JPS5839702A - Continuous sintering furnace in reduced pressure atmosphere - Google Patents

Continuous sintering furnace in reduced pressure atmosphere

Info

Publication number
JPS5839702A
JPS5839702A JP13734681A JP13734681A JPS5839702A JP S5839702 A JPS5839702 A JP S5839702A JP 13734681 A JP13734681 A JP 13734681A JP 13734681 A JP13734681 A JP 13734681A JP S5839702 A JPS5839702 A JP S5839702A
Authority
JP
Japan
Prior art keywords
sintering
chamber
gas
reduced pressure
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13734681A
Other languages
Japanese (ja)
Other versions
JPH0128083B2 (en
Inventor
Naoki Motooka
直樹 本岡
Atsushi Kuroishi
黒石 農士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP13734681A priority Critical patent/JPS5839702A/en
Publication of JPS5839702A publication Critical patent/JPS5839702A/en
Publication of JPH0128083B2 publication Critical patent/JPH0128083B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only

Abstract

PURPOSE:To provide a continuous sintering furnace in reduced pressure atmosphere which produces sintered bodies having good diemensional accuracy in high productivity by heating and scattering a lubricant from powder metallurgical moldings in a degassing chamber under reduced pressure, sintering said body in an adjacent sintering chamber under reduced pressure and cooling the bodies in an adjacent cooling chamber under reduced pressure. CONSTITUTION:A boat 21 contg. the above-described moldings contg. a lubricant used for the purpose of lubrication of dies is supplied through an inlet door 4 into a degassing chamber 1, where the moldings are heated to 500-700 deg.C to scatter the lubricant and gases; thereafter the moldings are discharged 8. The boat 21 is carried into the position enclosed by the heat insulating body 10 and heating elements 11 in an adjacent sintering chamber 2 under reduced pressure by evacuation 13 through an intermediate door 5, where the degassed moldings are sintered. The boat 21 contg. the sintered moldings is fed through an intermediate door 6 into a cooling chamber 3 under reduced pressure, where a cooling gas is introduced 20 until the infurnace pressure attains 700-800 Torr, whereby the moldings are cooled and the sintered articles are obtained. The respective chambers are so constituted as to maintain airtightness respectively independently by means of the intermediate doors 5, 6.

Description

【発明の詳細な説明】 本発明は、粉末冶金製品を大気圧以下の減圧ガス雰囲気
下で焼結するにあたり、生産性に優れ、しかも寸法精度
の良い焼結体を得ることを目的とした連続減圧雰囲気焼
結炉に関するものである〇一般に粉末冶金法における焼
結雰囲気としてはブタン等の変成ガス、アンモニア分解
ガス、NLガス Hガスあるいは真空雰囲気が使用され
てしする   2 が、CrlMn等の易酸化性元素を含む材料は、真空雰
囲気以外の上記ガス雰囲気では酸化しやすいという問題
があった。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides continuous sintering for the purpose of obtaining a sintered body with excellent productivity and good dimensional accuracy when powder metallurgy products are sintered in a reduced pressure gas atmosphere below atmospheric pressure. This relates to a reduced pressure atmosphere sintering furnace. In general, a modified gas such as butane, ammonia decomposition gas, NL gas, H gas, or a vacuum atmosphere is used as the sintering atmosphere in powder metallurgy. There is a problem in that materials containing oxidizing elements are easily oxidized in the above gas atmosphere other than a vacuum atmosphere.

その点、真空雰囲気による焼結は還元性が優れているが
、Cを含むような材料はCと製品中の酸素が反応して還
元が進む為、製品中のC量の制御が困難であり、他方、
蒸気圧の高い元素を含む材料の場合には、真空中では飛
散しやすいという問題がある。
In this regard, sintering in a vacuum atmosphere has excellent reducing properties, but with materials that contain carbon, the reduction progresses as the carbon reacts with oxygen in the product, making it difficult to control the amount of carbon in the product. , on the other hand,
In the case of materials containing elements with high vapor pressure, there is a problem that they tend to scatter in a vacuum.

