JP4536501B2 - Method and apparatus for measuring ozone concentration in ozone water - Google Patents

Method and apparatus for measuring ozone concentration in ozone water Download PDF

Info

Publication number
JP4536501B2
JP4536501B2 JP2004352879A JP2004352879A JP4536501B2 JP 4536501 B2 JP4536501 B2 JP 4536501B2 JP 2004352879 A JP2004352879 A JP 2004352879A JP 2004352879 A JP2004352879 A JP 2004352879A JP 4536501 B2 JP4536501 B2 JP 4536501B2
Authority
JP
Japan
Prior art keywords
light
ozone
ozone water
water
ozone concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004352879A
Other languages
Japanese (ja)
Other versions
JP2006162385A (en
Inventor
隆行 自在丸
浩一 佐久間
繁 河野
勲 澤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2004352879A priority Critical patent/JP4536501B2/en
Publication of JP2006162385A publication Critical patent/JP2006162385A/en
Application granted granted Critical
Publication of JP4536501B2 publication Critical patent/JP4536501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、オゾン水中におけるオゾン濃度を可視光を用いることによって測定する方法及び測定装置に関し、特に、可視光として光の3原色を合成した白色光を用いたオゾン濃度の測定方法及び測定装置に関する。   The present invention relates to a method and an apparatus for measuring ozone concentration in ozone water by using visible light, and more particularly to a method and apparatus for measuring ozone concentration using white light obtained by synthesizing three primary colors of light as visible light. .

従来、オゾン水中のオゾン濃度は、例えば、紫外線を放射する光源と、紫外線を透過する可撓性のチューブ、チューブ内を透過した紫外線を受光する透過光検出器とを有するオゾン濃度計(例えば、特許文献1参照。)等のように波長帯域が240〜270nm程度の紫外線を用いることによって行われていた。   Conventionally, the ozone concentration in ozone water is, for example, an ozone concentration meter (for example, a light source that emits ultraviolet light, a flexible tube that transmits ultraviolet light, and a transmitted light detector that receives ultraviolet light that has passed through the tube) (See Patent Document 1) and the like, which is performed by using ultraviolet rays having a wavelength band of about 240 to 270 nm.

また、比色法を用いてオゾン濃度を測定する方法も知られていたが、これはオゾン水に試薬を添加して、オゾンの酸化力等による試薬の脱色や発色等の色彩の変化を利用したものであった(例えば、特許文献2参照。)。
特開2000−72498号公報 特開平5−52389号公報
In addition, a method of measuring ozone concentration using a colorimetric method was also known, but this was done by adding a reagent to ozone water and using the color change such as decolorization and color development of the reagent due to the oxidizing power of ozone, etc. (For example, refer to Patent Document 2).
JP 2000-72498 A JP-A-5-52389

しかしながら、紫外線を用いた場合には、その紫外線が測定対象となるオゾン水を透過した透過光の強度を紫外線センサにより検出していたが、この紫外線センサは高価であるため、測定にコストがかかりすぎていた。   However, when ultraviolet rays are used, the intensity of the transmitted light that has passed through the ozone water to be measured has been detected by the ultraviolet sensor. However, this ultraviolet sensor is expensive, and the measurement is expensive. It was too much.

また、従来の比色法を用いた場合には、オゾンの作用に基づいて変化する試薬を用い、その試薬の色等の変化を測定していたが、間接的な測定方法であり、そのための特定の試薬を準備する必要もあった。   In addition, when a conventional colorimetric method is used, a reagent that changes based on the action of ozone is used to measure changes in the color of the reagent, but this is an indirect measurement method. It was also necessary to prepare specific reagents.

そこで、本発明は、紫外線センサよりも安価な光電センサを用い、特別な試薬を必要とせず直接的にオゾン濃度を測定することができる、安価で精度の高いオゾン濃度の測定方法及び測定装置を提供することを目的とする。   Therefore, the present invention provides an inexpensive and accurate ozone concentration measuring method and measuring apparatus that can directly measure the ozone concentration without using a special reagent, using a photoelectric sensor that is less expensive than an ultraviolet sensor. The purpose is to provide.

本発明者らは鋭意検討した結果、純水にオゾンを溶解した不純物の少ないオゾン水において、可視光照射によるオゾン水の反射光又は透過光を測定することでオゾン濃度を測定することができることを見出し本発明を完成したものである。   As a result of intensive studies, the present inventors have found that ozone concentration can be measured by measuring reflected or transmitted light of ozone water by irradiation with visible light in ozone water with few impurities dissolved in pure water. The present invention has been completed.

すなわち、本発明のオゾン水中のオゾン濃度の測定方法は、オゾンを溶解した純水からなるオゾン水に、光電センサの投光部から可視光を照射する可視光照射工程と、可視光照射工程により照射された可視光のオゾン水による反射光又は透過光を光電センサの受光部により検出する光検出工程と、光電センサで検出した受光量に基づいてオゾン水中のオゾン濃度を算出する濃度算出工程と、を有することを特徴とするものである。   That is, the method for measuring the ozone concentration in ozone water according to the present invention includes a visible light irradiation step of irradiating ozone water composed of pure water in which ozone is dissolved from a light projecting portion of a photoelectric sensor, and a visible light irradiation step. A light detection step of detecting reflected light or transmitted light of the irradiated visible light by ozone water by a light receiving portion of the photoelectric sensor, and a concentration calculation step of calculating ozone concentration in the ozone water based on the amount of received light detected by the photoelectric sensor; , Characterized by having.

