JPS5898953A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5898953A
JPS5898953A JP19811581A JP19811581A JPS5898953A JP S5898953 A JPS5898953 A JP S5898953A JP 19811581 A JP19811581 A JP 19811581A JP 19811581 A JP19811581 A JP 19811581A JP S5898953 A JPS5898953 A JP S5898953A
Authority
JP
Japan
Prior art keywords
region
film
emitter
substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19811581A
Other languages
Japanese (ja)
Other versions
JPH0130303B2 (en
Inventor
Teruyuki Kasashima
笠島 輝之
Hideo Kawasaki
川崎 英夫
Susumu Sugumoto
直本 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP19811581A priority Critical patent/JPS5898953A/en
Publication of JPS5898953A publication Critical patent/JPS5898953A/en
Publication of JPH0130303B2 publication Critical patent/JPH0130303B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bipolar Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To expand a safely operating region and to improve the reliability of a semiconductor device by forming a mixed film of a polycrystalline semiconductor and an oxidized film on the surface of a substrate formed with a transistor and forming a resistance layer on the prescribed part of the film. CONSTITUTION:An N type base region 2 is formed on a P type silicon crystalline substrate 1, and a P type emitter region 3 by boron diffusion is formed in the region 2. A mixed film 11 mixed with oxidized silicon in polycrystalline silicon is formed on the surface of the substrate. A resistance layer 12 and a high impurity density region 6 covered ohmically with an electrode are simultaneously formed on the base electrode region of the film 11. Further, a base electrode 4 and an emitter electrode 5 are formed.

Description

【発明の詳細な説明】 本発明は半導体装置、とりわけ、トランジスタの安全動
作領域の拡大および信頼性の向上をはかったトランジス
タ構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and more particularly to a transistor structure that expands the safe operating area of a transistor and improves its reliability.

トラン・?スタの安全動作領域の拡大をはかるためにト
ランジスタのベースまたはエミッタにバラスト抵抗を接
続することは知られている。バラスト抵抗の従来の例を
第、1図、餉2図、第3図に示す。第1図はPNP )
ランジスタのP型のコレクタ領域1内に選択的にN型の
ベース領域2を拡散形成し、前記ベース領域2内の一部
にP型のエミッタ領域3を選択的に拡散形成し、これら
各領域に接触させて、ベース電極4.エミッタ電極6を
設け、さらに前記ベース電極4を形成する部分の前記ベ
ース領域2中にコンタクト抵抗を下げる目的で高濃度N
型領域6を形成したトランジスタを示している。また、
この装置で、7は例えば二酸化シリコンよりなる表面不
活性化の絶縁膜である。
Tran? It is known to connect a ballast resistor to the base or emitter of a transistor in order to expand the safe operating area of the transistor. Conventional examples of ballast resistors are shown in Fig. 1, Fig. 2, and Fig. 3. Figure 1 shows PNP)
An N-type base region 2 is selectively diffused into a P-type collector region 1 of the transistor, a P-type emitter region 3 is selectively diffused into a part of the base region 2, and each of these regions is base electrode 4. An emitter electrode 6 is provided, and a high concentration of N is added in the base region 2 in a portion where the base electrode 4 is to be formed in order to lower the contact resistance.
A transistor with a mold region 6 formed therein is shown. Also,
In this device, 7 is a surface-inactivated insulating film made of silicon dioxide, for example.

さらに、この装置では、エミッタ領域3を包囲する如く
ベース領域2内に、エミッタ領域3の形成と同時にエミ
ッタと同導電型の補助拡散領域9を選択的に拡散形成し
、エミッタ接合とベース電極の電流通路を前記補助拡散
領域8下に回りこみ圧縮するようになすだめの抵抗領域
9を設け、この領域9をベース・バラスト抵抗としたも
のである。
Furthermore, in this device, an auxiliary diffusion region 9 of the same conductivity type as the emitter is selectively diffused in the base region 2 so as to surround the emitter region 3 at the same time as the emitter region 3 is formed, and the emitter junction and the base electrode are bonded together. A resistance region 9 is provided to allow the current path to wrap around and compress under the auxiliary diffusion region 8, and this region 9 is used as a base ballast resistance.

第2図はエミッタ領域にバラスト抵抗を形成し、エミッ
タバラスト抵抗としたものである。さらにバラスト抵抗
を半導体基板内に作るのではなく例えば多結晶シリコン
を化学蒸着で形成し、エミッタバラスト抵抗とした構造
のものもある。
In FIG. 2, a ballast resistor is formed in the emitter region to serve as an emitter ballast resistor. Furthermore, there is also a structure in which the ballast resistor is not formed in the semiconductor substrate, but is made of, for example, polycrystalline silicon by chemical vapor deposition, and is used as an emitter ballast resistor.

