JPH0585020B2 - - Google Patents

Info

Publication number
JPH0585020B2
JPH0585020B2 JP7039389A JP7039389A JPH0585020B2 JP H0585020 B2 JPH0585020 B2 JP H0585020B2 JP 7039389 A JP7039389 A JP 7039389A JP 7039389 A JP7039389 A JP 7039389A JP H0585020 B2 JPH0585020 B2 JP H0585020B2
Authority
JP
Japan
Prior art keywords
angle prism
prism
right angle
prisms
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7039389A
Other languages
Japanese (ja)
Other versions
JPH02249955A (en
Inventor
Tetsuo Iijima
Isamu Watanabe
Toshimoto Nakagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirama Rika Kenkyusho Ltd
Original Assignee
Hirama Rika Kenkyusho Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirama Rika Kenkyusho Ltd filed Critical Hirama Rika Kenkyusho Ltd
Priority to JP7039389A priority Critical patent/JPH02249955A/en
Publication of JPH02249955A publication Critical patent/JPH02249955A/en
Publication of JPH0585020B2 publication Critical patent/JPH0585020B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、多重回反射光型吸光光度計に関す
る。更に詳しくは、液体中、気体中あるいは固体
中の極めて吸光度の小さい成分の透過率あるいは
吸光度を高倍率にして測定する多重回反射光型吸
光光度計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to a multi-reflection type absorption photometer. More specifically, the present invention relates to a multi-reflection spectrophotometer that measures the transmittance or absorbance of a component with extremely low absorbance in a liquid, gas, or solid at a high magnification.

〔従来技術〕 何らかの成分が分散した溶液の吸収スペクトル
を測定する際に、等しい厚さの純溶媒および溶液
に対する透過光の強さをそれぞれI0およびIとす
れば、log10(I0/I)は、溶液の光吸収の強さを
表す量で、吸光度(または真吸光度)と呼ばれて
いる。
[Prior art] When measuring the absorption spectrum of a solution in which some component is dispersed, if the intensities of transmitted light for pure solvent and solution of equal thickness are I 0 and I, respectively, then log 10 (I 0 /I ) is a quantity that represents the strength of light absorption of a solution, and is called absorbance (or true absorbance).

この吸光度に関しては、ランバート−ベールの
法則が有名である。この法則は、log10(I0/I)=
εcd(εはモル吸光係数、cはモル濃度、dは吸
収層の厚さ)という関係が成立するものである。
吸光度を測定することによつて、モル吸光係数が
既知の物質の溶液中の濃度が求められる。したが
つて吸光度は、比色分析または紫外分光分析にお
いて重要な量である。
Regarding this absorbance, the Lambert-Beer law is famous. This law is log 10 (I 0 /I) =
The following relationship holds true: εcd (ε is the molar extinction coefficient, c is the molar concentration, and d is the thickness of the absorption layer).
By measuring absorbance, the concentration of a substance with a known molar extinction coefficient in a solution can be determined. Absorbance is therefore an important quantity in colorimetric or ultraviolet spectroscopy.

従来、ランバート−ベールの法則を使つた吸光
光度計では、吸光度の小さい溶液成分の透過率あ
るいは吸光度の測定法としては、サンプルの厚さ
dを厚くして光路長を大きくする方法が提案され
ている。しかしこの方法では、光路長に比例して
サンプル量が増加し、かつ装置も大型となつてし
まう。測定部の大きさは、光路の長いセルを必要
とし、例えば50mmあるいは100mmのサンプルが必
要である。
Conventionally, in spectrophotometers using Beer-Lambert's law, a method of increasing the optical path length by increasing the sample thickness d has been proposed as a method for measuring the transmittance or absorbance of solution components with low absorbance. There is. However, with this method, the amount of sample increases in proportion to the optical path length, and the apparatus also becomes larger. The size of the measuring section requires a cell with a long optical path, for example, a 50 mm or 100 mm sample.

