JPS589821B2 - Manufacturing method of cemented carbide containing molybdenum - Google Patents

Manufacturing method of cemented carbide containing molybdenum

Info

Publication number
JPS589821B2
JPS589821B2 JP52091685A JP9168577A JPS589821B2 JP S589821 B2 JPS589821 B2 JP S589821B2 JP 52091685 A JP52091685 A JP 52091685A JP 9168577 A JP9168577 A JP 9168577A JP S589821 B2 JPS589821 B2 JP S589821B2
Authority
JP
Japan
Prior art keywords
carbon
alloy
gas
cemented carbide
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52091685A
Other languages
Japanese (ja)
Other versions
JPS5426205A (en
Inventor
原昭夫
三宅雅也
山本孝春
中野稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP52091685A priority Critical patent/JPS589821B2/en
Publication of JPS5426205A publication Critical patent/JPS5426205A/en
Publication of JPS589821B2 publication Critical patent/JPS589821B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明は、超硬合金、特に合金中のWCがMoCによっ
て置換されることを目的とした複合化合物を含む合金の
製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a cemented carbide, particularly an alloy containing a composite compound whose purpose is to replace WC in the alloy with MoC.

従来、超硬合金の原料としてはWC粉末を主成分として
、これにTi,Ta,Nb,Mo,Hf,V,Cr,等
高融点金属炭化物もしくは炭窒化物を合金の要求特性に
応じて添加され、結合金属としては主として鉄グループ
金属が用いられている。
Conventionally, the raw material for cemented carbide is mainly composed of WC powder, to which high melting point metal carbides or carbonitrides such as Ti, Ta, Nb, Mo, Hf, V, Cr, etc. are added depending on the required properties of the alloy. Iron group metals are mainly used as bonding metals.

しかしながらタングステンは比較的高価な金属であり、
地球上では極く僅かしか発見出来ないものであるので、
いわゆる「戦略」物質として考えられており、その利用
度は政治的な貴重価値ということが出来る。
However, tungsten is a relatively expensive metal;
Since it can only be found in very small quantities on earth,
It is considered a so-called "strategic" material, and its degree of use can be said to have political value.

従ってWCを主成分とする超硬合金の需要が伸びれば当
然この資源問題にぶつかる。
Therefore, if the demand for cemented carbide whose main component is WC increases, this resource problem will naturally arise.

もし、WCを他の高融点金属炭化物に交換し得れば、そ
の産業界に与える影響は著しく大きい。
If WC could be replaced with other high melting point metal carbides, it would have a significant impact on the industry.

この最も有力な候補としてモリブデンのモノカーバイド
がある。
Molybdenum monocarbide is the most promising candidate.

このカーバイドのみがWCと同じ結晶構造である単純ヘ
キサゴナルタイプであり、その機械的な性質はWCに近
いと思われる。
Only this carbide is a simple hexagonal type having the same crystal structure as WC, and its mechanical properties are thought to be close to WC.

しかしながらモリブデンモノカーバイドの単体の存在が
今日までも疑問視されており、専らタングステンカーバ
イトと固溶させることによりMoCを安定させる試みが
なされている。
However, the existence of molybdenum monocarbide alone has been questioned to this day, and attempts have been made to stabilize MoC by forming a solid solution with tungsten carbide.

この方法は1950年にW.Dawihlによって初め
て発見されたものであるが、この固溶体については当時
工業的価値を見出さずに、余り検討が行われていなかっ
た。
This method was introduced in 1950 by W. Although it was first discovered by David Dawihl, at that time no industrial value was found in this solid solution, and not much study was conducted.

最近になってW価格の高騰に伴って再び (MOXWY)C(X+Y=1)の固痔体を利用する研
死が活発になりつゝある。
Recently, with the rise in the price of W, research using solid hemorrhoids of (MOXWY)C (X+Y=1) has become active again.

しかし何故、今まで余り研究が行われず、また使用する
試みも積極的に行われなかったのか非常に興味深い。
However, it is very interesting to know why little research has been done on it, and no active attempts have been made to use it.