また、本発明でのオゾン水中のオゾン濃度の測定装置は、測定対象となるオゾン水に可視光を照射可能な投光部及びこの投光部から照射された可視光の測定対象オゾン水による反射光又は透過光を検出する受光部からなる光電センサと、測定対象となるオゾン水を収容することができるオゾン水収容槽と、受光部で検出した受光量に基づいてオゾン水中のオゾン濃度を算出する演算部と、を有することを特徴とするものである。   Moreover, the ozone concentration measuring apparatus in the ozone water according to the present invention includes a light projecting unit capable of irradiating the ozone water to be measured with visible light and reflection of the visible light irradiated from the light projecting unit by the ozone water to be measured. Calculates the ozone concentration in the ozone water based on the photoelectric sensor consisting of the light receiving unit that detects light or transmitted light, the ozone water storage tank that can store the ozone water to be measured, and the amount of received light detected by the light receiving unit And an arithmetic unit for performing the processing.

本明細書において、光電センサとは、物体の有無や状態を、光量の変化により検出を可能とするもので、受光した光をその光量(明るさ)に応じた電気信号に変換するものである。   In this specification, the photoelectric sensor is a sensor that can detect the presence or state of an object by a change in the amount of light, and converts received light into an electrical signal corresponding to the amount of light (brightness). .

本発明のオゾン濃度の測定方法及び測定装置によれば、測定装置に用いる部品も容易に入手することができ、従来用いていた部品と比べて安価であるためオゾン濃度の測定装置を安価に提供でき、測定自体も安価に行うことができるためコスト低減に極めて有効である。   According to the ozone concentration measuring method and measuring apparatus of the present invention, the parts used in the measuring apparatus can be easily obtained, and the ozone concentration measuring apparatus is provided at a low cost because it is cheaper than the parts used conventionally. In addition, since the measurement itself can be performed at a low cost, it is extremely effective for reducing the cost.

また、比色法による測定もこれまでの試薬を用いて行う間接法と異なり、濃度の変化によるオゾン水自体の変化を感知して行うもので、直接濃度の測定を行うものであり精度良く測定することができる。   Also, the colorimetric method is different from the indirect method using conventional reagents, and it is performed by sensing the change in ozone water itself due to the change in concentration. can do.

まず、本発明のオゾン濃度の測定装置について図面を参照しながら説明する。
図1は、本発明でのオゾン濃度の測定装置の構成概略を示した図である。
First, the ozone concentration measuring apparatus of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a schematic configuration of an ozone concentration measuring apparatus according to the present invention.

本発明のオゾン濃度の測定装置1は、光電センサ部2、オゾン水収容部3、演算部4から構成されている。   The ozone concentration measuring apparatus 1 according to the present invention includes a photoelectric sensor unit 2, an ozone water storage unit 3, and a calculation unit 4.

本発明に用いる光電センサ部2は、検出光を検出領域に向けて照射するための発光素子を有する投光部2aと検出領域からの光を受けて、光量をその受光量に応じて電気信号に変換する受光部2bとから構成されるものである。   The photoelectric sensor unit 2 used in the present invention receives the light from the light projecting unit 2a having a light emitting element for irradiating the detection light toward the detection region and the light from the detection region, and changes the light amount according to the received light amount. And a light receiving portion 2b that converts the light into the light receiving portion 2b.

この光電センサ部2としては、透過形、反射形等の形式の光電センサを用いることができ、この中でもオゾン水の測定においては図1に示したような反射形であることが好ましい。   As the photoelectric sensor unit 2, a photoelectric sensor of a transmission type, a reflection type, or the like can be used. Among them, a reflection type as shown in FIG. 1 is preferable in measuring ozone water.

反射型の光電センサ部2は投光部2aと受光部2bとが、通常一体となって構成されている。なお、図2は、透過型の光電センサ部2を用いた本発明のオゾン濃度測定装置の構成概略を示した図である。ここで、投光部2aと受光部2bは、測定対象のオゾン水を挟んで対向する位置に配置されている。   In the reflection type photoelectric sensor unit 2, a light projecting unit 2a and a light receiving unit 2b are usually integrally formed. FIG. 2 is a diagram showing a schematic configuration of the ozone concentration measuring apparatus of the present invention using the transmission type photoelectric sensor unit 2. Here, the light projecting unit 2a and the light receiving unit 2b are arranged at positions facing each other across the ozone water to be measured.

このような光電センサ2における投光部2aは、LED、LD(レーザーダイオード)等のように可視光を照射することができる光源を有するものであれば特に制限されないが、オゾン水への特定の波長の可視光照射を効率的に行うことができ、種々の波長を組合せて照射が可能であって、オゾン濃度の測定に適する点からLEDであることが好ましい。   The light projecting unit 2a in such a photoelectric sensor 2 is not particularly limited as long as it has a light source capable of irradiating visible light such as an LED and an LD (laser diode), but is not limited to ozone water. It is preferable to use an LED from the viewpoint that it can efficiently irradiate visible light having a wavelength, can irradiate by combining various wavelengths, and is suitable for measurement of ozone concentration.

ここで照射する可視光は、赤色領域、緑色領域、青色領域の各領域の波長を含む少なくとも3種類の波長を含んでいる可視光であって、白色光と呼ばれている可視光であることが好ましい。   The visible light irradiated here is visible light including at least three types of wavelengths including wavelengths of the red region, the green region, and the blue region, and is called visible light. Is preferred.

