JP2007155674A - Microcell - Google Patents

Microcell Download PDF

Info

Publication number
JP2007155674A
JP2007155674A JP2005355298A JP2005355298A JP2007155674A JP 2007155674 A JP2007155674 A JP 2007155674A JP 2005355298 A JP2005355298 A JP 2005355298A JP 2005355298 A JP2005355298 A JP 2005355298A JP 2007155674 A JP2007155674 A JP 2007155674A
Authority
JP
Japan
Prior art keywords
light
measured
microcell
flow path
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005355298A
Other languages
Japanese (ja)
Inventor
Hidekuni Takao
英邦 高尾
Kazuhiro Miyamura
和宏 宮村
Makoto Ishida
誠 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Toyohashi University of Technology NUC
Original Assignee
Horiba Ltd
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd, Toyohashi University of Technology NUC filed Critical Horiba Ltd
Priority to JP2005355298A priority Critical patent/JP2007155674A/en
Publication of JP2007155674A publication Critical patent/JP2007155674A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact, thin-type microcell capable of easily and highly accurately measuring the concentration of liquids to be measured having a wide concentration range from low concentration to high concentration by one cell. <P>SOLUTION: The microcell is provided with both a semiconductor substrate in which a plurality of channels having different optical path lengths are formed and which is integrally provided with a photo-detection part and an electric circuit for processing detection signals outputted from the photo-detection part and a cover member pasted to the surface of the substrate. Grooves having bottoms are formed in either one of the semiconductor substrate or the photo-detection part, and the channels are formed by blocking opening parts of the grooves having bottoms in the other one of the semiconductor substrate and the photo-detection part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、幅広い濃度の被測定液を測定することが可能であり、測定結果の校正が容易に行え、かつ高い測定精度を有するマイクロセルに関するものである。   The present invention relates to a microcell that can measure liquids to be measured in a wide range of concentrations, can easily calibrate measurement results, and has high measurement accuracy.

従来、吸光度計のセルとしては、一般的にガラス等の光透過性物質からなり有底角筒形状を有するセルが用いられている。このようなセルを用いて被測定液の吸光度を測定するには、まず校正液をセルに充填し吸光度を測定し校正を行った後、同一のセルに被測定液を充填し吸光度測定を行っている。   Conventionally, as a cell of an absorptiometer, a cell made of a light-transmitting substance such as glass and having a bottomed rectangular tube shape is generally used. To measure the absorbance of a solution to be measured using such a cell, first fill the cell with a calibration solution, measure the absorbance and calibrate, then fill the same cell with the solution to be measured and measure the absorbance. ing.

しかしながら、1つの吸光セルを用いて様々な濃度の被測定液を測定しようとすると、光路長が固定されてしまうため、高濃度の被測定液では測定可能な吸光度を越えてしまい被測定液の希釈が必要となり、また、低濃度の被測定液では正確な測定値が得られないという問題を有する。   However, if one solution cell is used to measure a solution to be measured at various concentrations, the optical path length will be fixed. Dilution is required, and there is a problem that an accurate measurement value cannot be obtained with a low-concentration liquid to be measured.

このため、低濃度から高濃度の幅広い濃度を有する被測定液の吸光度を測定するには光路長の異なる複数のセルを用意する必要がある。しかしながら、複数のセルを用いた場合はセルごとに校正を行う必要があるため作業が煩雑になるという問題がある。   For this reason, it is necessary to prepare a plurality of cells having different optical path lengths in order to measure the absorbance of a liquid to be measured having a wide range of concentrations from low to high. However, when a plurality of cells are used, it is necessary to perform calibration for each cell, which causes a problem that the work becomes complicated.

そこで本発明は、MEMS(Micro Electro Mecanical Systems)技術を用いて、1つのセルで低濃度から高濃度に至る幅広い濃度を有する被測定液の濃度測定を容易にかつ高精度で行いうる、小型でかつ薄型のマイクロセルを提供すべく図ったものである。   Therefore, the present invention is a small size that can easily and accurately measure a concentration of a liquid to be measured having a wide range from a low concentration to a high concentration in one cell by using a MEMS (Micro Electro Mechanical Systems) technology. It is also intended to provide a thin microcell.