従来から報告されているMoC−WCの固溶体製造法は
、WC,MoおよびC粉末、またはW,MoおよびC粉
末にコバルトを別え、混合粉末とした後、炭素容器に充
填した1600〜2000℃の温度で反応させる方法が
よく仰られている。
The solid solution manufacturing method of MoC-WC that has been reported so far is to separate cobalt into WC, Mo and C powder, or W, Mo and C powder, make a mixed powder, and then fill it into a carbon container at 1600 to 2000 °C. A method in which the reaction is carried out at a temperature of

(W.Dawihl,Z.ancg,Chem262(
1950)212)この時にコバルトの役割りは炭化物
の生成、Moのタングステン炭化物中への溶解を促進す
るとされている。
(W. Dawihl, Z. ancg, Chem262(
1950) 212) At this time, the role of cobalt is said to be to promote the formation of carbide and the dissolution of Mo into tungsten carbide.

確かにCoの存在がないと(MoW)Cの固溶体は得ら
れないようである。
Indeed, it seems that a solid solution of (MoW)C cannot be obtained without the presence of Co.

しかしながらこの方法で得た(MoW)C粉末をWCの
代換品として(MoW)C−Co合金の原料に用いても
合金中ではMoCが安定せずMo2Cを析出する場合が
多い。
However, even if the (MoW)C powder obtained by this method is used as a raw material for a (MoW)C-Co alloy as a substitute for WC, MoC is not stable in the alloy and Mo2C often precipitates.

合金中では少量のMo2Cでも針状に析出してくると合
金強度を劣化せしめる。
If even a small amount of Mo2C precipitates in the form of needles in the alloy, the strength of the alloy will deteriorate.

このような理由で今まではWCの代換品としての積極的
な検討がされていなかった。
For these reasons, active consideration as a substitute for WC has not been made until now.

本発明者らは、MoCとWCの固溶体を超硬合金の原料
として用いた時、何故Mo2Cが析出してくるかについ
て詳細な検討を行った。
The present inventors conducted a detailed study on why Mo2C precipitates when a solid solution of MoC and WC is used as a raw material for cemented carbide.

その結果(MoW)C−Co合金の焼結メカニズムは次
のように考えられた。
As a result, the sintering mechanism of the (MoW) C-Co alloy was considered as follows.

通常、WC−Co系超硬合金では1320℃でW−C−
Coの液相が生成され、Co中に多量のWCが高解する
Normally, in WC-Co cemented carbide, W-C-
A liquid phase of Co is generated, and a large amount of WC is dissolved in the Co.

この液相発生と同時に完全なち密化が行われる。Complete densification occurs simultaneously with the generation of this liquid phase.

また加熱温度,保持温度を適当に選べば粒度コントロー
ルも可能となる。
Particle size can also be controlled by appropriately selecting the heating temperature and holding temperature.

冷却過程では1320℃以下でCo中からWCが析出す
るが、この時に炭素量が不足すればCo中にWを溶解し
たまゝ冷却される。
In the cooling process, WC is precipitated from the Co at 1320° C. or below, but if the amount of carbon is insufficient at this time, the cobalt is cooled with the W dissolved in the cobalt.

従って炭素量が異常に不足しない限り、超硬合金の組織
中にWCと2相(Co中にWを固弓する相)の2つが観
察され、その合金特性は比較的安定している。
Therefore, unless the amount of carbon is abnormally insufficient, two phases, WC and two phases (a phase with W in Co), are observed in the structure of the cemented carbide, and the alloy properties are relatively stable.

一方(Mo・W)C−Co合金においてもCo中にW,
MoとCが溶解して液相を出し、同じようにち密化が進
む。
On the other hand, in (Mo/W)C-Co alloy, W in Co
Mo and C dissolve to produce a liquid phase, and densification progresses in the same way.

しかしながら、冷却過程ではCo中に溶解している元素
が同じ温度では析出しない。
However, in the cooling process, elements dissolved in Co do not precipitate at the same temperature.

1320°CのWe−Coの液相線でWCのみが析出し
てくるとCoのバインダー相中にはMoとCのみが残る
ことになる。
When only WC precipitates at the liquidus line of We-Co at 1320°C, only Mo and C remain in the Co binder phase.