このとき、赤色領域は630〜720nmの波長の光であり、緑色領域は500〜555nmの波長の光であり、青色領域は465〜490nmの波長の光であり、それぞれ665nm、520nm、465nmにピークを有する可視光であることが測定の精度が高まる点で特に好ましい。照射された可視光は、測定対象となるオゾン水によりそれぞれ反射、透過、吸収され、オゾン水のオゾン濃度によって特有の反射光及び透過光に変換されるのである。   At this time, the red region is light having a wavelength of 630 to 720 nm, the green region is light having a wavelength of 500 to 555 nm, the blue region is light having a wavelength of 465 to 490 nm, and peaks at 665 nm, 520 nm, and 465 nm, respectively. It is particularly preferable that the visible light has a higher measurement accuracy. The irradiated visible light is reflected, transmitted, and absorbed by the ozone water to be measured, and is converted into specific reflected light and transmitted light depending on the ozone concentration of the ozone water.

また、この投光部は、照射対象であるオゾン水に上下左右のいずれから光を照射してもよいが、下方から可視光を照射することができるように設置することが好ましく、鉛直上下方からの照射が特に好ましい。このように、下方から可視光照射を行った場合には気泡による影響を受け難いという利点がある。   In addition, this light projecting unit may irradiate the ozone water to be irradiated from any of the upper, lower, left and right sides, but is preferably installed so that visible light can be irradiated from below, vertically upward and downward Is particularly preferred. Thus, when visible light irradiation is performed from the lower side, there is an advantage that it is hardly affected by bubbles.

そして、受光部2bは、受光素子としては、フォトトランジスタ、フォトダイオード、PSD(位置検出用フォトダイオード)等の受光素子からなっており、これが受光量に応じて電気信号への変換を行う。この電気信号量によって受光量を検知するのである。   The light receiving unit 2b includes a light receiving element such as a phototransistor, a photodiode, or a PSD (position detecting photodiode) as a light receiving element, which converts it into an electric signal according to the amount of light received. The amount of received light is detected based on this amount of electrical signal.

また、この光電センサは、その構成によっても分類することができ、アンプ内蔵型、アンプ分離型、ファイバ型等のいずれの型でもよく、この中では検出部と受光部とが分離できるためセンサ部をオゾン水配管に近づけることが可能になるアンプ分離型であることが好ましい。   In addition, this photoelectric sensor can be classified according to its configuration, and may be any type such as an amplifier built-in type, an amplifier separation type, and a fiber type. In this, the sensor unit can be separated from the detection unit. It is preferable to be an amplifier separation type that makes it possible to approach the ozone water pipe.

この光電センサ部2の構成例を図3に示したが、この光電センサ部2は、光源ボックス110とレンズ・素子ボックス100とから構成されている。光源ボックス110内は赤色光源111、青色光源112、緑色光源113及び特殊ハーフミラー114が図に示すように配置されており、赤色光源111,緑色光源113,青色光源112の3色光源による白色光線を照射可能となっている。     A configuration example of the photoelectric sensor unit 2 is shown in FIG. 3, and the photoelectric sensor unit 2 includes a light source box 110 and a lens / element box 100. In the light source box 110, a red light source 111, a blue light source 112, a green light source 113, and a special half mirror 114 are arranged as shown in the figure, and white light from three color light sources of the red light source 111, the green light source 113, and the blue light source 112 is disposed. Can be irradiated.

この光源ボックス110から照射される白色光線は光ファイバー6で連結されたレンズ・素子ボックス100に入射し、入射した白色光線は投光レンズ101に向かって走り、投光レンズ101を通過した白色光線はオゾン水収容部3で反射し、その反射光は受光レンズ102を通過して受光素子120で受光される。この受光素子120の受光量に応じて後述する演算部4で計算処理された結果が得られることとなる。     The white light emitted from the light source box 110 enters the lens / element box 100 connected by the optical fiber 6, and the incident white light travels toward the projector lens 101, and the white light that has passed through the projector lens 101 Reflected by the ozone water storage unit 3, the reflected light passes through the light receiving lens 102 and is received by the light receiving element 120. According to the amount of light received by the light receiving element 120, a result of calculation processing by the calculation unit 4 described later is obtained.

また、本発明で用いるオゾン水収容部3は、測定対象のオゾン水を収容することができ、光透過性の容器で製造されているものであればよい。オゾン水収容部3は、試料となるオゾン水を採取して収容するセル型のものの他、オゾン水の使用環境におけるオゾン水の流路の一部として構成することもできる。   Moreover, the ozone water accommodating part 3 used by this invention should just accommodate the ozone water of a measuring object, and is manufactured with the light transmissive container. The ozone water storage unit 3 can be configured as a part of a flow path of ozone water in an environment where ozone water is used, in addition to a cell type that collects and stores ozone water as a sample.

ここでオゾン水収容部3に用いられる光透過性の素材としては、例えば、石英、ガラス、サファイア、透過性のあるフッ素樹脂等を挙げることができ、屈折率が小さく測定を阻害することがないこと等から石英又はサファイアであることが好ましい。   Here, examples of the light-transmitting material used for the ozone water storage unit 3 include quartz, glass, sapphire, a transparent fluororesin, and the like, and the refractive index is small and measurement is not hindered. Therefore, quartz or sapphire is preferable.