これを解消する手段として考え出されたのが、炉内を真
空に引きながら雰囲気ガスを導入し、大気圧下の減圧ガ
ス雰囲気中で焼結を行う方法である。C量の制御が問題
となる製品の場合には、減圧下でCOあるいはH2ガス
を導入し、これらのガスによって還元反応を促進させる
方法が有効であり、元素の蒸発が問題となる様な場合に
はN:L、Ar等のガスを導入することが有効であるこ
とが確認されている。
As a means to solve this problem, a method was devised in which atmospheric gas is introduced while the furnace is evacuated, and sintering is performed in a reduced pressure gas atmosphere at atmospheric pressure. For products where controlling the amount of C is a problem, it is effective to introduce CO or H2 gas under reduced pressure and use these gases to accelerate the reduction reaction.In cases where evaporation of elements is a problem, It has been confirmed that it is effective to introduce a gas such as N:L or Ar.

しかしながら、従来の減圧雰囲気焼結炉は、ノぐッチ式
の真空炉をベースにしている為、製品挿入→昇温→焼結
→冷却→製品取り出しの/サイクル時間が長く、通常t
−5時間を要している。
However, since conventional reduced pressure atmosphere sintering furnaces are based on Noguchi type vacuum furnaces, the cycle time of product insertion → temperature rise → sintering → cooling → product removal is long, and the cycle time is usually long.
-It takes 5 hours.

この為、大量生産を必要とするような鉄系焼結機械部品
には、対応し難いという生産能力上の問題があった。し
かも、従来のバッチ式真空炉は発熱体が側壁のみの2面
構造である為、炉内の温度バラツキ巾が20°Cと大き
く、焼結体の寸法精度が悪く、高精度を要求される焼結
機械部品には適用しにくいという問題を有していた。こ
れらの問題点を解消するために考え出されたのが、本発
明の連続減圧雰囲気焼結炉である。
For this reason, there was a problem in production capacity that it was difficult to handle iron-based sintered machine parts that required mass production. Moreover, because the conventional batch vacuum furnace has a two-sided structure with only a side wall heating element, the temperature variation inside the furnace is as large as 20°C, and the dimensional accuracy of the sintered body is poor, requiring high precision. The problem was that it was difficult to apply to sintered machine parts. The continuous reduced pressure atmosphere sintering furnace of the present invention was devised to solve these problems.

以下本発明の実施例について添付図画に従って説明する
Embodiments of the present invention will be described below with reference to the accompanying drawings.

〔実施例〕〔Example〕

第1図は本発明の焼結炉の概略を示したものである。 FIG. 1 schematically shows the sintering furnace of the present invention.

第1図の1は脱ガス室で、操業時はjOO〜7000C
の温度で保持されている。こ\で脱ガス室を設けた理由
は、第1に中央の焼結室2に品物を挿入する際に1焼結
室の発熱体が大気にさらされて劣化することを防ぐ為の
予備室的な役目を果すこと、第2には、真空あるいは減
圧雰囲気焼結室で脱ガスを行うことは、成形体から出て
来た潤滑材が炉壁および真空ポンプ内に一部付着し、雰
囲気の汚れ更にはポンプの性能低下をきたす為、前もっ
て脱ガスを行う方が望ましいこと、第3には、脱ガス室
1と焼結室2とを連続化することにより、脱ガス時に加
熱された予熱を焼結時に有効に生かせる為、焼結時の加
熱に要するエネルギーがその分節約できるという点であ
る。第1表は、焼結炉がバッチ式で脱ガスを別の炉で行
うという従来の方法と本焼結炉での加熱に要する電力エ
ネルギーを比較したもので、いずれも鉄系焼結部品乙O
kgを加熱した場合の数値である。これによって本焼結
炉がエネルギーの節約という点でも従来の方法に比べ優
れていることが判る。
1 in Figure 1 is the degassing chamber, and during operation the temperature is jOO~7000C.
is maintained at a temperature of The reason why the degassing chamber was provided here is that firstly, when inserting the product into the central sintering chamber 2, the heating element in the sintering chamber 1 is a preliminary chamber to prevent it from being exposed to the atmosphere and deteriorating. Second, degassing in a vacuum or reduced-pressure atmosphere sintering chamber means that some of the lubricant coming out of the compact adheres to the furnace wall and inside the vacuum pump, and the atmosphere It is preferable to perform degassing in advance, as contamination of the gas may further cause deterioration of the performance of the pump. Thirdly, by making the degassing chamber 1 and the sintering chamber 2 continuous, the heated Since preheating can be used effectively during sintering, the energy required for heating during sintering can be saved accordingly. Table 1 compares the electric energy required for heating in this sintering furnace with the conventional method in which the sintering furnace is a batch type and degassing is performed in a separate furnace. O
This is the value when heating kg. This shows that the present sintering furnace is superior to conventional methods in terms of energy savings as well.