MoCは1180℃まではMo2C+Cの形で安定して
いるが、そのまゝ冷却するとMoCにならない。
MoC is stable in the form of Mo2C+C up to 1180°C, but if it is cooled as it is, it will not become MoC.

よって炭素量が理論量近辺であっても、Mo2Cと炭素
の共存の形で冷起される。
Therefore, even if the amount of carbon is close to the stoichiometric amount, it is cooled in the form of coexistence of Mo2C and carbon.

また、この遊離炭素が析出する分を予め配合段階で少な
くしておく方法もある。
There is also a method in which the amount of free carbon that is precipitated is reduced in advance at the blending stage.

この場合もWCが初めに析出し、カーボンの不足分に対
応してMO2Cとして析出するが、このMo2Cは最後
に析出してくるので凝集粒子となる。
In this case as well, WC precipitates first, and in response to the lack of carbon, precipitates as MO2C, but since this Mo2C precipitates last, it becomes aggregated particles.

このMo2Cの凝集体は合金強度を劣化せしめるので好
ましくない。
This Mo2C aggregate is undesirable because it deteriorates the alloy strength.

以上に述べた如く、WC−Co系合金ではCo中に溶解
しているWとCが結合してWC結晶となって析出し、炭
素不足分をCo中のW溶解量で調整するので、合金とし
ては炭素量中で0.1%程度のIE常域を形成する。
As mentioned above, in WC-Co alloys, W and C dissolved in Co combine to form WC crystals and precipitate, and the lack of carbon is adjusted by the amount of W dissolved in Co. As a result, the carbon content forms an IE normal range of about 0.1%.

しかしながらMoCを含む超硬合金では(1)遊離炭素
として析出する、(2)Mo2Cの凝集体として析出す
るの2つしか炭素量調整法がない。
However, in cemented carbide containing MoC, there are only two methods for adjusting the carbon content: (1) precipitation as free carbon, and (2) precipitation as Mo2C aggregates.

よってこのような合金では析出してくる遊離炭素やMo
2Cの凝集を防ぐために急冷処理により析出物を分散さ
せる以外にない。
Therefore, in such alloys, the free carbon and Mo that precipitate
In order to prevent the agglomeration of 2C, there is no choice but to disperse the precipitates by rapid cooling treatment.

このような方法は形状の小さい合金は熱容量が小さいの
で冷却効果が十分出せるが、熱容量の大きい大型超硬に
適用するには困難である。
Although such a method can provide a sufficient cooling effect for small-sized alloys because they have a small heat capacity, it is difficult to apply to large-sized cemented carbides that have a large heat capacity.

このような本質的な焼結上の問題を解決しない限り(M
O−W)C固溶体をWC粉末の代換品としては使用でき
ない乙本発明者らは、種々の焼結実験を繰返した結果、
本合金の焼結に最も適した焼結条件を見出した。
Unless these essential sintering problems are solved (M
O-W)C solid solution cannot be used as a substitute for WC powder.As a result of repeated various sintering experiments, the present inventors found that
We have found the most suitable sintering conditions for sintering this alloy.

本発明はタングステンとモリブデンの複合炭化物もしく
はモリブデンの化合物で、単純ヘキサゴナル結晶構造を
有する硬質相を主として鉄族金属で結合した超硬合金の
焼結法に関するものであって、その焼結過程の一部また
は全部をCOガス雰囲気におくことを特徴とする、特に
MoCの不安定温度域である1180℃以上の温度で一
度はCOガスを炉内に導入することにある。
The present invention relates to a method for sintering a cemented carbide, which is a composite carbide of tungsten and molybdenum or a compound of molybdenum, in which a hard phase with a simple hexagonal crystal structure is bonded mainly with iron group metals, and one part of the sintering process. Part or all of the furnace is placed in a CO gas atmosphere, and in particular, CO gas is introduced into the furnace once at a temperature of 1180° C. or higher, which is the unstable temperature range of MoC.

このCOガスによる効果は次の2つが考えられる。The following two effects are considered to be caused by this CO gas.