また、光電センサ部2として反射型を用いる場合には、その投光部2aが、オゾン水収容部3の長軸の延長方向に配置されていることが好ましく、さらに、このときオゾン水収容部3が管状(柱状)であることが好ましい。オゾン水収容部3が管状の場合には、直径2〜3cm、長さ15〜30cmのオゾン水収容部3であることが好ましい。ここで、オゾン水収容部3のサイズは測定するオゾン水のオゾン濃度に合わせて調節することができ、例えば、オゾン濃度が15〜45ppmのオゾン水を測定する場合には、オゾン水収容部3は15〜30cmの長さのものを、40〜70ppmのオゾン水を測定する場合には、7〜10cmの長さのものを使用することが特に好ましい。   Moreover, when using a reflection type as the photoelectric sensor part 2, it is preferable that the light projection part 2a is arrange | positioned in the extension direction of the long axis of the ozone water accommodating part 3, and also the ozone water accommodating part at this time 3 is preferably tubular (columnar). When the ozone water storage part 3 is tubular, the ozone water storage part 3 having a diameter of 2 to 3 cm and a length of 15 to 30 cm is preferable. Here, the size of the ozone water storage unit 3 can be adjusted according to the ozone concentration of the ozone water to be measured. For example, when measuring ozone water having an ozone concentration of 15 to 45 ppm, the ozone water storage unit 3 Is preferably 15 to 30 cm long, and more preferably 7 to 10 cm long when measuring 40 to 70 ppm of ozone water.

次に、本発明で用いる演算部4は、光電センサ部2の受光部2bが受光した光に基づいて変換された電気信号を計測するものであり、この演算部4は、マイクロプロセッサ、メモリ等から構成され、光電センサ部2における受光量の数値化を行い、必要に応じて演算結果をメモリに格納したり、予め保存されているデータを読み出して比較を行なったりするものである。この演算部4で計測された受光量は、その計測値を表示する表示部を有しており、予めオゾン濃度と光電センサ部2で感知した受光量による計測値との関係を分析して検量線を作成しておけば、表示された計測値からオゾン濃度を即座に得ることができる。   Next, the calculation unit 4 used in the present invention measures an electrical signal converted based on the light received by the light receiving unit 2b of the photoelectric sensor unit 2, and the calculation unit 4 includes a microprocessor, a memory, and the like. Is configured to digitize the amount of light received by the photoelectric sensor unit 2 and store the calculation result in a memory as necessary, or read out the data stored in advance and perform comparison. The received light amount measured by the calculation unit 4 has a display unit for displaying the measured value, and analyzes the relationship between the ozone concentration and the measured value based on the received light amount sensed by the photoelectric sensor unit 2 in advance for calibration. If a line is created, the ozone concentration can be obtained immediately from the displayed measurement value.

さらに、演算部4を、受光量の計測値から検量線データとの比較によってオゾン濃度を算出処理まで行うようにしておけば、最終的に測定したオゾン水中のオゾン濃度を表示部に表示させることもできる。   Furthermore, if the calculation unit 4 is configured to perform the process of calculating the ozone concentration by comparing the measurement value of the received light amount with the calibration curve data, the ozone concentration in the finally measured ozone water is displayed on the display unit. You can also.

次に、本発明のオゾン水濃度の測定方法について説明する。   Next, the method for measuring the concentration of ozone water according to the present invention will be described.

本発明の可視光照射工程は、光電センサ部2の投光部2aから測定対象であるオゾン水に可視光を照射するものであり、この可視光の照射により、オゾンの濃度に応じた反射光及び透過光が現出することとなる。   The visible light irradiation process of the present invention is to irradiate the ozone water, which is a measurement object, from the light projecting unit 2a of the photoelectric sensor unit 2, and the reflected light corresponding to the ozone concentration by the irradiation of the visible light. And transmitted light will appear.

ここで照射に用いられる可視光は、赤色領域、緑色領域、青色領域の各領域の波長を含む少なくとも3種類の可視光を有するものであることが好ましい。このとき、赤色領域は630〜720nmの波長の光であり、緑色領域は500〜555nmの波長の光であり、青色領域は455〜490nmにピークを有する波長の光である。各領域において、それぞれ665nm、520nm、465nmにピークを有する可視光であることが測定の精度が高くなる点で好ましい。照射された可視光は、オゾン水によりそれぞれの光が、その波長によって反射、透過、吸収され、そのオゾン濃度によって特有の反射光及び透過光に変換される。   Here, it is preferable that the visible light used for irradiation has at least three types of visible light including wavelengths of the red region, the green region, and the blue region. At this time, the red region is light having a wavelength of 630 to 720 nm, the green region is light having a wavelength of 500 to 555 nm, and the blue region is light having a wavelength having a peak at 455 to 490 nm. In each region, visible light having peaks at 665 nm, 520 nm, and 465 nm, respectively, is preferable in terms of high measurement accuracy. The irradiated visible light is reflected, transmitted, and absorbed by ozone water according to its wavelength, and converted into specific reflected light and transmitted light depending on its ozone concentration.

また、本発明の光検出工程は、可視光照射工程によってオゾン水に照射された光が、オゾン水によって反射又は透過したときの光を光電センサ部2の受光部2bにより検出する工程であり、ここでは先に述べたように可視光照射によって現出した、オゾン濃度に特有の反射光又は透過光が検出される。   Further, the light detection step of the present invention is a step of detecting light when the light irradiated to the ozone water by the visible light irradiation step is reflected or transmitted by the ozone water by the light receiving unit 2b of the photoelectric sensor unit 2, Here, as described above, reflected light or transmitted light specific to the ozone concentration, which appears by irradiation with visible light, is detected.