第  /  表 脱ガス−焼結に至る製品加熱に 要する電力エネルギー 次に脱ガス室の湿度を500〜700°Cとした理由は
、5000C以下では成形体中に゛分散している潤滑材
の飛散が不十分であり、減圧あるいは真空雰囲気におけ
る焼結時に残っていた潤滑材が出てくる為、焼結雰囲気
の制御に悪影響を及ぼすという問題があること、一方7
00@Cに達すやと潤滑材は殆ど抜けており、それ以上
温度を上げても効果は変らないからである。
Table 1: Degassing - Electrical energy required to heat the product to sinteringNext, the reason why the humidity in the degassing chamber was set at 500 to 700°C is that below 5000°C, the lubricant dispersed in the compact will scatter. On the other hand, there is a problem that the lubricant remaining during sintering in a reduced pressure or vacuum atmosphere comes out, which adversely affects the control of the sintering atmosphere.
This is because as soon as the temperature reaches 00@C, most of the lubricant is gone, and the effect will not change even if the temperature is raised further.

第1図の18は脱ガス雰囲気ガスの導入回路で15は電
磁弁である。雰囲気ガスとしてはNよ、アンモニア分解
ガス、エキソサミツクガス、Hよガス等非酸化性ガスで
あれば何でも良いが、成形体から出てくる潤滑材は白煙
となるので、出来ればアンモニア分解ガスl H,ガス
等の燃焼性ガスを使用して白煙を燃やして炉外に排出さ
せる方が環境対策の点で望ましい。
18 in FIG. 1 is a degassing atmosphere gas introduction circuit, and 15 is a solenoid valve. As the atmospheric gas, any non-oxidizing gas such as N, ammonia decomposition gas, exosamic gas, H gas, etc. may be used, but since the lubricant coming out of the compact becomes white smoke, it is preferable to use ammonia decomposition gas. From the viewpoint of environmental protection, it is preferable to burn the white smoke using a combustible gas such as gas lH and gas and discharge it outside the furnace.

ボートの挿入であるが、挿入は入口の扉4を開けて外部
のローグーを用いて脱ガス室のボート21の位置にセッ
トする。脱ガス室の入口扉4を開ける際には、上部の潤
滑材とガスの排気口8をフタ9によって閉じておくと共
に、炉内圧は/気王をや\上回る程度にして大気から炉
内にエアーをまき込まないようにする。ボート21がセ
ットされた後は扉4を閉めて排気口のフタ9を開けて排
気口8から潤滑材をガスと共に燃焼させながら排出させ
る。脱ガス室1に保持する時間は、次工程の焼結時間に
よって決定されるが、潤滑材を十分に飛散させるという
点からは少なくとも30分以上が望ましい。
To insert the boat, open the entrance door 4 and set it in the position of the boat 21 in the degassing chamber using an external rogue. When opening the entrance door 4 of the degassing chamber, the lubricant and gas exhaust port 8 at the top is closed with the lid 9, and the pressure inside the furnace is raised to a level slightly higher than qi to remove air from the atmosphere into the furnace. Avoid getting air in. After the boat 21 is set, the door 4 is closed, the exhaust port cover 9 is opened, and the lubricant is discharged from the exhaust port 8 while being burned together with gas. The time for holding in the degassing chamber 1 is determined by the sintering time of the next step, but from the viewpoint of sufficiently scattering the lubricant, it is preferably at least 30 minutes or more.

