投射至一第二光感測單元上的第二分光光束,其中所述第一採樣腔體的尺寸大於所述第二採樣腔體的尺寸,所述第一採樣腔體中具有一第一氣體,所述第二採樣腔體中具有一第二氣體;計算所述第一光感測單元所接收到的一第一分光光束能量相對於一第一曲線方程式的一第一切線斜率,以及計算所述第二光感測單元所接收到的一第二分光光束能量相對於一第二曲線方程式的一第二切線斜率;以及判斷所述第一切線斜率的絕對值是否大於所述第二切線斜率的絕對值;其中,當所述第一切線斜率的絕對值是大於或者等於所述第二切線斜率的絕對值時,輸出所述第一氣體的濃度;其中,當所述第一切線斜率的絕對值小於所述第二切線斜率的絕對值時,輸出所述第二氣體的濃度。 A gas concentration measuring method, the gas concentration measuring method comprising: providing a light emitting module, wherein the light emitting module generates a first splitting light beam that is projected through a first sampling cavity onto a first light sensing unit And the light emitting module generates a second split light beam that is projected through a second sampling cavity onto a second light sensing unit, wherein the size of the first sampling cavity is larger than the second sampling cavity a first gas in the first sampling cavity, a second gas in the second sampling cavity, and a first beam splitter received by the first light sensing unit a first tangential slope of the energy relative to a first curve equation, and a second tangential slope of the second beam splitting beam received by the second light sensing unit relative to a second curve equation; And determining whether an absolute value of the slope of the first tangent is greater than an absolute value of a slope of the second tangent; wherein, when an absolute value of the slope of the first tangent is greater than or equal to an absolute value of a slope of the second tangent Time The concentration of the first gas output; wherein, when the absolute value of the slope is less than the first tangent line tangent slope of the second absolute value, the output of the second gas concentration. 如請求項11所述的氣體濃度測量方法,還進一步包括:依據所述第一光感測單元所接收到的所述第一分光光束能量及所述第一曲線方程式計算所述第一採樣腔體內的所述第一氣體的濃度,以及依據所述第二光感測單元所接收到的所述第二分光光束能量及所述第二曲線方程式計算所述第二採樣腔體內的所述第二氣體的濃度。 The gas concentration measuring method of claim 11, further comprising: calculating the first sampling cavity according to the first beam splitting beam energy received by the first light sensing unit and the first curve equation Calculating the concentration of the first gas in the body, and calculating the number in the second sampling cavity according to the second beam splitting beam energy received by the second photo sensing unit and the second curve equation The concentration of the two gases. 如請求項11所述的氣體濃度測量方法,其中,所述發光模組產生的一投射光束通過一分光模組的分光,以形成所述第一分光光束以及所述第二分光光束,所述第一曲線方程式及所述第二曲線方程式滿足比爾-朗伯定律。 The method for measuring a gas concentration according to claim 11, wherein a projection beam generated by the illumination module passes through a splitting module to form the first split beam and the second split beam, The first curve equation and the second curve equation satisfy the Beer-Lambert law. 一種氣體濃度測量方法,其包括:提供一發光模組,所述發光模組產生一通過一第一採樣腔體以投射至一第一光感測單元上的第一分光光束,且所述發光模組產生一通過一第二採樣腔體以投射至一第二光感測單元上的第二分光光束,其中所述第一採樣腔體的尺寸大於所述第二採樣腔體的尺寸;依據所述第一光感測單元所接收到的一第一分光光束能量計算所述第一採樣腔體內的一第一氣體的濃度,以及依據所述第二光感測單元所接收到的一第二分光光束能量計算所述第二採樣腔體內的一第二氣體的濃度;以及判斷所述第一氣體的濃度及所述第二氣體的濃度是否大於一預設閥值;其中,當所述第一氣體的濃度及所述第二氣體的濃度是大於所述預設閥值時,輸出所述第二氣體的濃度;其中,當所述第一氣體的濃度及所述第二氣體的濃度小於所述預設閥值或者是等於所述預設閥值時,輸出所述第一氣體的濃度。 A method for measuring a gas concentration, comprising: providing a light emitting module, wherein the light emitting module generates a first split light beam that is projected through a first sampling cavity onto a first light sensing unit, and the light emitting The module generates a second split beam that passes through a second sampling cavity to be projected onto a second photo sensing unit, wherein the size of the first sampling cavity is larger than the size of the second sampling cavity; Calculating a concentration of a first gas in the first sampling chamber by a first beam splitting energy received by the first light sensing unit, and a first received according to the second light sensing unit Dichotomizing the beam energy to calculate a concentration of a second gas in the second sampling chamber; and determining whether the concentration of the first gas and the concentration of the second gas are greater than a predetermined threshold; wherein, when When the concentration of the first gas and the concentration of the second gas are greater than the predetermined threshold, outputting the concentration of the second gas; wherein, the concentration of the first gas and the concentration of the second gas Less than the preset threshold Who is equal to the preset threshold, the output of the first gas concentration. 如請求項14所述的氣體濃度測量方法,其中,所述第一氣體 的濃度為依據所述第一分光光束能量及一第一曲線方程式所計算,所述第二氣體的濃度為依據所述第二分光光束能量及一第二曲線方程式所計算,所述第一曲線方程式及所述第二曲線方程式滿足比爾-朗伯定律,所述預設閥值為滿足所述第一氣體的濃度等於或者接近所述第二氣體的濃度,且滿足所述第一氣體的濃度相對於所述第一曲線方程式的一第一切線斜率等於或者接近所述第二氣體的濃度相對於所述第二曲線方程式的一第二切線斜率的情況。 The gas concentration measuring method according to claim 14, wherein the first gas The concentration is calculated according to the first beam splitting beam energy and a first curve equation, and the concentration of the second gas is calculated according to the second beam splitting beam energy and a second curve equation, the first curve The equation and the second curve equation satisfy the Beer-Lambert law, and the preset threshold value satisfies the concentration of the first gas equal to or close to the concentration of the second gas, and satisfies the concentration of the first gas A first tangential slope with respect to the first curve equation is equal to or close to a second tangential slope of the second gas.
TW105116265A 2016-05-25 2016-05-25 Gas detection device and method for detecting gas concentration TWI592647B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105116265A TWI592647B (en) 2016-05-25 2016-05-25 Gas detection device and method for detecting gas concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105116265A TWI592647B (en) 2016-05-25 2016-05-25 Gas detection device and method for detecting gas concentration