その1つはMoCを含む合金は良好炭素領域が非常にせ
まいので、合金中の炭素量変動を厳しく制御しなければ
ならない。
One is that alloys containing MoC have a very narrow good carbon region, so variations in the amount of carbon in the alloy must be strictly controlled.

この方法としては(1)減圧下の水素気流中で酸素を除
去して脱炭変動を防止する。
This method includes (1) removing oxygen in a hydrogen stream under reduced pressure to prevent decarburization fluctuations;

(2)液相が出現してからの脱炭をおさえ、合金の炭素
量を理論炭素量に近づけることにある。
(2) To suppress decarburization after the appearance of a liquid phase and to bring the carbon content of the alloy closer to the theoretical carbon content.

これにはCOガス中であることが望ましい。For this purpose, it is preferable to use CO gas.

即ち、第1の効果は炉内のCOガス分圧を制御すれば炉
内の炭素ポテンシャルが決まるので、合金炭素量を目的
の値に収斂することが可能である。
That is, the first effect is that by controlling the CO gas partial pressure in the furnace, the carbon potential in the furnace is determined, so it is possible to converge the alloy carbon content to a target value.

第2の効果は、合金炭素量をMo2Cの析出しない安定
領域に入れ、更にその冷却過程でMoCがMo2Cに1
分解するのをCOガスにより防ぐことが出来る。
The second effect is to bring the amount of alloy carbon into a stable region where Mo2C does not precipitate, and furthermore, in the cooling process, MoC is reduced to 1% by Mo2C.
Decomposition can be prevented by CO gas.

これはCOガス中でこれらの合金を焼結しているとCO
ガスがコバルト中に溶解し、C及び0の原子状態で固溶
した遊離炭素の析出を防止し、Mo2CにCを供給する
緩衡の役目を果すからである。
This is because when these alloys are sintered in CO gas, CO
This is because the gas dissolves in cobalt, prevents the precipitation of free carbon dissolved in the atomic state of C and 0, and serves as a buffer for supplying C to Mo2C.

これは次の考えに基づく。合金のco相中に溶けている
CとOに対して外気のCO分圧は下記の如く平衡に保た
れている。
This is based on the following idea. The partial pressure of CO in the outside air is kept in equilibrium with respect to C and O dissolved in the co phase of the alloy as shown below.

ΔG0=−58600−116.2TJ/mol圧力の
関数としてCOガスの浴解量は 活量をC及びOの痔解量に対して等しいとすると (%O)×(%C)−PCO/Q(−3069/T−2
・34)(3)1350℃では(3)式は (%O)×(%C)二Pco・6×10−5(4)とな
る。
ΔG0 = -58600 - 116.2 TJ/mol As a function of pressure, the amount of CO gas dissolved in the bath is (%O) x (%C) - PCO/Q, assuming that the activity is equal to the amount of C and O hemolyzed. (-3069/T-2
・34) (3) At 1350°C, equation (3) becomes (%O)×(%C)2Pco・6×10−5(4).

即ち真空中(Pco=10−4atm)で焼結する場合
とCO雰囲気中(Pco=10−1〜10−2atm)
で焼く場合では約100倍以上の酸素,炭素がCoバイ
ンダー中に入り得る。
That is, when sintering is performed in vacuum (Pco = 10-4 atm) and in a CO atmosphere (Pco = 10-1 to 10-2 atm).
When baking with Co, about 100 times more oxygen and carbon can enter the Co binder.

炭素量が多くなれば酸素が供給され、最終的にはCOと
して放出するので過剰の遊離炭素を除去し得る。
As the amount of carbon increases, oxygen is supplied and ultimately released as CO, allowing excess free carbon to be removed.

またバインダー相中に炭素が不足している時は炭素を供
給し、冷却時にMo2C+C→MoCとして安定化し得
る。
Furthermore, when carbon is insufficient in the binder phase, carbon can be supplied and stabilized as Mo2C+C→MoC upon cooling.

以上のことがらCO気流中で焼結することはMoCを含
む合金の正常領域を広げるのに著しい効果をもたらすこ
とが判明した。
From the above, it has been found that sintering in a CO gas flow has a significant effect on expanding the normal range of alloys containing MoC.