次に焼結室2への移動であるが移動の前に先ず焼結室内
にガス導入回路19から電磁弁16を開口してNあるい
はArガスを導入し、炉内圧を脱ガス室1と同等か若干
上回る程度にし、この状態で中間扉5を開ける。次に脱
ガス室内下部にセットされたローグーを用いてボート2
1を焼結室2内に移動させ、セット、が終ると中間扉を
閉め、ガス導入を止め、電磁弁14を開にし真空ポンプ
13で炉内を真空にする。この間の所要時間はできる限
り短時間であることが望ましいので、導入ガス流量調整
範囲を広くとり、雰囲気ガス導入の場合は少量、ボート
移動の際には大量にと流量が切換えできる様な構造とし
、真空ポンプ13の排気能力も高くして大体3分以内で
移動完了できるようにすることが望ましい。なお、焼結
室2内に示す10は断熱材。
Next, we move to the sintering chamber 2, but before moving, we first open the solenoid valve 16 from the gas introduction circuit 19 into the sintering chamber to introduce N or Ar gas to make the furnace pressure equal to that in the degassing chamber 1. In this state, the intermediate door 5 is opened. Next, use the Rogue set at the bottom of the degassing chamber to
1 is moved into the sintering chamber 2, and when the setting is completed, the intermediate door is closed, the gas introduction is stopped, the solenoid valve 14 is opened, and the inside of the furnace is evacuated using the vacuum pump 13. Since it is desirable that the time required during this time be as short as possible, the introduced gas flow rate adjustment range should be wide, and the structure should be designed so that the flow rate can be changed from a small amount when introducing atmospheric gas to a large amount when moving the boat. It is desirable that the evacuation capacity of the vacuum pump 13 is also increased so that the movement can be completed within approximately 3 minutes. Note that 10 shown inside the sintering chamber 2 is a heat insulating material.

11は発熱体である。11 is a heating element.

脱ガス室から焼結室へボーiを移動させる別の方法とし
て、脱ガス室に真空ポンプによる排気回路を設け、脱ガ
ス終了後、排気口8のフタを閉じ電磁弁14′を開口し
、二条ンブ16′で炉内を真空にし、焼結室も真空にし
た状態で中間扉5を開け、ボートを移動させることも可
能である。
As another method for moving the bow i from the degassing chamber to the sintering chamber, an exhaust circuit using a vacuum pump is provided in the degassing chamber, and after the degassing is completed, the lid of the exhaust port 8 is closed and the solenoid valve 14' is opened. It is also possible to move the boat by opening the intermediate door 5 with the furnace interior evacuated using the two-row tube 16' and the sintering chamber also evacuated.

ボートが焼結室にセットされ所定の温度に達すると、ガ
ス同人回路19.電磁弁16により雰囲気ガスを導入し
、排気回路の電磁弁14を開−閉の調整によって炉内を
所定の減圧下に保ち、焼結を実施する。
When the boat is set in the sintering chamber and reaches a predetermined temperature, the gas doujin circuit 19. Atmospheric gas is introduced through the solenoid valve 16, and the inside of the furnace is maintained at a predetermined reduced pressure by opening and closing the solenoid valve 14 of the exhaust circuit, and sintering is carried out.

次に焼結室の発熱体の構造について述べる。Next, the structure of the heating element in the sintering chamber will be described.

従来の焼結炉は発熱体の配置が側面の2面に限られてい
る為、炉内の温度バラツキが大きく、ボートの中央部に
比べてボートの上及び下部は温度が低い傾向にあり、通
常温度中1−200Cj位あり、その為、焼結体の寸法
バラツキも大きくなるという問題があった。そこで本焼
結炉では温度精度を上げる為、第3図に示すような発熱
体の構造をとること\した。
In conventional sintering furnaces, the heating elements are limited to two sides, so the temperature inside the furnace varies widely, and the temperature at the top and bottom of the boat tends to be lower than the center of the boat. The normal temperature is about 1-200 Cj, and therefore there is a problem that the dimensional variation of the sintered body becomes large. Therefore, in order to improve temperature accuracy in this sintering furnace, we adopted a heating element structure as shown in Figure 3.