第3図に多結晶シリコンを用いたパラスト抵抗の形成の
一例を示す。通常のトランジスタの工程に従ってエミッ
タ領域3およびペース・コンタクト領域6を形成した後
、酸化被膜7を選択フォトエツチング処理を行なって所
定のエミッタ表面を露出させ、多結晶シリコン1oを全
面被着し、これをパターニングして他端に金属配線膜と
の接続電極部を形成し、基板エミッタ表面に接するエミ
ッタ電極と前記接続電極間の基板に平行な多結晶シリコ
ン膜部分を抵抗領域9としたものである。
FIG. 3 shows an example of forming a parallax resistor using polycrystalline silicon. After forming the emitter region 3 and the space contact region 6 according to the normal transistor process, the oxide film 7 is selectively photoetched to expose a predetermined emitter surface, and polycrystalline silicon 1o is deposited on the entire surface. is patterned to form a connection electrode part with the metal wiring film at the other end, and the polycrystalline silicon film part parallel to the substrate between the emitter electrode in contact with the substrate emitter surface and the connection electrode is used as a resistance region 9. .

この多結晶シリコン10には被着す乃とき同時にリンま
たはボロンをドープするか、多結晶シリコン10を形成
したあと不純物拡散法によってリンまたはボロンを高濃
度にドープする。一般に比抵抗値が小さく、薄膜状の基
板面に平行な横型抵抗として用いている。又、高耐圧素
子の信頼性を向上させるための保護膜の形成を上記プロ
セスとは別に行につている。
This polycrystalline silicon 10 is doped with phosphorus or boron at the same time as it is deposited, or it is doped with phosphorus or boron at a high concentration by an impurity diffusion method after the polycrystalline silicon 10 is formed. Generally, it has a small specific resistance value and is used as a horizontal resistor parallel to the surface of a thin film substrate. In addition, a protective film is formed separately from the above process to improve the reliability of the high-voltage device.

第1図、第2図においては基板面内に抵抗領域いう欠点
を有し、第3図示の基板外にバラスト抵抗を設ける場合
においては多結晶シリコン1oに不純物を添加する場合
、添加量を増加するのに従い抵抗率は高抵抗から低抵抗
に急激に変ってしまい、高抵抗と低抵抗の間の抵抗率を
得るための添加量を制御することが難しい。さらに横型
の抵抗として用いるためチップ面積が増大する。
In Figures 1 and 2, there is a drawback that the resistance region is within the substrate plane, and in the case of providing a ballast resistor outside the substrate as shown in Figure 3, when adding impurities to the polycrystalline silicon 1o, the amount of addition must be increased. As the resistance increases, the resistivity changes rapidly from high resistance to low resistance, making it difficult to control the amount added to obtain a resistivity between high resistance and low resistance. Furthermore, since it is used as a horizontal resistor, the chip area increases.

一方、半導体基板表面を絶縁物7で被覆して半導体基板
表面を不活性化することは半導体装置の信頼性を高める
うえで非常に重要なことであり、従来、半導体基板表面
に二酸化シリコン、窒化シリコン、多結晶シリコンと酸
化シリコンの混成膜等の絶縁膜を熱分解、化学蒸着によ
り被覆することは知られており、安全動作領域向上とは
別の工程で行なっている。
On the other hand, coating the semiconductor substrate surface with an insulator 7 to inactivate the semiconductor substrate surface is very important for increasing the reliability of semiconductor devices. It is known to coat an insulating film such as silicon or a hybrid film of polycrystalline silicon and silicon oxide by thermal decomposition or chemical vapor deposition, and this is performed in a process different from that for improving the safe operating area.

本発明は上述の第1図〜第3図示の装置の問題点を改善
したものであり、抵抗体を縦型としてチップ面積の増大
を防ぎ、安全動作領域の拡大と信頼性の向上を図るもの
である。
The present invention improves the problems of the devices shown in FIGS. 1 to 3 above, and uses a vertical resistor to prevent an increase in chip area, thereby expanding the safe operating area and improving reliability. It is.