したがつて、この方法は、標準長さ10mmの光路
長の場合と比較して、約5倍ないし10倍の吸光度
の値を得るのが最大であつた。また、長光路毛細
吸収管を用い、セルの光路長を延長することによ
り、吸光度を増加させた高感度吸光光度法も提案
されている。しかし、この方法では、特殊なセル
を使用するため、試料溶液の導入にポンプなどの
付帯設備を必要とする。更に、一部では、実験的
に中空ガラスフアイバーに液体サンプルを導入し
て、入射光源光をそのガラスフアイバーの内面で
全反射することにより通過させ、受光部の光電子
増倍管で検出する方法が試みられている。
Therefore, this method was maximally able to obtain absorbance values about 5 to 10 times that of the standard optical path length of 10 mm. A high-sensitivity spectrophotometric method has also been proposed in which the absorbance is increased by using a long optical path capillary absorption tube and extending the optical path length of the cell. However, since this method uses a special cell, it requires incidental equipment such as a pump to introduce the sample solution. Furthermore, in some experiments, a liquid sample is introduced into a hollow glass fiber, and the incident light source light is totally reflected on the inner surface of the glass fiber and then detected by a photomultiplier tube in the light receiving section. is being attempted.

この方法は、全反射させるためにサンプルの溶
媒の屈折率を中空ガラスフアイバーの屈折率より
大きくする必要がある。この方法は、例えば溶媒
として二硫化炭素を用いてよう素イオンの検出を
行つているが、一般的に使用することはできな
い。すなわち、一般的には、溶媒は水溶液を主体
として有機溶媒など広く用いられており、溶媒の
屈折率が、ガラスの屈折率より小さい場合が大半
である。また、中空ガラスフアイバーの内部に気
泡が導入されると測定の失敗の原因となる。
This method requires that the refractive index of the sample solvent be greater than the refractive index of the hollow glass fiber in order to cause total reflection. Although this method detects iodine ions using, for example, carbon disulfide as a solvent, it cannot be used generally. That is, in general, solvents are widely used, mainly aqueous solutions and organic solvents, and in most cases the refractive index of the solvent is smaller than the refractive index of glass. Furthermore, if air bubbles are introduced into the hollow glass fiber, it may cause measurement failure.

そこで、本発明者は、通常の光路長1cmの標準
セルを用いて、かつ吸光光度法の高感度化が達成
できる新たなる方法を考案し、その装置の原理を
報告した(日本分析化学会、49th、1B27
(1988))。光路長1cmの標準セルを用いて光路長
を延長するために、そこで第3図に示されるよう
に、対向した2個の直角プリズム30,30を用
いて入射光の多重回の反射により光路長を大幅に
延長できる方法を考案した。この方法をTwin
Prism Coupling(T.P.C)法と名付けた。
Therefore, the present inventor devised a new method that can achieve high sensitivity of spectrophotometry using a standard cell with an ordinary optical path length of 1 cm, and reported the principle of the device (Japan Society for Analytical Chemistry, 49th, 1B27
(1988)). In order to extend the optical path length using a standard cell with an optical path length of 1 cm, as shown in FIG. We have devised a method that can significantly extend the Twin this method
It was named the Prism Coupling (TPC) method.

この方式では、多重回の反射により光路長を極
端に長くすることができ、しかも一方の直角プリ
ズムの位置をずらすことにより、自由に光路長を
制御することができるという特長がある。
This method has the advantage that the optical path length can be made extremely long by multiple reflections, and that the optical path length can be freely controlled by shifting the position of one right-angle prism.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、本出願人が提案した方法は、溶液成分
がきわめて少量または薄い成分の場合、前記方法
だけでは不充分であり、充分に吸光係数を測定で
きないことがある。
However, the method proposed by the present applicant is insufficient when the solution components are extremely small or dilute, and the extinction coefficient may not be measured satisfactorily.

この発明の目的は、吸光度の小さい成分を測定
するために、透過率あるいは吸光度を高倍率にし
て測定する多重回反射型吸光光度計測法を提供す
ることにある。
An object of the present invention is to provide a multi-reflection spectrophotometry method that measures transmittance or absorbance at high magnification in order to measure components with low absorbance.

この発明の他の目的は、光路長を小型の装置で
延長できる多重回反射型吸光光度計測法を提供す
ることにある。
Another object of the present invention is to provide a multi-reflection spectrophotometry method that allows the optical path length to be extended using a compact device.

〔前記課題を解決するための手段および作用〕[Means and actions for solving the above problems]

この発明は、前記課題を解決するため次の手段
を採る。
This invention takes the following means to solve the above problems.