本発明において最も効果を出すのは1180°C以上の
温度である。
In the present invention, the most effective temperature is 1180°C or higher.

1180℃の温度ではMoCMo2C+Cに分解しやす
いのでCOガスを投入して,Coバインダー中の炭素濃
度を高めておくことが出来る。
Since it easily decomposes into MoCMo2C+C at a temperature of 1180°C, it is possible to increase the carbon concentration in the Co binder by introducing CO gas.

1180℃以下ではCOガスが合金中に入りにくゝ効果
が出ない。
If the temperature is below 1180°C, it is difficult for CO gas to enter the alloy and no effect is produced.

また、1180℃以下でCOガスを入れてもすでに分解
したMo2CがMoCにならないので効果が出ない。
Further, even if CO gas is introduced at a temperature below 1180° C., no effect will be produced because the already decomposed Mo2C will not become MoC.

しかしCOガスを投入する温度は1180℃以上どの段
階で入れてもよい。
However, the temperature at which the CO gas is introduced may be at any stage above 1180°C.

何故なら一度Co中の炭素濃度を調整すれば効果が出せ
るからである。
This is because once the carbon concentration in Co is adjusted, the effect can be achieved.

しかし確実にMoCの分解を防ぐには冷却過程がよい。However, in order to reliably prevent the decomposition of MoC, a cooling process is preferable.

一方COガスの投入量及び炉内ガス圧は減圧下が望まし
い。
On the other hand, it is desirable that the amount of CO gas input and the gas pressure in the furnace be under reduced pressure.

COガス濃度が高くなると浸炭,脱炭等の反応が複雑に
起こるからである。
This is because as the CO gas concentration increases, reactions such as carburization and decarburization occur in a complicated manner.

以上モリブデンとタングステンの複合炭化物を主成分と
する合金についてのみ述べたが、本焼結方法は炭素の一
部を窒素もしくは酸素で置換した合金でも効果がある。
Although only alloys whose main components are composite carbides of molybdenum and tungsten have been described above, the present sintering method is also effective with alloys in which a portion of carbon is replaced with nitrogen or oxygen.

又一般にM(C,N,0)zで表示される(M=Ti,
Zr,Hf,V,Nb,Ta,0.5≦Z≦1.0)い
わゆるBl型固啓体と共存しても該効果が失われるもの
ではない。
It is also generally expressed as M(C,N,0)z (M=Ti,
(Zr, Hf, V, Nb, Ta, 0.5≦Z≦1.0) The effect is not lost even if it coexists with a so-called B1 type solid-state solid material.

実施例 1 MoとWの比率が7:3(at%)であるモノカーバイ
ドの固溶体(Mo7W3)Cを得た。
Example 1 A monocarbide solid solution (Mo7W3)C having a Mo to W ratio of 7:3 (at%) was obtained.

この(Mo7W3)Cを86重量%,Co粉末を14重
量%を配合し、ボールミルを用いて有機溶媒中で湿式混
合を行った。
86% by weight of this (Mo7W3)C and 14% by weight of Co powder were blended, and wet mixing was performed in an organic solvent using a ball mill.

該混合粉末は乾燥後、型押し、真空中で1380℃で焼
結した。
After drying, the mixed powder was embossed and sintered at 1380° C. in vacuum.

得られた合金の炭素量は下記の如くであった。The carbon content of the obtained alloy was as follows.

従来の焼結方法である真空下(10−2Torr)で焼
結した合金は遊離炭素を析出し、結合炭素量は98.7
%しか入っていなかった。
The alloy sintered under vacuum (10-2 Torr), which is the conventional sintering method, precipitates free carbon and has a bound carbon content of 98.7
It contained only %.

合金の組織を見ると遊離炭素がはっきり見られ合金の特
性も悪かった。
When looking at the structure of the alloy, free carbon was clearly seen and the properties of the alloy were poor.