すなわち本発明に係るマイクロセルは、光検出部と当該光検出部から出力された検出信号を処理するための電気回路とを一体に設けた半導体基板と、その基板の表面に貼り付けられるカバー部材とを備えており、前記半導体基板と前記カバー部材とのいずれか一方に有底溝が形成してあり、前記半導体基板と前記カバー部材とのいずれか他方で前記有底溝の開口部を閉塞して、被測定液の吸光度を測定するための流路が形成してあり、前記流路は、光路長の異なるものが複数形成してあることを特徴とする。   That is, the microcell according to the present invention includes a semiconductor substrate integrally provided with a light detection unit and an electric circuit for processing a detection signal output from the light detection unit, and a cover member attached to the surface of the substrate. A bottomed groove is formed in one of the semiconductor substrate and the cover member, and the opening of the bottomed groove is closed by the other of the semiconductor substrate and the cover member. In addition, a flow path for measuring the absorbance of the liquid to be measured is formed, and a plurality of the flow paths having different optical path lengths are formed.

このようなものであれば、同一平面上に長さの異なる複数の流路を設けることより、単一のセルで低濃度から高濃度に至る幅広い測定レンジを有するとともに、小型でかつ薄型の取り扱い性に優れた吸光セルとすることができる。また、幅広い測定レンジを有することにより被測定液の濃度調整が不要となるとともに、1度の測定で外乱影響を排除することができ従来の校正作業が不要となるので、測定操作が簡便になり測定時間を短縮することもできる。更に、同一基板上に電気回路と光検出部とが備わっていることより、光検出部からの検出信号を電気回路に送信する際の電気的ノイズを低減することができるので、測定精度を向上することもできる。   In such a case, by providing a plurality of flow paths with different lengths on the same plane, a single cell has a wide measurement range from low concentration to high concentration, and is small and thin. It is possible to obtain a light absorption cell having excellent properties. In addition, having a wide measurement range eliminates the need to adjust the concentration of the liquid to be measured, and eliminates the effects of disturbance with a single measurement, eliminating the need for conventional calibration operations, simplifying measurement operations. Measurement time can also be shortened. Furthermore, since the electrical circuit and the light detection unit are provided on the same substrate, electrical noise can be reduced when the detection signal from the light detection unit is transmitted to the electrical circuit, thus improving measurement accuracy. You can also

前記電気回路が、異なる光路長の流路において測定された同一の被測定液の吸光度の差分を算出するものであると、外乱影響の排除を容易に行うことができる。   When the electric circuit calculates the difference in absorbance of the same liquid to be measured measured in the flow paths having different optical path lengths, it is possible to easily eliminate the influence of disturbance.

本発明に係るマイクロセルへの被測定液の供給を効率的に行うためには、前記カバー部材に全ての流路に連通する被測定液の導入口が設けてあることが好ましい。   In order to efficiently supply the liquid to be measured to the microcell according to the present invention, the cover member is preferably provided with an inlet for the liquid to be measured that communicates with all the flow paths.

一般的な吸光度計では光検出部は光の進行方向に垂直に設けてあるが、本発明に係るマイクロセルをより薄型とするためには、前記光検出部は前記流路内面に前記流路の長手方向と平行に設けてあり、前記光検出部近傍に、前記流路を長手方向に進行する光を反射して前記光検出部に導入する反射面が設けてあることが好ましい。   In a general absorptiometer, the light detection unit is provided perpendicular to the light traveling direction. However, in order to make the microcell according to the present invention thinner, the light detection unit is provided on the inner surface of the flow channel. It is preferable that a reflection surface for reflecting light traveling in the longitudinal direction in the flow path and introducing the light into the light detection unit is provided in the vicinity of the light detection unit.

また、光源からの光が本発明に係るマイクロセルの流路の長手方向に対して垂直に入射する場合は、前記流路内に前記流路の長手方向に対して垂直に入射した光を反射して、前記流路の長手方向に沿って進行させるための反射面が設けてあることが好ましい。   When light from the light source is incident perpendicular to the longitudinal direction of the flow path of the microcell according to the present invention, the light incident perpendicular to the longitudinal direction of the flow path is reflected in the flow path. And it is preferable that the reflective surface for advancing along the longitudinal direction of the said flow path is provided.