この検出に用いられる受光部は、フォトトランジスタ、フォトダイオード、PSD(位置検出用フォトダイオード)等の受光素子からなるものであり、これが受光量を検知するものである。   The light receiving unit used for this detection is composed of a light receiving element such as a phototransistor, a photodiode, or a PSD (position detecting photodiode), and this detects the amount of light received.

ここで検出する反射光又は透過光は、オゾン水のオゾン濃度に依存したものであるため、オゾン濃度により光の受光量が変化し、この工程で検出された受光量の計測値は、次の濃度算出工程で用いられる。   Since the reflected light or transmitted light detected here depends on the ozone concentration of ozone water, the amount of received light varies depending on the ozone concentration, and the measured value of the amount of received light detected in this step is Used in the concentration calculation step.

この受光量の検出には、オゾン水を使用環境とは別個の収容槽に収容して測定することができるが、オゾン水中のオゾンは時間の経過と共に分解して徐々にオゾン濃度が低下していくことから、オゾン水の使用環境下において、オゾン水収容槽を設けて測定することが好ましい。   The amount of received light can be measured by storing ozone water in a storage tank separate from the environment in which it is used, but ozone in ozone water decomposes over time and the ozone concentration gradually decreases. Therefore, it is preferable to measure by providing an ozone water storage tank under the usage environment of ozone water.

例えば、オゾン水製造装置で製造、導入されたオゾン水を、オゾン水収容部3に収容するが、この収容部がオゾン水の配管途中に設けられていれば、オゾン水を流すだけで試料の採取をすることなく測定を行うことができる。これは、実際に使用されているオゾン水のオゾン濃度を正確に調べることができる他、従来の試薬を用いた系ではオゾンの化学的変化を伴うことから不可能であったオゾン濃度の測定方法である。   For example, the ozone water produced and introduced by the ozone water production apparatus is accommodated in the ozone water accommodating portion 3, and if this accommodating portion is provided in the middle of the ozone water piping, the sample water can be simply flowed. Measurement can be performed without sampling. In addition to being able to accurately check the ozone concentration of ozone water that is actually used, this is a method for measuring the ozone concentration, which was impossible due to chemical changes in ozone in systems using conventional reagents. It is.

なお、オゾン水中のオゾン濃度を測定するには、オゾンを溶解する水が純水であることが必要である。純水は水中の不純物を除去したものであり、本発明のように光電センサ部2を用いた測定においてノイズとなる物質が予め除去されているから、可視光による測定が可能となったのである。すなわち、純水を用いたオゾン水では不純物による測定誤差が少なくなり、オゾンの濃度に基づく光学的な性質の測定を精度良く行うことができるようになって初めて測定可能となったものである。   In addition, in order to measure the ozone concentration in ozone water, the water in which ozone is dissolved needs to be pure water. Pure water is obtained by removing impurities in water, and since substances that cause noise in the measurement using the photoelectric sensor unit 2 are previously removed as in the present invention, measurement with visible light is possible. . In other words, ozone water using pure water reduces measurement errors due to impurities, and measurement is possible only after optical properties based on ozone concentration can be measured with high accuracy.

また、オゾン水を製造するのに、前もって純水中に二酸化炭素を溶解しておくとオゾンの溶解量を増やすことができることが知られているが、本発明においては、可視光の波長帯域を用いているため、赤外領域に強い吸収帯域を有する二酸化炭素の溶解によるオゾン濃度測定への影響は出にくく、本測定方法によれば炭酸溶解によるノイズは極めて小さく無視できるものである。   In addition, it is known that the amount of dissolved ozone can be increased if carbon dioxide is dissolved in pure water in advance to produce ozone water. In the present invention, the wavelength band of visible light is increased. Therefore, the ozone concentration measurement is hardly influenced by the dissolution of carbon dioxide having a strong absorption band in the infrared region. According to this measurement method, the noise due to the carbonic acid dissolution is extremely small and can be ignored.

ここで、オゾン水中に溶解するガス成分について吸収スペクトルを見てみると、酸素は130〜180nmにシューマンルンゲ連続吸収帯、オゾンは220〜300nmにハートレー吸収帯、450〜850nmにチャピウス吸収帯、二酸化炭素は4240nm近辺の赤外吸収とそれぞれ代表的な吸収帯域が異なるのである。   Here, looking at the absorption spectrum of gas components dissolved in ozone water, oxygen is a Schumann-Lunge continuous absorption band at 130 to 180 nm, ozone is a Hartley absorption band at 220 to 300 nm, a Chapius absorption band at 450 to 850 nm, and dioxide. Carbon has a typical absorption band different from infrared absorption around 4240 nm.

ただし、オゾンのチャピウス吸収帯は他の吸収帯に比べ吸収強度が弱いが、本発明のように純水を用いてノイズを極力減らすことによって十分に測定が可能となったものである。   However, although the absorption intensity of the chapius absorption band of ozone is weaker than that of other absorption bands, it can be sufficiently measured by reducing noise as much as possible using pure water as in the present invention.

なお、ここで用いる純水としては、測定を精度良く行うことができることから、その比抵抗値が1.0〜18.3MΩ・cmの範囲であることが好ましく、10.0〜18.3MΩ・cmの超純水であることが特に好ましい。   The pure water used here preferably has a specific resistance value in the range of 1.0 to 18.3 MΩ · cm, since it can be measured with high accuracy, and 10.0 to 18.3 MΩ · cm. It is especially preferable that it is ultrapure water of cm.