2個の直角プリズムを隣接させかつ並列して配
置し、前記2個の直角プリズムの斜面と対向し距
離をおいて、かつこの間に被測定物を配して前記
2個のプリズムと90度回転させた直角プリズムの
斜面とを配置し、前記2個の直角プリズムと前記
直角プリズム間を交互に多重回測定用の光を反射
させて前記被測定物を測定することを特徴とする
多重回反射光型吸光光度計である。
Two rectangular prisms are arranged adjacently and in parallel, and an object to be measured is placed between the two rectangular prisms, facing the slopes of the two rectangular prisms at a distance, and rotated by 90 degrees with respect to the two prisms. multiple reflection, characterized in that the object to be measured is measured by alternately reflecting the light for multiple measurements between the two right angle prisms and the right angle prism; It is a light absorption photometer.

望ましくは、前記2個の1つの直角プリズムの
直角部分を前記直角プリズムの斜面と平行に形成
したカツト面を有し、このカツト面から被測定物
を測定後の透過光を取り出すことを特徴とする多
重回反射光型吸光光度計測法が良い。
Preferably, the right angle portion of one of the two right angle prisms has a cut surface formed parallel to the slope of the right angle prism, and the transmitted light after measuring the object to be measured is extracted from the cut surface. A multi-reflection absorption photometry method is recommended.

〔実施例〕〔Example〕

この発明の原理 以下、この発明の原理を図面にしたがつて説明
する。第1図はこの発明の原理を示し、直角プリ
ズムの配置を示す略図である。直角プリズム1
は、三角形状の形をした透明体であり、光学ガラ
スでできたものである。直角プリズム1は、レー
ザ光を直角三角形の一辺である斜面4から入出力
する。この直角プリズム1とほぼ同じ形状の直角
プリズム5が平行に隣接して配置してある。直角
プリズム5の直角部分を有する頂点には、カツト
面9が形成してある。
Principle of this invention The principle of this invention will be explained below with reference to the drawings. FIG. 1 is a schematic diagram illustrating the principle of the invention and showing the arrangement of a right-angle prism. Right angle prism 1
is a triangular-shaped transparent body made of optical glass. The right-angle prism 1 inputs and outputs laser light from a slope 4 that is one side of a right-angled triangle. A right-angle prism 5 having substantially the same shape as the right-angle prism 1 is arranged adjacent to the right-angle prism 1 in parallel. A cut surface 9 is formed at the apex of the right angle prism 5 having a right angle portion.

カツト面9は、直角プリズム5の斜面8と平行
な面であり、鏡面仕上加工してある。このカツト
面9から後述するように測定後の透過光を取り出
す。直角プリズム5の斜面8は、直角プリズム1
と同様にレーザ光を入出力する面である。直角プ
リズム1の斜面4と直角プリズム5の斜面8との
面はほぼ同一平面になるように位置決めしてあ
る。ただし、斜面4と斜面8は原理的には同一平
面でなくても良く、互いに平行な面であれば良
い。
The cut surface 9 is a surface parallel to the slope 8 of the right angle prism 5, and is mirror finished. The transmitted light after measurement is taken out from this cut surface 9 as described later. The slope 8 of the right angle prism 5 is the same as the right angle prism 1.
Similarly, it is a surface that inputs and outputs laser light. The slopes 4 of the right-angle prism 1 and the slopes 8 of the right-angle prism 5 are positioned so that they are substantially on the same plane. However, in principle, the slope 4 and the slope 8 do not have to be on the same plane, but only need to be parallel to each other.

直角プリズム1と直角プリズム5とは、斜面
4,8と平行な平面内で、長さl1だけ位置がズレ
ている。一方、直角プリズム1,5と直角プリズ
ム10との間の中央に、被測定物である試料が入
つたガラス容器で作られたセル26(第2図)が
配置してある。直角プリズム10の斜面13は、
直角プリズム1,5の斜面4,8と対向して、か
つ角度90度に回転させて配置してある。
The positions of the right-angle prism 1 and the right-angle prism 5 are shifted by a length l 1 in a plane parallel to the slopes 4 and 8. On the other hand, in the center between the right-angle prisms 1 and 5 and the right-angle prism 10, a cell 26 (FIG. 2) made of a glass container containing a sample to be measured is arranged. The slope 13 of the right angle prism 10 is
It is arranged opposite to the slopes 4 and 8 of the right angle prisms 1 and 5 and rotated at an angle of 90 degrees.