このように本発明によれば、単一のセルで低濃度から高濃度に至る幅広い測定レンジを有するとともに、小型でかつ薄型の取り扱い性に優れたマイクロセルを得ることができる。また、測定操作が簡便で測定時間を短縮することもでき、更に、測定精度を向上することもできる。   As described above, according to the present invention, it is possible to obtain a microcell that has a wide measurement range from a low concentration to a high concentration in a single cell, and is small and thin and excellent in handleability. Further, the measurement operation is simple and the measurement time can be shortened, and the measurement accuracy can be improved.

以下、本発明の一実施形態を図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本実施形態に係るマイクロセル1は、図1に示すように、半導体基板2とカバー部材3とを備えており、半導体基板2には光検出部4と当該光検出部4から出力された検出信号を処理するための電気回路5とが一体に設けられている。マイクロセル1は、例えば縦×横の大きさが1cm×1cm程度のものである。   As shown in FIG. 1, the microcell 1 according to the present embodiment includes a semiconductor substrate 2 and a cover member 3, and the semiconductor substrate 2 has a light detection unit 4 and a detection output from the light detection unit 4. An electric circuit 5 for processing the signal is integrally provided. The microcell 1 has, for example, a size of about 1 cm × 1 cm in length × width.

以下に各部を説明する。半導体基板2はシリコン基板等からなるものであって、その表面には有底溝が形成されており、当該有底溝の開口部がカバー部材3により閉塞されて被測定液が流通する流路21及び排出路25が形成されている。流路21の導入口24側の端部には鏡面処理等により上方に45°傾斜した反射面22が設けられ、光検出部4側の端部には下方に45°傾斜した反射面23が設けられている。複数(本実施形態では6本)の流路21と排出路25とはそれぞれ垂直に交わっており、1対の流路21と排出路25とから形成される互いに相似するL字型の溝が等間隔で配置されている。複数の流路21は導入口24側の端部で全て繋がっており、複数の排出路25は排出口26側の端部で全て繋がっている。   Each part will be described below. The semiconductor substrate 2 is made of a silicon substrate or the like, and has a bottomed groove formed on the surface thereof, and the flow path through which the liquid to be measured flows is closed by the cover member 3. 21 and a discharge path 25 are formed. A reflection surface 22 inclined 45 ° upward is provided at the end of the flow channel 21 on the introduction port 24 side by a mirror treatment or the like, and a reflection surface 23 inclined 45 ° downward is provided on the end of the light detection unit 4 side. Is provided. A plurality (six in this embodiment) of the flow paths 21 and the discharge paths 25 intersect each other vertically, and L-shaped grooves similar to each other formed by the pair of flow paths 21 and the discharge paths 25 are formed. They are arranged at equal intervals. The plurality of flow paths 21 are all connected at the end on the introduction port 24 side, and the plurality of discharge paths 25 are all connected at the end on the discharge port 26 side.

カバー部材3はガラス基板等からなるものであって、半導体基板2の表面に貼り付けられている。カバー部材3には当該部材を貫通して、複数の流路21全てと連通する被測定液の導入口24と、複数の排出路25全てと連通する排出口26が設けられている。   The cover member 3 is made of a glass substrate or the like, and is attached to the surface of the semiconductor substrate 2. The cover member 3 is provided with an inlet 24 for the liquid to be measured that communicates with all of the plurality of flow paths 21 and a discharge port 26 that communicates with all of the plurality of discharge paths 25 through the member.

光検出部4はフォトダイオード等からなるものであって、光が入射すると検出信号を出力する。光検出部4は反射面23の近傍の流路21底部に、反射面23で反射した光が入射するように設けられている。本実施形態においては、図1に示すように、複数の光検出部4は直線状に配置されている。   The light detection unit 4 is composed of a photodiode or the like, and outputs a detection signal when light enters. The light detection unit 4 is provided so that the light reflected by the reflection surface 23 is incident on the bottom of the flow path 21 near the reflection surface 23. In the present embodiment, as shown in FIG. 1, the plurality of light detection units 4 are arranged linearly.