さらに、ここで用いる純水に二酸化炭素を溶解する場合には、二酸化炭素を溶解した水のpHは4〜5であることが好ましく、測定時の水温が15〜25℃であることが好ましい。これらの条件が、可視光による測定を精度良く行うことができるのに好ましい条件である。   Furthermore, when carbon dioxide is dissolved in the pure water used here, the pH of the water in which carbon dioxide is dissolved is preferably 4 to 5, and the water temperature during measurement is preferably 15 to 25 ° C. These conditions are preferable conditions for enabling measurement with visible light with high accuracy.

本発明の濃度算出工程は、光検出工程で検出された受光量に基づいて、測定対象であるオゾン水のオゾン濃度を算出するものである。濃度の算出は、予めオゾン濃度と受光量による計測値との関係を分析して検量線を作成しておけば、得られた計測値からオゾン濃度を直ちに算出することができ、これをマイクロプロセッサ等により演算処理させることで即座にオゾン濃度結果を得ることができる。   The concentration calculation process of the present invention calculates the ozone concentration of ozone water as the measurement object based on the amount of light received detected in the light detection process. The concentration can be calculated by analyzing the relationship between the ozone concentration and the measured value based on the amount of received light in advance and creating a calibration curve, and the ozone concentration can be calculated immediately from the measured value. The ozone concentration result can be obtained immediately by performing arithmetic processing by the above.

以下、実施例を参照しながら本発明について説明する。   The present invention will be described below with reference to examples.

(実施例1)
ここで用いるオゾン濃度測定装置は、図4に記載したような装置構成をとっており、まず内部に底面が平坦なオゾン水収容部が設けられている比色管20と、比色管20の下部に取り付けられたセンサ21と、ここで得られた信号をオゾン濃度測定装置指示値に変換する演算部を内蔵する測定器22とから構成されたものであり、比色管20はオゾン水製造装置23とオゾン水導入管24により接続され、さらにオゾン水排水管25を備えたものである。なお、センサ21は、図3で示したようにレンズ・素子ボックスと光源ボックスが光ファイバーで連結されたものである。
Example 1
The ozone concentration measuring apparatus used here has an apparatus configuration as shown in FIG. 4. First, the colorimetric tube 20 in which an ozone water container having a flat bottom surface is provided, and the colorimetric tube 20. The colorimetric tube 20 is composed of a sensor 21 attached to the lower part and a measuring instrument 22 having a calculation unit for converting the signal obtained here into an ozone concentration measuring device instruction value. The apparatus 23 is connected to the ozone water introduction pipe 24 and further includes an ozone water drain pipe 25. As shown in FIG. 3, the sensor 21 has a lens / element box and a light source box connected by an optical fiber.

オゾン水製造装置23で製造されたオゾン水は、オゾン水導入管24を通って比色管20内のオゾン水収容部(管長:250mm)へ連続して注入され、そのままオゾン水排水管25から排水されるようにした。従って、実際に測定に使用するオゾン水を流しつづけたまま、そのオゾン濃度を測定することができる。
センサ21は株式会社キーエンス製の光センサを用いて、センサ21での受光素子で得られた信号は測定器22内の演算部で計算処理され、図5の縦軸に示したオゾン濃度測定装置指示値(1000max)を算出した。
The ozone water produced by the ozone water production device 23 is continuously injected into the ozone water storage part (tube length: 250 mm) in the colorimetric tube 20 through the ozone water introduction tube 24, and directly from the ozone water drain tube 25. It was made to drain. Therefore, the ozone concentration can be measured while the ozone water actually used for measurement is kept flowing.
The sensor 21 uses an optical sensor manufactured by Keyence Corporation, and the signal obtained by the light receiving element in the sensor 21 is subjected to calculation processing by a calculation unit in the measuring instrument 22, and the ozone concentration measuring device shown on the vertical axis in FIG. The indicated value (1000 max) was calculated.

(比較例1)
実施例1で測定された指示値とオゾン水中のオゾン濃度の相関性を見るため、既に市販されている株式会社アプリクス製溶存オゾン濃度計(型式:OM−101)と旧コス社(現株式会社堀場アドバンスドテクノ)製インライン型溶存オゾンモニタ(型式:OZ−96i)とを用いて測定した。
測定は実施例1のオゾン水導入管24から配管を分岐して、前記2社の装置に接続して同時測定を行った。
(Comparative Example 1)
In order to see the correlation between the indicated value measured in Example 1 and the ozone concentration in the ozone water, the dissolved ozone concentration meter (model: OM-101) manufactured by Aplix Co., Ltd. and the former Kos Co. It was measured using an inline type dissolved ozone monitor (model: OZ-96i) manufactured by HORIBA Advanced Techno.
The measurement was performed by branching a pipe from the ozone water introduction pipe 24 of Example 1 and connecting to the devices of the two companies.

この測定結果を図5に示した。株式会社アプリクス製溶存オゾン濃度計での測定結果と実施例1との測定結果を(1)ア社(株式会社アプリクス)との対比(□印:測定点)及び(2)コス社(株式会社堀場アドバンスドテクノ)と実施例1との対比(◆印:測定点)で示した。いずれの対比結果もオゾン濃度10〜40ppmの範囲で良好な直線関係が得られた。   The measurement results are shown in FIG. The measurement results of the dissolved ozone concentration meter manufactured by Aplix Corporation and the measurement results of Example 1 are compared with (1) A company (Aplix Corporation) (□: measurement point) and (2) Kos Co., Ltd. This is shown by the comparison between HORIBA Advanced Techno) and Example 1 (♦ mark: measurement point). In all the comparison results, a good linear relationship was obtained in the ozone concentration range of 10 to 40 ppm.