本発明は、半導体基板表面に物理あるいは化学蒸着被暉
した多結晶シリコンと酸化シリコンの混成物から成る半
絶縁性膜を安定化被膜および抵抗層として使用した構造
の装置を提供する。抵抗層は不純物を選択ドーピングし
て形成され、その抵抗値はベース・コンタクト拡薮と兼
ねて行なう不純物添加の工程で所定の値に設定される。
The present invention provides a device having a structure in which a semi-insulating film made of a hybrid of polycrystalline silicon and silicon oxide, which is physically or chemically vapor deposited on the surface of a semiconductor substrate, is used as a stabilizing film and a resistive layer. The resistance layer is formed by selectively doping impurities, and its resistance value is set to a predetermined value in an impurity doping step that also serves as base contact expansion.

以下に本発明の実施例を図面に基き説明する。Embodiments of the present invention will be described below with reference to the drawings.

第4図flLl 、 (b) 、 (C1、(111は
実施例を工程順に図示したものである。第4図(a)は
P型シリコン結晶基板1にリン拡散によるN型のベース
領域2を形成しこのベース領域2内にボロン拡散による
P型のエミッタ領域3を形成したものである。7はベー
ス領域2およびエミッタ領域3の選択拡散のマスクに使
用した酸化被膜である。第4図(blは酸化被膜7を全
面除去し、基板表面に多結晶シリコン中に酸化シリコン
を混在させた混成膜11を形成したものである。
FIG. 4 flLl, (b), (C1, (111 shows the example in the order of steps. FIG. 4 (a) shows an N-type base region 2 formed by phosphorus diffusion on a P-type silicon crystal substrate 1. A P-type emitter region 3 is formed by boron diffusion in the base region 2. Reference numeral 7 denotes an oxide film used as a mask for selective diffusion of the base region 2 and emitter region 3. In bl, the oxide film 7 is completely removed, and a hybrid film 11 in which silicon oxide is mixed in polycrystalline silicon is formed on the substrate surface.

通常の熱酸化などによりて形成した酸化シリコンの電気
抵抗と比べるχ、多結晶シリコンと酸化シリコンとの混
成膜はその電気抵抗が小さく帯電しにくい。この特性を
生かして従来からしばしばパワートランジスタの保護膜
に応用される。本実施例では、660℃程度の温度でS
iH4−N20系ガスを減圧CvD装置の中で反応させ
る。減圧CVD装置を用いたのは常圧cvn装置を用い
る場合よりも膜の均一性および再現性が優れているから
である。第4図(C1は混成膜11のペース電極部領域
上にリンを添加して抵抗層12と電極をオーミックに被
着するための高不純物濃度領域6を同時に形成したもの
である。又、図示していガいが、第2図あるいは第3図
と同様にエミッタ領域3の上部に抵抗層を形成すること
も可能である。第4図((11はペース電極4とエミッ
タ電極6を形成したものである。多結晶シリコンと酸化
シリコンの混成膜11の場合、添加量を増加すると抵抗
率は高抵抗値から低抵抗値に緩やかに変化するため制御
性がよく、多結晶シリコン膜に不純物を添加した場合よ
り大きい電気抵抗が得られるという利点がある。
Compared to the electrical resistance of silicon oxide formed by ordinary thermal oxidation, etc., a hybrid film of polycrystalline silicon and silicon oxide has a small electrical resistance and is not easily charged. Taking advantage of this property, it has often been used as a protective film for power transistors. In this example, S
The iH4-N20 gas is reacted in a reduced pressure CvD apparatus. The reason why a low pressure CVD device was used is that the uniformity and reproducibility of the film is better than when using a normal pressure CVN device. FIG. 4 (C1 is a film in which phosphorus is added onto the space electrode region of the composite film 11 to simultaneously form a high impurity concentration region 6 for ohmically adhering the resistive layer 12 and the electrode. Although shown in FIG. 2 or 3, it is also possible to form a resistive layer on the upper part of the emitter region 3. In the case of the hybrid film 11 of polycrystalline silicon and silicon oxide, the resistivity changes gradually from a high resistance value to a low resistance value as the amount of addition is increased, so controllability is good, and impurities can be added to the polycrystalline silicon film. It has the advantage that higher electrical resistance can be obtained than when it is added.

以上、述べたように本発明の装置は安全動作領域を拡大
するためのペース・バラスト抵抗を縦型に制御性よく少
面積で形成される利点を有し、また保護膜も同時形成さ
れ高信頼性を得るという特長を有する。
As described above, the device of the present invention has the advantage that the pace/ballast resistor is formed vertically in a small area with good controllability in order to expand the safe operation area, and the protective film is also formed at the same time, resulting in high reliability. It has the feature of obtaining the characteristics.