電気回路5は、例えば、アナログ増幅回路、バッファ回路、差分回路等を有したものであって、光検出部4から出力された検出信号を処理する。具体的には、光路長の異なる流路21で測定された同一の被測定液の所定の波長における吸光度の差分を算出する。ここで、当該波長は被測定液中の測定対象物の吸収波長(ピーク波長)である。なお、半導体基板2のスペースが許せばCPU等を有したコンピュータ回路を付加してもよいし、A/Dコンバータを一体に設けてもかまわない。   The electric circuit 5 includes, for example, an analog amplifier circuit, a buffer circuit, a difference circuit, and the like, and processes the detection signal output from the light detection unit 4. Specifically, the difference in absorbance at a predetermined wavelength of the same liquid to be measured measured in the flow paths 21 having different optical path lengths is calculated. Here, the said wavelength is the absorption wavelength (peak wavelength) of the measuring object in a to-be-measured liquid. If the space of the semiconductor substrate 2 permits, a computer circuit having a CPU or the like may be added, or an A / D converter may be provided integrally.

被測定液の濃度を測定するには、マイクロセル1の導入口24から被測定液を流入し、全ての流路21を被測定液で満たし、光源として例えば面発光を行うLEDを用い、光源からの光Lを、導入口24側の端部から、カバー部材3に対して垂直に、かつ、いずれの流路21にも均一になるように入射させると、マイクロセル1に導入された光Lは、図1(b)に示すように、反射面22で反射して、流路21内に充填された被測定液を透過して反射面23に到達し、反射面23で再度反射して光検出部4に入射する。光検出部4に光Lが入射すると光検出部4は検出信号を出力し、当該検出信号は電気回路5で処理され、光路長が異なる流路21において測定された所定の波長の吸光度の差分が算出される。そして、吸光度の差分と光路長の差との相関を調べ、両者が比例関係を示した範囲を測定が良好に行われた領域とする。これと予め作成した検量線とを対比することにより、被測定液の濃度を算出することができる。   In order to measure the concentration of the liquid to be measured, the liquid to be measured flows from the inlet 24 of the microcell 1, fills all the channels 21 with the liquid to be measured, and uses, for example, an LED that emits surface light as a light source. When the light L from the light source is incident from the end on the introduction port 24 side so as to be perpendicular to the cover member 3 and evenly in any flow path 21, the light introduced into the microcell 1. As shown in FIG. 1B, L is reflected by the reflecting surface 22, passes through the liquid to be measured filled in the flow path 21, reaches the reflecting surface 23, and is reflected again by the reflecting surface 23. Then, the light enters the light detector 4. When the light L is incident on the light detection unit 4, the light detection unit 4 outputs a detection signal, the detection signal is processed by the electric circuit 5, and the difference in absorbance at a predetermined wavelength measured in the flow paths 21 having different optical path lengths. Is calculated. Then, the correlation between the difference in absorbance and the difference in optical path length is examined, and a range in which both are proportional to each other is determined as a region where the measurement has been performed satisfactorily. By comparing this with a calibration curve prepared in advance, the concentration of the liquid to be measured can be calculated.

そして、測定が終了したならば、流路21内に充填されている被測定液を排出路25を経由して排出口26から排出する。   When the measurement is completed, the liquid to be measured filled in the flow path 21 is discharged from the discharge port 26 via the discharge path 25.

本実施形態に係るマイクロセル1により被測定液の濃度測定を行う際は、LED等からなる光源と、CPU、内部メモリ、I/Oバッファ回路、A/Dコンバータ等を備えたコンピュータ回路からなる演算処理部と、小型の液晶表示装置等からなる表示部等とを備えた本体にマイクロセル1を設置することにより、吸光度センサとして使用することができる。マイクロセル1から本体に出力された測定データは、本体の演算処理部に予め格納されている検量線データと対比され、被測定液の濃度が算出されて、当該濃度が表示部に表示される。   When the concentration of the liquid to be measured is measured by the microcell 1 according to the present embodiment, the microcell 1 includes a light source including an LED and a computer circuit including a CPU, an internal memory, an I / O buffer circuit, an A / D converter, and the like. The microcell 1 can be used as an absorbance sensor by installing the microcell 1 in a main body including an arithmetic processing unit and a display unit made up of a small liquid crystal display device or the like. The measurement data output from the microcell 1 to the main body is compared with the calibration curve data stored in advance in the arithmetic processing unit of the main body, the concentration of the liquid to be measured is calculated, and the concentration is displayed on the display unit. .

本実施形態に係るマイクロセル1は、MEMS技術を用いて製造することができ、この手法によれば、複数の流路21を一括形成することができる。   The microcell 1 according to the present embodiment can be manufactured using the MEMS technology, and according to this method, a plurality of flow paths 21 can be formed in a lump.