第3図で31 、32 、33はそれぞれカーボン発熱
体てt面構造をなしており、それぞれ別個に35 、3
6で示される電流回路及び電源によって加熱される様に
なっている。温度制御は熱電対64によって温度を検知
し、マイコン68及びフィードバック回路67によって
、所定の温度あるいは昇温速度を維持できるように31
.ろ2,33の発熱体に加える電力を調整することによ
り達成する。
In Fig. 3, 31, 32, and 33 are carbon heating elements each having a T-plane structure, and 35, 33, respectively, are carbon heating elements having a T-plane structure.
It is heated by a current circuit and a power source shown at 6. For temperature control, the temperature is detected by a thermocouple 64, and a microcomputer 68 and a feedback circuit 67 control the temperature control 31 to maintain a predetermined temperature or temperature increase rate.
.. This is achieved by adjusting the power applied to the heating elements of the filters 2 and 33.

即ち、上下方向の温度バラツキは上下面の発熱体によっ
て低く抑え、前後方向のバラツキは発熱体を3ゾーンに
分割制御することによって低く抑えることができ、極め
て高い温度精度が得られることが可能となった。第2表
は/2000Cの温度における炉内の温度バラツキを示
したものである。
In other words, temperature variations in the vertical direction can be kept low by the heating elements on the top and bottom surfaces, and variations in the front and back directions can be kept low by dividing and controlling the heating elements into three zones, making it possible to obtain extremely high temperature accuracy. became. Table 2 shows the temperature variation in the furnace at a temperature of /2000C.

次に焼結室における品物の保持時間について述べる。脱
ガス室で乙0O0Cに加熱された品物を/2000Cで
焼結する場合を例にとると、昇温速度を20°C/分と
すれば、約30分で焼結温度に達する。
Next, the retention time of the article in the sintering chamber will be described. For example, when an article heated to 000C in a degassing chamber is sintered at /2000C, the sintering temperature is reached in about 30 minutes if the temperature increase rate is 20C/min.

こ\で焼結温度での保持時間を30分とすれば、4止局
焼結室での保持時間は6o分となる。保持時間について
は昇温速度、焼結温度、焼結温度での保持時間の設定に
よって適宜変更が可能である。
If the holding time at the sintering temperature is 30 minutes, the holding time in the 4-stop sintering chamber will be 60 minutes. The holding time can be changed as appropriate by setting the heating rate, sintering temperature, and holding time at the sintering temperature.

第 2 表  炉内温度バラツキ 最後に焼結された品物の冷却室6への移動であるが、こ
の場合、焼り室2及び冷却室6共に真空ポンプ16によ
って炉内を真空にし、その時点で中間扉6を開け、冷却
室に設けられたローグーによって焼結室内のボート21
を取り出し冷却室にセットする。セット終了後直ちに中
間扉6を閉じ、ガス導入回路20.電磁弁17より冷却
ガスを炉内圧700〜710Torrに達するまで導入
する。
Table 2 Temperature variation in the furnace The last sintered product is transferred to the cooling chamber 6. In this case, the inside of the furnace is evacuated by the vacuum pump 16 in both the sintering chamber 2 and the cooling chamber 6, and at that point The intermediate door 6 is opened and the boat 21 inside the sintering chamber is opened using the log provided in the cooling chamber.
Take it out and set it in the cooling room. Immediately after completing the setting, close the intermediate door 6 and close the gas introduction circuit 20. Cooling gas is introduced through the solenoid valve 17 until the furnace internal pressure reaches 700 to 710 Torr.

この時、冷却速度を早めたい場合には、冷却ガスを導入
した後、冷却用ファン12をまわしてガスファン強制冷
却を実施する。冷却が終れば炉内圧を/気王とした後、
出口の扉7を開は外部′ローグーによって炉内のボート
21を外へ出すOこの様なサイクルによって品物の脱ガ
ス、焼結及び冷却を連続的に実施するのである。但し、
実際に連続的に操業する場合には、ボートの移動先を先
ず空にしておくという必要から、先ず冷却室のボートを
外へ、次に焼結室のボートを冷却室へその次に脱ガス室
のボートを焼結室へと順次後のボートから先に移動させ
ることが必要である。
At this time, if it is desired to increase the cooling speed, after introducing the cooling gas, the cooling fan 12 is rotated to perform forced cooling with the gas fan. After cooling is completed, the pressure inside the furnace is set to /Ki,
When the exit door 7 is opened, the boat 21 inside the furnace is brought out by means of an external log. Through this cycle, degassing, sintering and cooling of the article are carried out continuously. however,
In actual continuous operation, it is necessary to empty the place where the boats are moved, so first the boat in the cooling room is moved outside, then the boat in the sintering room is transferred to the cooling room, and then degassed. It is necessary to move the boats of the chamber into the sintering chamber sequentially, the later boats first.