本実施例ではI’NP)ランジスタに本発明を適用した
場合であるが、NPN )ランジスタに適用して同様の
効果を得ることもあきらかである。
In this embodiment, the present invention is applied to an I'NP transistor, but it is obvious that the same effect can be obtained by applying the invention to an NPN transistor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は従来装置の構造断面図、第4
図f&) t (bl 、 +CI I (δ)は本発
明の一実施例の装置を工程順に図示した断面図である。 1・・・・・・導電型半導体基板、2・・・・・・反対
導電型ペース領域、3・・・・・・−導電型エミッタ領
域、4・・・・・・ペース電極、6・・・・・・エミッ
タ電極、11・・・・・・多結晶シリコンと酸化シリコ
ンの混成膜、12・・・・・・混成膜抵抗層。 代理人の氏名 弁理土中 尾 敏 男 捻か1名車 1
 図 第2図 第4図
Figures 1, 2, and 3 are cross-sectional views of the conventional device;
Figure f&) t (bl, +CI I (δ) is a cross-sectional view illustrating an apparatus according to an embodiment of the present invention in the order of steps. 1... Conductive semiconductor substrate, 2... Opposite conductivity type paste region, 3...-conductivity type emitter region, 4...Pase electrode, 6...Emitter electrode, 11...Polycrystalline silicon and Hybrid film of silicon oxide, 12...Mixed film resistance layer. Name of attorney: Satoshi Oo, Patent attorney, Man, Nejika 1 person Car 1
Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板に反対導電型のベース領域および前
記ベース領域内に前記基板と同導電型のエミッタ領域を
設けてなるトランジスタ構成の表面−に、多結晶半導体
と酸化膜の混成膜を有するとともに、前記混成膜の所定
部分に同混成膜の抵抗率を制御して形成した抵抗層をそ
なえたことを特徴とする半導体装置。
A transistor structure having a base region of an opposite conductivity type on a semiconductor substrate of one conductivity type, and an emitter region of the same conductivity type as the substrate in the base region has a hybrid film of a polycrystalline semiconductor and an oxide film on the surface thereof; . A semiconductor device comprising: a resistive layer formed by controlling the resistivity of the composite film at a predetermined portion of the composite film.
JP19811581A 1981-12-08 1981-12-08 Semiconductor device Granted JPS5898953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19811581A JPS5898953A (en) 1981-12-08 1981-12-08 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19811581A JPS5898953A (en) 1981-12-08 1981-12-08 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5898953A true JPS5898953A (en) 1983-06-13
JPH0130303B2 JPH0130303B2 (en) 1989-06-19

Family

ID=16385712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19811581A Granted JPS5898953A (en) 1981-12-08 1981-12-08 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5898953A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147841U (en) * 1987-03-18 1988-09-29

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128278A (en) * 1975-04-30 1976-11-09 Sony Corp Integrated circuit with resistance element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128278A (en) * 1975-04-30 1976-11-09 Sony Corp Integrated circuit with resistance element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147841U (en) * 1987-03-18 1988-09-29

Also Published As

Publication number Publication date
JPH0130303B2 (en) 1989-06-19

Similar Documents

Publication Publication Date Title
US3423651A (en) Microcircuit with complementary dielectrically isolated mesa-type active elements
GB2148591A (en) Semiconductor device isolation grooves
US3432920A (en) Semiconductor devices and methods of making them
EP0030147A1 (en) Method for manufacturing a semiconductor integrated circuit
US3725145A (en) Method for manufacturing semiconductor devices
US4888306A (en) Method of manufacturing a bipolar transistor
US4109273A (en) Contact electrode for semiconductor component
EP0034341B1 (en) Method for manufacturing a semiconductor device
JPS5898953A (en) Semiconductor device
JPS61102059A (en) Semiconductor device
US3512054A (en) Semiconductive transducer
JPS58107645A (en) Manufacture of semiconductor device
JPS6330787B2 (en)
JPH0366815B2 (en)
JPS6031268Y2 (en) Planar thyristor
JPH0621479A (en) Semiconductor device and fabrication thereof
JPS6258152B2 (en)
JPS6356956A (en) Manufacture of semiconductor device
JPH01223740A (en) Manufacture of semiconductor integrated circuit
JPS58164241A (en) Manufacture of semiconductor device
JPS62141767A (en) Semiconductor device and manufacture thereof
JPH05243497A (en) Semiconductor device
JPH0235470B2 (en)
JPS6022828B2 (en) Manufacturing method of semiconductor device
JPS6022829B2 (en) Manufacturing method of semiconductor device