このような構成を有する本実施形態によれば、同一平面上に長さの異なる複数の流路21を設け、光検出部4を流路21の底部に設けることより、単一のセルで外乱影響の排除を可能とするとともに、低濃度から高濃度に至る幅広い測定レンジを有し、小型でかつ薄型の取り扱い性に優れたマイクロセルとすることができる。また、幅広い測定レンジを有することにより被測定液の濃度調整が不要となるとともに、1度の測定で外乱影響を排除することができ従来の校正作業が不要となるので、測定操作が簡便になり測定時間を短縮することもできる。更に、同一半導体基板2上に光検出部4と電気回路5とが備わっていることより、光検出部4からの検出信号を電気回路5に送信する際の電気的ノイズを低減することができるので、測定精度を向上することもできる。   According to the present embodiment having such a configuration, a plurality of flow paths 21 having different lengths are provided on the same plane, and the light detection unit 4 is provided at the bottom of the flow path 21. It is possible to eliminate the influence, and to have a wide measurement range from a low concentration to a high concentration, and to be a small and thin microcell with excellent handleability. In addition, having a wide measurement range eliminates the need to adjust the concentration of the solution to be measured, and eliminates the effects of disturbance with a single measurement, eliminating the need for conventional calibration operations, thus simplifying the measurement operation. Measurement time can also be shortened. Furthermore, since the light detection unit 4 and the electric circuit 5 are provided on the same semiconductor substrate 2, it is possible to reduce electrical noise when a detection signal from the light detection unit 4 is transmitted to the electric circuit 5. Therefore, measurement accuracy can be improved.

また、本実施形態では光検出部4が半導体基板2上に略対角線状に設けてあり、そこで直交するように流路21と排出路25が形成されていることより、マイクロセル1の面積を最大限に活用して複数の流路21が設けられているので、複数の流路21が形成されているにかかわらずマイクロセル1をコンパクトなものとすることができる。   In the present embodiment, the light detection unit 4 is provided on the semiconductor substrate 2 in a substantially diagonal shape, and the flow path 21 and the discharge path 25 are formed so as to be orthogonal to each other, thereby reducing the area of the microcell 1. Since the plurality of flow paths 21 are provided maximally, the microcell 1 can be made compact regardless of the formation of the plurality of flow paths 21.

なお、本発明は前記実施形態に限られるものではない。例えば、有底溝はカバー部材3に形成されていてもよく、その場合は、反射面22、23としては鏡等が設けられていてもよい。   The present invention is not limited to the above embodiment. For example, the bottomed groove may be formed in the cover member 3, and in that case, a mirror or the like may be provided as the reflecting surfaces 22 and 23.

図2に示すように、マイクロセル1の導入口24側の側方に光透過性物質からなる導光部6を設け、LED等の光源からの光が当該導光部6から導入され、導光部6を透過して流路21内を直進するようにしてもよい。この場合、カバー部材3はガラス基板のような光透過性のものでなくともよい。   As shown in FIG. 2, a light guide 6 made of a light transmissive substance is provided on the side of the introduction port 24 side of the microcell 1, and light from a light source such as an LED is introduced from the light guide 6 and guided. The light may pass through the light section 6 and go straight in the flow path 21. In this case, the cover member 3 may not be light transmissive such as a glass substrate.

また、図3に示すように、フォトダイオード等からなる光検出部4を全ての流路21にまたがり一体化した共通なものとして、光源からの光Lの照射を各流路21において別々に行うようにしてもよい。   In addition, as shown in FIG. 3, the light detection unit 4 made of a photodiode or the like is integrated with all the flow paths 21, and the light L from the light source is separately irradiated in each flow path 21. You may do it.

光源から射出された光を特定の波長を有する平行光線とするには、吸光度センサの本体に、スリット、レンズ、ミラー、プリズム又は回折格子を適宜配置してもよい。   In order to convert the light emitted from the light source into a parallel light beam having a specific wavelength, a slit, a lens, a mirror, a prism, or a diffraction grating may be appropriately disposed in the main body of the absorbance sensor.