計測装置 第2図は、前記原理に基づく多重回反射光型吸
光光度計測装置の概観を示す図である。平面の台
であるベース20上に、レーザ発振器21、プリ
ズムホルダ22、セルホルダ23、プリズムホル
ダ24、光センサ25の順に前記原理にしたがつ
て配置してある。レーザ発振器21は、本例で
は、He−Neレーザの赤色光を発する発振器であ
る。
Measuring Device FIG. 2 is a diagram showing an overview of a multi-reflection type absorbance photometry device based on the above-mentioned principle. A laser oscillator 21, a prism holder 22, a cell holder 23, a prism holder 24, and an optical sensor 25 are arranged in this order on a base 20, which is a flat table, in accordance with the above principle. In this example, the laser oscillator 21 is an oscillator that emits red light of a He-Ne laser.

プリズムホルダ22は、第1図の直角プリズム
1、直角プリズム5を固定するホルダである。前
記した原理にしたがつて正確な位置、すなわち、
距離l1の位置ズレ、斜面4,8がほぼ同一平面に
なるように位置させるため位置決め固定機構など
を内蔵している(図示せず)。この固定機構は、
精密な位置決めに使われる差動ねじ機構であり、
位置決めに使われる周知の機構である。セルホル
ダ23は、試料または標準試料を入れたガラス容
器のセル26を保持するホルダである。通常、既
知の溶液をセルに入れて吸光度を測定後、未知の
溶液を同一セルに入れて吸光度を測定して比較す
る。
The prism holder 22 is a holder for fixing the right angle prism 1 and the right angle prism 5 shown in FIG. Accurate position according to the principles described above, i.e.
A positioning and fixing mechanism (not shown) is included in order to position the slopes 4 and 8 so that they are substantially flush with each other by a distance l1 . This fixing mechanism is
A differential screw mechanism used for precise positioning.
This is a well-known mechanism used for positioning. The cell holder 23 is a holder that holds a cell 26 of a glass container containing a sample or a standard sample. Usually, after a known solution is placed in a cell and the absorbance is measured, an unknown solution is placed in the same cell and the absorbance is measured and compared.

プリズムホルダ24は、直角プリズム10を収
容固定したものである。前記プリズムホルダ22
と同様に位置決め固定機構(図示せず)を内蔵し
ている。直角プリズム5から透過光線が出るの
で、この透過光線を光センサ25で受け止め電気
信号に変換して透過率とし、透過率を更に吸光度
に変換して被測定物の濃度、成分などを周知方法
で特定する。
The prism holder 24 accommodates and fixes the right angle prism 10. The prism holder 22
Similarly, it has a built-in positioning and fixing mechanism (not shown). A transmitted light beam is emitted from the rectangular prism 5, and this transmitted light beam is received by the optical sensor 25 and converted into an electric signal as transmittance.The transmittance is further converted into absorbance to determine the concentration, components, etc. of the object to be measured using a well-known method. Identify.

測定法 以下、この測定装置の動作の概要を示す。レー
ザ発振器21はレーザ光を直角プリズム1の上方
(第2図では下方装置)より直角プリズム10に
向けて出力する。本例のレーザ光は、He−Neレ
ーザの赤色光である。出力されたレーザ光aは、
直角プリズム10の斜面13の面に垂直に入射す
る(以下、第1,2図参照)。直角プリズム10
に入射した入射光線aは、直角プリズム10内で
全反射して180度向きを変えて、距離l2の位置に
射出光線bを出す。射出光線bは、直角プリズム
5の斜面8に入射する。入射したレーザ光は、直
角面6で全反射して、他方の直角面7に向かうレ
ーザ光線cとなり、再び全反射して直角プリズム
10に向けて射出光線dとなる。
Measuring method The operation of this measuring device will be outlined below. The laser oscillator 21 outputs laser light toward the right-angle prism 10 from above the right-angle prism 1 (lower device in FIG. 2). The laser light in this example is red light from a He-Ne laser. The output laser beam a is
The light is incident perpendicularly to the surface of the slope 13 of the right-angle prism 10 (see FIGS. 1 and 2 below). Right angle prism 10
The incident light ray a that has entered the rectangular prism 10 is totally reflected within the rectangular prism 10, changes its direction by 180 degrees, and emits an exit light ray b at a position at a distance l 2 . The emitted light beam b enters the slope 8 of the rectangular prism 5. The incident laser light is totally reflected by the right-angled surface 6 to become a laser beam c that heads toward the other right-angled surface 7, and is totally reflected again to become an emitted light beam d toward the right-angle prism 10.