なお、実施例1での比色管22内のオゾン水収容部の長さを8cmのものを用いて実施例1と同じ方法で測定したところ、オゾン濃度40〜70ppmの範囲で比較例1と同様の直線関係が得られた。   In addition, when the length of the ozone water storage part in the colorimetric tube 22 in Example 1 was measured by the same method as Example 1 using the thing of 8 cm, it was compared with Comparative Example 1 in the range of ozone concentration 40-70 ppm. A similar linear relationship was obtained.

本発明のオゾン濃度測定装置の構成例概略を示した図である。It is the figure which showed the example of a structure example of the ozone concentration measuring apparatus of this invention. 本発明のオゾン濃度測定装置の別の構成例概略を示した図である。It is the figure which showed another structural example outline of the ozone concentration measuring apparatus of this invention. 本発明で用いる光電センサの構成例を示した図である。It is the figure which showed the structural example of the photoelectric sensor used by this invention. 実施例で用いたオゾン濃度測定装置の構成例を示した図である。It is the figure which showed the structural example of the ozone concentration measuring apparatus used in the Example. オゾン濃度と本発明のオゾン濃度測定装置の指示値との相関図である。It is a correlation diagram of ozone concentration and the instruction | indication value of the ozone concentration measuring apparatus of this invention.

符号の説明Explanation of symbols

1…オゾン濃度測定装置、2…光電センサ部、2a…投光部、2b…受光部、3…オゾン水収容部、4…演算部、5…白色光光路、6…光ファイバー、20…比色管、21…センサ、22…測定器、23…オゾン水製造装置、24…オゾン水導入管、25…オゾン水排水管、100…レンズ・素子ボックス、101…投光レンズ、102…受光レンズ、120…受光素子、110…光源ボックス、111…赤色光源、112…青色光源、113…緑色光源、114…特殊ハーフミラー   DESCRIPTION OF SYMBOLS 1 ... Ozone concentration measuring device, 2 ... Photoelectric sensor part, 2a ... Light projection part, 2b ... Light receiving part, 3 ... Ozone water accommodating part, 4 ... Calculation part, 5 ... White light path, 6 ... Optical fiber, 20 ... Colorimetric Pipe, 21 ... Sensor, 22 ... Measuring instrument, 23 ... Ozone water production device, 24 ... Ozone water introduction pipe, 25 ... Ozone water drain pipe, 100 ... Lens / element box, 101 ... Projection lens, 102 ... Light receiving lens, DESCRIPTION OF SYMBOLS 120 ... Light receiving element, 110 ... Light source box, 111 ... Red light source, 112 ... Blue light source, 113 ... Green light source, 114 ... Special half mirror

Claims (5)

オゾンが溶解した純水からなるオゾン水に、光電センサの投光部からチャピウス吸収帯の範囲の大部分をカバーする赤色領域630〜720nm、緑色領域500〜555nm及び青色領域465〜490nmの各領域の波長を含む少なくとも3種類の波長を含んでいる可視光を照射する可視光照射工程と、
前記可視光照射工程により照射された可視光の前記オゾン水による反射光又は透過光を前記光電センサの受光部により検出する光検出工程と、
前記光電センサで検出した前記少なくとも3種類の波長を含む光の受光量に基づいて前記オゾン水中のオゾン濃度を算出する濃度算出工程と、
を有することを特徴とするオゾン水中のオゾン濃度の測定方法。
Each of the red region 630 to 720 nm , the green region 500 to 555 nm, and the blue region 465 to 490 nm covering most of the range from the light projecting portion of the photoelectric sensor to the Chapius absorption band in ozone water composed of pure water in which ozone is dissolved. A visible light irradiation step of irradiating visible light including at least three types of wavelengths including
A light detection step of detecting reflected light or transmitted light of the visible light irradiated by the ozone water by the visible light irradiation step by a light receiving unit of the photoelectric sensor;
A concentration calculating step of calculating an ozone concentration in the ozone water based on the amount of received light including the at least three types of wavelengths detected by the photoelectric sensor;
A method for measuring ozone concentration in ozone water.
前記可視光が、665nmにピークを持つ赤色光、520nmにピークを持つ緑色光及び465nmにピークを持つ青色光からなる白色光であることを特徴とする請求項1記載のオゾン濃度の測定方法。 2. The ozone concentration measuring method according to claim 1 , wherein the visible light is white light composed of red light having a peak at 665 nm, green light having a peak at 520 nm, and blue light having a peak at 465 nm. 前記純水の比抵抗値が10.0〜18.3MΩ・cmであることを特徴とする請求項1又は2記載のオゾン濃度の測定方法。 The method for measuring ozone concentration according to claim 1 or 2, wherein the specific resistance value of the pure water is 10.0 to 18.3 MΩ · cm. 測定対象となるオゾン水にチャピウス吸収帯の範囲の大部分をカバーする赤色領域630〜720nm、緑色領域500〜555nm及び青色領域465〜490nmの各領域の波長を含む少なくとも3種類の波長からなる可視光を照射可能な投光部及び前記投光部から照射された可視光の前記測定対象オゾン水による反射光又は透過光を検出する受光部からなる光電センサと、
前記測定対象となるオゾン水としてオゾンが溶解した純水を収容するオゾン水収容槽と、
前記受光部で検出した前記少なくとも3種類の波長を含む光の受光量に基づいてオゾン水中のオゾン濃度を算出する演算部と、
を有することを特徴とするオゾン水中のオゾン濃度の測定装置。
Visible light comprising at least three wavelengths including wavelengths of red region 630 to 720 nm , green region 500 to 555 nm, and blue region 465 to 490 nm covering most of the range of the Chapius absorption band in the ozone water to be measured. A photoelectric sensor comprising a light projecting unit capable of irradiating light and a light receiving unit for detecting reflected light or transmitted light of the measurement target ozone water of visible light irradiated from the light projecting unit;
An ozone water storage tank for storing pure water in which ozone is dissolved as the ozone water to be measured;
A calculation unit that calculates an ozone concentration in the ozone water based on an amount of received light including the at least three types of wavelengths detected by the light receiving unit;
A device for measuring the ozone concentration in ozone water.
前記投光部が、665nmにピークを持つ赤色光を照射可能なLED、520nmにピークを持つ緑色光を照射可能なLED及び465nmにピークを持つ青色光を照射可能なLEDから構成されることを特徴とする請求項4記載のオゾン濃度の測定装置。 The light projecting unit is composed of an LED capable of emitting red light having a peak at 665 nm, an LED capable of emitting green light having a peak at 520 nm, and an LED capable of emitting blue light having a peak at 465 nm. The ozone concentration measuring device according to claim 4, wherein
JP2004352879A 2004-12-06 2004-12-06 Method and apparatus for measuring ozone concentration in ozone water Active JP4536501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004352879A JP4536501B2 (en) 2004-12-06 2004-12-06 Method and apparatus for measuring ozone concentration in ozone water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004352879A JP4536501B2 (en) 2004-12-06 2004-12-06 Method and apparatus for measuring ozone concentration in ozone water