これに対して該型押体を真空中で1380℃で1時間保
持した後、冷却過程でCOガスを炉内に導入し炉内CO
分圧を30Torrにした。
On the other hand, after holding the stamped body in vacuum at 1380°C for 1 hour, CO gas was introduced into the furnace during the cooling process to reduce the CO in the furnace.
The partial pressure was set at 30 Torr.

得られた合金の特性は表2の如くであった。The properties of the obtained alloy were as shown in Table 2.

COガスを炉内に導入すると炭素量が0.05%ほど増
加した。
When CO gas was introduced into the furnace, the amount of carbon increased by about 0.05%.

また結合炭素は理論値の99.6まで入り、合金特性も
十分満足するものが得られた。
Further, the bonded carbon content reached the theoretical value of 99.6, and the alloy properties were also sufficiently satisfactory.

これはPcoを高くすることによりコバルト中の炭素濃
度が増加したこと、またコバルト中の炭素濃度を高くす
ることによりMOC→MO2C+Cの分解反応を防止し
得えたことが証明されtも実施例 2 (Mo7w3)Cからなるタングステンとモリブデンの
複合炭化物550gに(Ti5,Ta2W3)Cからな
る複合炭化物380gにCoを70g配合し、有機浴媒
中でボールミル混合を100時間行って混合粉末とした
This proves that the carbon concentration in cobalt increased by increasing Pco, and that the decomposition reaction of MOC→MO2C+C was prevented by increasing the carbon concentration in cobalt. 70 g of Co was blended with 550 g of a composite carbide of tungsten and molybdenum consisting of Mo7w3)C and 380 g of a composite carbide consisting of (Ti5, Ta2W3)C, and mixed in a ball mill for 100 hours in an organic bath medium to obtain a mixed powder.

これを型押した後、真空炉を用いて1200℃まで10
−2Torrの真空下で加熱した。
After stamping this, use a vacuum furnace to heat it to 1200℃ for 10 minutes.
Heated under a vacuum of -2 Torr.

1200℃以上1400℃までの温度範囲はCOガスを
炉内に0.3l/min投入し、炉の排気を調整するこ
とにより炉内圧を100Torrとした。
For the temperature range from 1200° C. to 1400° C., CO gas was introduced into the furnace at a rate of 0.3 l/min, and the furnace pressure was set at 100 Torr by adjusting the furnace exhaust.

減圧CO雰囲気下で1400℃まで昇温した後再び10
−2Torrの真空下で1時間保持した。
After raising the temperature to 1400°C under reduced pressure CO atmosphere, it was heated again to 10°C.
It was maintained under a vacuum of -2 Torr for 1 hour.

加熱完了後、電源を切って加熱を中止すると同時に炉内
にCOガスを投入し、焼結炉の炉内圧を100Torr
のCO減圧下にした。
After heating is completed, turn off the power, stop heating, and at the same time introduce CO gas into the furnace to raise the internal pressure of the sintering furnace to 100 Torr.
A CO2 vacuum was applied.

本発明の方法と比較するために、全焼結過程を10−2
Torrの真空下で行った試料も得てその特性を比較し
た。
In order to compare with the method of the present invention, the entire sintering process was carried out at 10-2
Samples made under a vacuum of Torr were also obtained and their properties were compared.

表3は本発明の方法を従来法によって得た合金の特性を
上臓した。
Table 3 summarizes the properties of alloys obtained by the method of the present invention and the conventional method.

本発明の方法では正常合金が得られるので、特性も十分
満足し得る。
Since a normal alloy can be obtained by the method of the present invention, the properties can be fully satisfied.

一方、従来の焼結方法では遊離炭素が析出しているので
、硬さも低く、抗折力も不足していた。
On the other hand, in the conventional sintering method, free carbon precipitates, resulting in low hardness and insufficient transverse rupture strength.