また、LED等の光源が半導体基板2やカバー部材3等に埋設されて、マイクロセル1と一体となっていてもよい。その際、光源がマイクロセル1の導入口24側の側方に埋め込まれている場合は、図2に示す形態と同様に、反射面22は不要であり、光源から射出された光は直接流路21内に導入され反射面23に向かい進行する。一方、光源が流路21の下方に埋設されている場合は、反射面22は下方に45°傾斜して設けられる。   Further, a light source such as an LED may be embedded in the semiconductor substrate 2, the cover member 3, etc. and integrated with the microcell 1. At that time, when the light source is embedded in the side of the introduction port 24 side of the microcell 1, the reflection surface 22 is unnecessary as in the embodiment shown in FIG. 2, and the light emitted from the light source flows directly. It is introduced into the path 21 and proceeds toward the reflecting surface 23. On the other hand, when the light source is embedded below the flow path 21, the reflecting surface 22 is provided with an inclination of 45 ° downward.

その他、本発明は、その趣旨を逸脱しない範囲で種々の変形が可能であることは言うまでもない。   In addition, it goes without saying that the present invention can be variously modified without departing from the spirit of the present invention.

本発明によって、1つのセルで低濃度から高濃度に至る幅広い濃度を有する被測定液の濃度測定を容易にかつ高精度で行いうる、小型でかつ薄型のマイクロセルを得ることが可能である。   According to the present invention, it is possible to obtain a small and thin microcell that can easily and highly accurately measure the concentration of a liquid to be measured having a wide concentration ranging from a low concentration to a high concentration in one cell.

本発明の一実施形態に係るマイクロセルの平面図(a)及びA−A’線における断面図(b)。The top view (a) of microcell concerning one embodiment of the present invention, and a sectional view (b) in A-A 'line. 本発明の他の実施形態に係るマイクロセルのA−A’線における断面図。Sectional drawing in the A-A 'line of the microcell which concerns on other embodiment of this invention. 本発明の他の実施形態に係るマイクロセルの平面図。The top view of the microcell concerning other embodiments of the present invention.

符号の説明Explanation of symbols

1・・・マイクロセル
2・・・半導体基板
3・・・カバー部材
4・・・光検出部
5・・・電気回路
21・・・流路

DESCRIPTION OF SYMBOLS 1 ... Microcell 2 ... Semiconductor substrate 3 ... Cover member 4 ... Photodetection part 5 ... Electric circuit 21 ... Flow path

Claims (6)

光検出部と当該光検出部から出力された検出信号を処理するための電気回路とを一体に設けた半導体基板と、その基板の表面に貼り付けられるカバー部材とを備えており、
前記半導体基板と前記カバー部材とのいずれか一方に有底溝が形成してあり、前記半導体基板と前記カバー部材とのいずれか他方で前記有底溝の開口部を閉塞して、被測定液の吸光度を測定するための流路が形成してあり、
前記流路は、光路長の異なるものが複数形成してあることを特徴とするマイクロセル。
A semiconductor substrate integrally provided with a light detection unit and an electric circuit for processing a detection signal output from the light detection unit, and a cover member attached to the surface of the substrate;
A bottomed groove is formed in one of the semiconductor substrate and the cover member, and an opening of the bottomed groove is closed by the other of the semiconductor substrate and the cover member, and the liquid to be measured A flow path for measuring the absorbance of
A plurality of the flow paths having different optical path lengths are formed.
前記電気回路は異なる光路長の流路において測定された同一の被測定液の吸光度の差分を算出するものである請求項1記載のマイクロセル。   The microcell according to claim 1, wherein the electric circuit calculates a difference in absorbance of the same liquid to be measured measured in flow paths having different optical path lengths. 前記カバー部材には全ての流路に連通する被測定液の導入口が設けてある請求項1又は2記載のマイクロセル。   3. The microcell according to claim 1, wherein the cover member is provided with an inlet for a liquid to be measured that communicates with all the flow paths. 前記光検出部は前記流路内面に前記流路の長手方向と平行に設けてあり、
前記光検出部近傍に、前記流路内を長手方向に進行する光を反射して前記光検出部に導入する反射面が設けてある請求項1、2又は3記載のマイクロセル。
The light detection unit is provided on the inner surface of the flow channel in parallel with the longitudinal direction of the flow channel,
4. The microcell according to claim 1, wherein a reflection surface is provided in the vicinity of the light detection part for reflecting light traveling in the longitudinal direction in the flow path and introducing the light into the light detection part.
前記流路内に前記流路の長手方向に対して垂直に入射した光を反射して、前記流路内を前記流路の長手方向に沿って進行させるための反射面が設けてある請求項4記載のマイクロセル。   The reflective surface for reflecting the light which injected into the said flow path perpendicularly | vertically with respect to the longitudinal direction of the said flow path, and advancing the inside of the said flow path along the longitudinal direction of the said flow path is provided. 4. The microcell according to 4. 請求項1、2、3、4又は5記載のマイクロセルを備えたことを特徴とする吸光度センサ。
An absorbance sensor comprising the microcell according to claim 1, 2, 3, 4 or 5.
JP2005355298A 2005-12-08 2005-12-08 Microcell Pending JP2007155674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005355298A JP2007155674A (en) 2005-12-08 2005-12-08 Microcell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005355298A JP2007155674A (en) 2005-12-08 2005-12-08 Microcell