Publications (2)

Publication Number Publication Date
JP2006162385A JP2006162385A (en) 2006-06-22
JP4536501B2 true JP4536501B2 (en) 2010-09-01

Family

ID=36664575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004352879A Active JP4536501B2 (en) 2004-12-06 2004-12-06 Method and apparatus for measuring ozone concentration in ozone water

Country Status (1)

Country Link
JP (1) JP4536501B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5670717B2 (en) * 2010-12-22 2015-02-18 俊介 細川 Ozone gas supply device
JP6180905B2 (en) * 2013-12-03 2017-08-16 株式会社ディスコ Water quality inspection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308028A (en) * 1993-04-27 1994-11-04 Japan Steel Works Ltd:The Light measuring apparatus and ozone water concentration meter
JPH09321335A (en) * 1996-03-25 1997-12-12 Omron Corp Light projector and optical apparatus using the same
JP2001139308A (en) * 1999-11-09 2001-05-22 Natl Inst Of Advanced Industrial Science & Technology Meti Ozone generating device
JP2003294624A (en) * 2002-04-02 2003-10-15 Mitsubishi Heavy Ind Ltd Ozone monitoring device
JP2003337365A (en) * 2002-05-17 2003-11-28 Mitsutoyo Corp Right illumination device
WO2005090946A1 (en) * 2004-03-12 2005-09-29 Mks Instruments, Inc. Ozone concentration sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308028A (en) * 1993-04-27 1994-11-04 Japan Steel Works Ltd:The Light measuring apparatus and ozone water concentration meter
JPH09321335A (en) * 1996-03-25 1997-12-12 Omron Corp Light projector and optical apparatus using the same
JP2001139308A (en) * 1999-11-09 2001-05-22 Natl Inst Of Advanced Industrial Science & Technology Meti Ozone generating device
JP2003294624A (en) * 2002-04-02 2003-10-15 Mitsubishi Heavy Ind Ltd Ozone monitoring device
JP2003337365A (en) * 2002-05-17 2003-11-28 Mitsutoyo Corp Right illumination device
WO2005090946A1 (en) * 2004-03-12 2005-09-29 Mks Instruments, Inc. Ozone concentration sensor

Also Published As

Publication number Publication date
JP2006162385A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
EP1730495B1 (en) Ozone concentration sensor
US7491366B2 (en) Portable multi-channel device for optically testing a liquid sample
KR101684407B1 (en) Water pollution measurement system using optical sensor and water pollution measurement apparatus
CN102262061A (en) Method and device for detecting concentration of chlorine dioxide gas on line
CA2611876C (en) Uv transmittance measuring device
US8077316B2 (en) Chlorine dioxide sensor
JP4536501B2 (en) Method and apparatus for measuring ozone concentration in ozone water
CA2409424A1 (en) A method and an apparatus for producing a gaseous medium
CA2299881C (en) Method and apparatus for photometric analysis of chlorine dioxide solutions
JP5324346B2 (en) Measuring apparatus and measuring method
JP2002514758A (en) Systems and methods for optical chemical detection
AU732530B2 (en) Device for measuring the partial pressure of gases dissolved in liquids
JP2009204554A (en) Method of detecting colored state of hydrochloric acid
JP5576084B2 (en) Outdoor crop internal quality measuring device
JP2009090126A (en) Device for acquiring information of blood
US20230098744A1 (en) Multi-Wavelength Ozone Concentration Sensor and Method of Use
WO2023204236A1 (en) Fluid concentration measuring device
JPS5899733A (en) Turbidimeter
JP2007155674A (en) Microcell
KR20240072224A (en) Multi-wavelength ozone concentration sensor and method of use
JP2023062500A (en) Oil content measuring device and oil content measuring method
JP2005181008A5 (en)
JP2023020634A (en) Optical water quality measuring device
JP2011117747A (en) Silica concentration measurement apparatus and silica concentration measurement method
CN118130406A (en) Water quality analysis method, device and equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4536501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250