Publications (2)

Publication Number Publication Date
TWI592647B TWI592647B (en) 2017-07-21
TW201809630A true TW201809630A (en) 2018-03-16

Family

ID=60048379

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105116265A TWI592647B (en) 2016-05-25 2016-05-25 Gas detection device and method for detecting gas concentration

Country Status (1)

Country Link
TW (1) TWI592647B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI762233B (en) * 2020-03-13 2022-04-21 國立大學法人德島大學 Concentration measuring method and concentration measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI762233B (en) * 2020-03-13 2022-04-21 國立大學法人德島大學 Concentration measuring method and concentration measuring device

Also Published As

Publication number Publication date
TWI592647B (en) 2017-07-21

Similar Documents

Publication Publication Date Title
KR102531308B1 (en) Compact optical gas detection system and device
CN100401041C (en) Light waveguide absorption type gas sensor and measuring system
CN107345904B (en) Method and device for detecting gas concentration based on optical absorption and interferometry
US8902425B2 (en) Temperature-stable incoherent light source
WO2021179592A1 (en) Liquid absorption coefficient measurement device and measurement method
CN108507959B (en) Variable optical path gas absorption air chamber sensing system
TWI592647B (en) Gas detection device and method for detecting gas concentration
CN116242790A (en) Long and short double-light-path measuring system and method based on non-spectroscopic infrared principle
CN107525589B (en) A kind of wavelength scaling system and method
KR20130082482A (en) Optical wave guide
KR102334769B1 (en) Optical cavity for reducing external environment effect and gas sensor having the same
WO2023009605A1 (en) Differential path length sensing using monolithic, dual-wavelength light emitting diode
TWI751684B (en) Concentration measuring device
US11921031B2 (en) Compact gas sensor
CN101281126B (en) Optical fiber type optical heterodyne method evanscent wave cavity declining spectral analysis apparatus
TWI651526B (en) Gas detection device
CN210119437U (en) Double-light-path structure for measuring gas concentration by using ultraviolet light
CN113092378A (en) Laser gas detection device
CN112504988A (en) Gas detection device and gas detection method
KR101412212B1 (en) Optical wave guide
US20180045642A1 (en) Gas detection device and method for detecting gas concentration
TWI595226B (en) Gas detection device
KR20200103482A (en) Multi gas sensing apparatus
US20180088038A1 (en) Gas detection device
US11821836B2 (en) Fully compensated optical gas sensing system and apparatus