直角プリズム10は、再び直角面11,12
で、このレーザ光を全反射して射出光線eとな
る。この射出光線eは、距離l2量だけ直角プリズ
ム1側にシフトしているので、直角プリズム1の
斜面4側に入力する。直角プリズム1内入射した
光線は、直角面3、直角面2で全反射して再び直
角プリズム10側に射出光線を出す。以下、同様
にレーザ光は、直角プリズム1、直角プリズム1
0、直角プリズム5、直角プリズム10、直角プ
リズム1と往復を繰り返して、最後にカツト面9
から射出光線zを射出し、この透過光は光センサ
25で受光される。この間、レーザ光は、セル2
6内の溶液を多重回透過し、吸光される。
The right angle prism 10 has right angle surfaces 11 and 12 again.
Then, this laser light is totally reflected and becomes an emitted light beam e. This emitted light ray e has been shifted toward the right-angle prism 1 by a distance l 2 , so it is input to the slope 4 side of the right-angle prism 1. The light beam entering the right angle prism 1 is totally reflected by the right angle surface 3 and the right angle surface 2, and outputs the light beam to the right angle prism 10 side again. Hereinafter, similarly, the laser beam is transmitted through right-angle prism 1, right-angle prism 1
0, right angle prism 5, right angle prism 10, right angle prism 1, and finally cut surface 9.
A light beam z is emitted from the light beam z, and this transmitted light is received by the optical sensor 25. During this time, the laser beam
The solution in 6 is passed through multiple times and the light is absorbed.

〔その他の実施例〕[Other Examples]

前記した実施例のレーザ発振器21は、He−
Neレーザの赤色光であつた。しかし、緑色のHe
−Neレーザ、Dyeレーザなど被測定物の種類な
どに応じて他のレーザ発振器21を用いて良いこ
とは前記説明から明白である。また、本例では、
レーザ光であるが、通常の可視光線、紫外線など
この分野で通常用いられるいかなる光線でも良
い。前記した実施例は、液体の溶液の例であつた
がこれに限定されるものではない。雲、霧、排
煙、NOxなどの気体、ガラス、プラスチツクな
どの固体にも適用できる。
The laser oscillator 21 of the embodiment described above is a He-
It was red light from a Ne laser. But the green He
It is clear from the above description that other laser oscillators 21 such as -Ne laser or Dye laser may be used depending on the type of the object to be measured. Also, in this example,
Although the laser beam is used, any light beam commonly used in this field, such as visible light or ultraviolet light, may be used. Although the above embodiments are examples of liquid solutions, the present invention is not limited thereto. It can also be applied to gases such as clouds, fog, flue gas, and NOx , as well as solids such as glass and plastics.

〔発明の効果〕〔Effect of the invention〕

以上、詳記したようにこの発明の多重回反射光
型吸光光度計測法は、直角プリズムを3個配置す
るだけで従来に比して倍以上の高感度を得ること
ができるので、濃度の薄い溶液、きわめて少量の
被測定溶液でも測定が可能になつた。
As described in detail above, the multiple reflected light absorption photometry method of the present invention can obtain high sensitivity more than twice that of the conventional method by simply arranging three right-angle prisms. It has become possible to measure even a very small amount of solution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の原理を示す直角プリズムの
配置を示す図、第2図は多重回反射光型吸光光度
計測定装置の概観を示す図、第3図は従来技術を
示す図である。 1,5,10…直角プリズム、2,3,6,
7,11,12…直角面、4,8,13…斜面。
FIG. 1 is a diagram showing the arrangement of a rectangular prism illustrating the principle of the present invention, FIG. 2 is a diagram showing an overview of a multi-reflection type absorption photometer measuring device, and FIG. 3 is a diagram showing a prior art. 1, 5, 10...Right angle prism, 2, 3, 6,
7, 11, 12... right angle surface, 4, 8, 13... slope.