Publications (1)

Publication Number Publication Date
JP2007155674A true JP2007155674A (en) 2007-06-21

Family

ID=38240227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005355298A Pending JP2007155674A (en) 2005-12-08 2005-12-08 Microcell

Country Status (1)

Country Link
JP (1) JP2007155674A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001982A (en) * 2012-06-15 2014-01-09 Denso Corp Concentration measuring device
WO2019027051A1 (en) * 2017-08-03 2019-02-07 ソニー株式会社 Contact lens and detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0455556A (en) * 1990-06-22 1992-02-24 Dainippon Printing Co Ltd Facing sheet and execution method thereof
JP2005291949A (en) * 2004-03-31 2005-10-20 Toshiba Corp Analyzing apparatus and analyzing system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0455556A (en) * 1990-06-22 1992-02-24 Dainippon Printing Co Ltd Facing sheet and execution method thereof
JP2005291949A (en) * 2004-03-31 2005-10-20 Toshiba Corp Analyzing apparatus and analyzing system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001982A (en) * 2012-06-15 2014-01-09 Denso Corp Concentration measuring device
WO2019027051A1 (en) * 2017-08-03 2019-02-07 ソニー株式会社 Contact lens and detection method
KR20200032094A (en) * 2017-08-03 2020-03-25 소니 주식회사 Contact lens and detection method
CN110959133A (en) * 2017-08-03 2020-04-03 索尼公司 Contact lenses and inspection methods
JPWO2019027051A1 (en) * 2017-08-03 2020-08-20 ソニー株式会社 Contact lens and detection method
CN110959133B (en) * 2017-08-03 2022-06-24 索尼公司 Contact lenses and inspection methods
US11442291B2 (en) 2017-08-03 2022-09-13 Sony Corporation Contact lens and detection method
JP7207308B2 (en) 2017-08-03 2023-01-18 ソニーグループ株式会社 Contact lenses and detection methods
KR102571077B1 (en) 2017-08-03 2023-08-24 소니그룹주식회사 Contact lenses and detection methods

Similar Documents

Publication Publication Date Title
WO2018021311A1 (en) Concentration measuring device
JP6786099B2 (en) Concentration measuring device
KR20080082479A (en) Attenuated total reflection probe and spectrometer therewith
US7443502B2 (en) Absorption spectrum photometry microchip testing device and components thereof
JP2009047428A (en) Light waveguide type measuring method and light waveguide type sensor
JP2007155674A (en) Microcell
JP2006105914A (en) Measuring method and measuring device
JP2007127449A (en) Measuring container
JP2007225354A (en) Measuring device
JP2006266906A (en) Measuring method and measuring instrument
KR20170122847A (en) Device for measuring optical rotation and refractive index
JP2006125919A (en) Spectral analyzer and spectral analysis method
JP4220879B2 (en) Absorbance measuring apparatus and absorbance measuring method
CN105393106B (en) Device for measuring scattering of a sample
JP2006258636A (en) Measuring method and measuring device
JP2007057534A (en) Haze measurement method and apparatus for same
JP2006220605A (en) Measurement method and measurement device
JP4316991B2 (en) Refractive index measuring device and concentration measuring device
JP5147483B2 (en) Liquid temperature measuring device
JP2002195945A (en) Sensor utilizing attenuated total reflection
JP2003075334A (en) Sensor using attenuated total reflection
JP2015102455A (en) Sensor device and measurement method
JP2003065946A (en) Sensor using attenuated total reflection
JP2007127448A (en) Analyzing optical device
RU2504754C1 (en) Device for measuring optical light scattering characteristics in two-phase gasdynamic flows

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329