Claims (1)

【特許請求の範囲】[Claims] 1 タングステンとモリブデンの複合化合物もしくはモ
リブデンの化合物で、単純ヘキサゴナル型の結晶構造を
有する1種もしくはそれ以上の硬質相のみ、もしくはこ
れらの硬質相とIVa,Va,■a族を含むBl型硬質
化合物相を主として鉄族金属で結合した超硬合金におい
て、その焼結過程の1180℃以上の温度域で一部又は
全過程をCOガスを含む雰囲気中で焼結することを特徴
とするモリブデンを含む超硬合金の製造法。
1 A composite compound of tungsten and molybdenum or a compound of molybdenum, containing only one or more hard phases having a simple hexagonal crystal structure, or a Bl-type hard compound containing these hard phases and groups IVa, Va, and ■a. A cemented carbide whose phases are mainly bonded by iron group metals containing molybdenum, characterized in that the sintering process is partially or completely sintered in an atmosphere containing CO gas in a temperature range of 1180°C or higher. Manufacturing method of cemented carbide.
JP52091685A 1977-07-29 1977-07-29 Manufacturing method of cemented carbide containing molybdenum Expired JPS589821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52091685A JPS589821B2 (en) 1977-07-29 1977-07-29 Manufacturing method of cemented carbide containing molybdenum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52091685A JPS589821B2 (en) 1977-07-29 1977-07-29 Manufacturing method of cemented carbide containing molybdenum

Publications (2)

Publication Number Publication Date
JPS5426205A JPS5426205A (en) 1979-02-27
JPS589821B2 true JPS589821B2 (en) 1983-02-23

Family

ID=14033347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52091685A Expired JPS589821B2 (en) 1977-07-29 1977-07-29 Manufacturing method of cemented carbide containing molybdenum

Country Status (1)

Country Link
JP (1) JPS589821B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633850Y2 (en) * 1982-11-25 1988-01-30

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616634A (en) * 1979-07-23 1981-02-17 Sumitomo Electric Ind Ltd Manufacture of molybdenum-containing hard alloy
JPS5839702A (en) * 1981-09-01 1983-03-08 Sumitomo Electric Ind Ltd Continuous sintering furnace in reduced pressure atmosphere
JPS57202248U (en) * 1982-04-20 1982-12-23
JPS61269967A (en) * 1985-05-23 1986-11-29 Fuji Electric Co Ltd Pouring device by multiplex pots

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633850Y2 (en) * 1982-11-25 1988-01-30

Also Published As

Publication number Publication date
JPS5426205A (en) 1979-02-27

Similar Documents

Publication Publication Date Title
KR100364952B1 (en) Method of making metal composite materials
JPS61295308A (en) Production of alloy powder containing rare earth metal
JPH03500188A (en) Method for producing oxide dispersion hardened sintered alloy
CN109136709A (en) The production method of vanadium carbide nitride magnesium-titanium solid solution and its hard alloy
Bertheville et al. Enhanced powder sintering of near-equiatomic NiTi shape-memory alloys using Ca reductant vapor
JPS6289803A (en) Powdery particle for fine granular hard alloy and its production
JPS589821B2 (en) Manufacturing method of cemented carbide containing molybdenum
TW200535254A (en) High melting point metallic alloy material of high strength and high re-crystallization temperature and its manufacturing method
KR19990037089A (en) Method of manufacturing metal composites
JPS62294142A (en) Production of nickel-titanium alloy
JPS61141674A (en) Tungsten silicide alloy sintered body and manufacture
JP2007045670A (en) Manufacturing method of metal carbide
JP2002030374A (en) Hydrogen storage alloy and its production method
EP1043411B1 (en) Method of making metal composite materials
JP2905043B2 (en) Manufacturing method of permanent magnet powder material
JPS63286549A (en) Nitrogen-containing titanium carbide-base sintered alloy having excellent resistance to plastic deformation
JPS6048448B2 (en) Method for producing solid solution of hexagonal monocarbide
JPS5829247B2 (en) Method for producing solid solution containing molybdenum
JPH08120352A (en) Method for reproducing cemented carbide composition and production of cemented carbide
JP3141461B2 (en) Method for producing Tb-containing rare earth-transition metal alloy powder
JPH04321505A (en) Production of aluminum nitride
JPS6218622B2 (en)
JPS6022642B2 (en) Method for producing solid solution of hexagonal monocarbide
JPS5938168B2 (en) Method for producing hard solid solution containing molybdenum
KR820000588B1 (en) Process for the production of a hard solid solution