Claims (1)

【特許請求の範囲】 1 2個の直角プリズムを隣接させかつ並列して
配置し、前記2個の直角プリズムの斜面と対向し
距離をおいて、かつこの間に被測定物を配して前
記2個のプリズムと90度回転させた直角プリズム
の斜面とを配置し、前記2個の直角プリズムと前
記直角プリズム間を交互に多重回測定用の光を反
射させて前記被測定物を測定することを特徴とす
る多重回反射光型吸光光度計。 2 請求項1において、前記2個の1つの直角プ
リズムの直角部分を前記直角プリズムの斜面と平
行に形成したカツト面を有し、このカツト面から
被測定物を測定後の透過光を取り出すことを特徴
とする多重回反射光型吸光光度計測法。
[Scope of Claims] 1. Two rectangular prisms are arranged adjacently and in parallel, and an object to be measured is disposed between the slopes of the two rectangular prisms, facing the slopes of the two rectangular prisms at a distance. arranging two prisms and a slope of a right-angle prism rotated by 90 degrees, and measuring the object by alternately reflecting light for multiple measurements between the two right-angle prisms and the right-angle prism. A multi-reflection spectrophotometer featuring: 2. According to claim 1, the right angle portion of the two right angle prisms has a cut surface formed parallel to the slope of the right angle prism, and the transmitted light after measuring the object to be measured is extracted from the cut surface. A multi-reflection spectrophotometry method characterized by:
JP7039389A 1989-03-24 1989-03-24 Multiple times reflected light type absorptiometry Granted JPH02249955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7039389A JPH02249955A (en) 1989-03-24 1989-03-24 Multiple times reflected light type absorptiometry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7039389A JPH02249955A (en) 1989-03-24 1989-03-24 Multiple times reflected light type absorptiometry

Publications (2)

Publication Number Publication Date
JPH02249955A JPH02249955A (en) 1990-10-05
JPH0585020B2 true JPH0585020B2 (en) 1993-12-06

Family

ID=13430159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7039389A Granted JPH02249955A (en) 1989-03-24 1989-03-24 Multiple times reflected light type absorptiometry

Country Status (1)

Country Link
JP (1) JPH02249955A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157694A (en) * 1991-12-10 1993-06-25 Kajima Corp Transparency monitor
WO2001048456A1 (en) * 1999-12-29 2001-07-05 Environmental Systems Products, Inc. System and method for remote analysis of small engine vehicle emissions
JP6084399B2 (en) * 2012-08-20 2017-02-22 株式会社四国総合研究所 Optical gas sensor and gas concentration monitoring method
JP6263411B2 (en) * 2014-02-20 2018-01-17 株式会社四国総合研究所 Optical sensor chip
CN104076420B (en) * 2014-06-20 2017-06-06 浙江卷积科技有限公司 Convex surface prism and the laser reflection device based on convex surface prism
EP3719556A1 (en) * 2019-04-05 2020-10-07 Optos PLC Optical system, optical delay line and oct apparatus

Also Published As

Publication number Publication date
JPH02249955A (en) 1990-10-05

Similar Documents

Publication Publication Date Title
EP0206433B1 (en) Methods for measuring the light absorbance of a fluid medium
US3604927A (en) Total reflection fluorescence spectroscopy
US8289511B2 (en) Light-guiding flowcells with minimal stray light
EP0026885B1 (en) Filterphotometer
JP2879141B2 (en) Concentration measuring device and method
CN111272683B (en) Liquid absorption coefficient measuring device and measuring method
US7116423B2 (en) Flow cell for optical detection having reduced sensitivity to refractive index variation
US4746214A (en) Spectrophotometer
US5416579A (en) Method for determining concentration in a solution using attenuated total reflectance spectrometry
Davies et al. A spectrophotometric study of the equilibrium Cr 2 O 2–7+ H 2 O⇌ 2HCrO–4
US4181441A (en) Internal reflectance spectrometer
US5305093A (en) Spectrometer for conducting turbidimetric and colormetric measurements
US3733130A (en) Slotted probe for spectroscopic measurements
US5039224A (en) Self-referencing remote optical probe
JPH0585020B2 (en)
WO2005100955A1 (en) Method and apparatus for determining the absorption of weakly absorbing and/or scattering liquid samples
JPS63111446A (en) Analyzing device
US11650150B2 (en) Prism for measuring liquid concentration
US7227642B2 (en) Absorbance monitor
JP2004205415A (en) Photometric analysis measuring probe apparatus, solution concentration monitoring method and spectroscopic analysis apparatus
JPH0232232A (en) Cell for absorptiometer
JPH08313429A (en) Cell for spectrophotometer
JP2590129B2 (en) Liquid physical property measurement device
Von Halban et al. On the measurement of light absorption
JPS61226639A (en) Throw type component analyzer