最後に乙Okgの製品を脱ガス、焼結、冷却させるのに
要する時間について、バッチ式の炉と本焼結炉で行った
比較結果を第3表に示す。
Finally, Table 3 shows the comparison results between the batch type furnace and the main sintering furnace regarding the time required to degas, sinter, and cool the Otsu Okg product.

第3表より、本焼結炉の生産性がバッチ式に比べ格段に
優れていることが明らかである。
From Table 3, it is clear that the productivity of this sintering furnace is much superior to that of the batch type.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の連続減圧算囲気焼結炉の概略説明図、
第2図は脱ガス→焼結に至る製品加熱に要する電力エネ
ルギーの脱ガス→焼結パターンの図で、(イ)は従来の
方法の場合、(→は本発明の焼結る。 1・・・脱ガス室、2・・・焼結室、6・1.冷却室、
4・・・入口扉、5,6・・・中間扉、7・・・出口扉
九8・・・潤滑材とガスの排気口、9・・・排気口フタ
、10・・・断熱材、11・・・発熱体、12・・・冷
却用ファン、13 、13・・・真空ポンプ、14 、
14’、 15 、16 、17・・・電磁弁、18,
19.20・・・ガス導入回路、21・・・ボー)、3
1,32.33・・・そわぞれ前部、中央部、後部のカ
ーボン発熱体、34・・・熱電対、35・・・発熱体加
熱用電流回路、36・・・発熱俸電代理人 弁理士 浦
田清− 左1図 木2図
FIG. 1 is a schematic explanatory diagram of the continuous reduced pressure ambient air sintering furnace of the present invention,
Figure 2 is a diagram of the degassing → sintering pattern of the electrical energy required to heat the product from degassing → sintering, (A) is for the conventional method, (→ is for the sintering of the present invention. ... Degassing chamber, 2... Sintering chamber, 6.1. Cooling chamber,
4... Entrance door, 5, 6... Intermediate door, 7... Exit door 98... Lubricant and gas exhaust port, 9... Exhaust port lid, 10... Heat insulating material, 11... Heating element, 12... Cooling fan, 13, 13... Vacuum pump, 14,
14', 15, 16, 17... solenoid valve, 18,
19.20...Gas introduction circuit, 21...Baud), 3
1, 32, 33... Carbon heating elements at the front, center, and rear, respectively, 34... Thermocouple, 35... Current circuit for heating the heating element, 36... Heating electricity agent Patent attorney Kiyoshi Urata - Figure 1 on the left, Figure 2 on the tree

Claims (1)

【特許請求の範囲】 1、 粉末冶金法によって成形された成形体を、大気圧
以下の減圧ガス雰囲気中で焼結させる焼結炉で、その構
造が成形時の金型潤滑の為に、原料粉末中に添加混合さ
れた潤滑材を5OO0C〜700°Cの温度範囲で加熱
して、成形体から飛散させることを目的とした脱ガス室
と、脱ガスされた成形体を減圧下で焼結させる焼結室、
および焼結された品物を非酸化性雰囲気ガス中で冷却さ
せる冷却室からなり、品物挿入側から脱ガス室、焼結室
、冷却室の順に連続して配置され、各室の間に設けられ
た中間扉によって各々独立して気密性を保つことが出来
ると共に、各室での処理量をボート/ケースと限定する
ことにより、焼結時の温度、雰囲気制御の精憤を上げ、
寸法精度の良い焼結体を得ることを特徴とする連続減圧
雰囲気焼結炉。 2、脱ガス室、焼結室及び冷却室の各室における製品の
処理時間即ち、処理物を充填したボートの滞在時間を同
一とし、この処理時間が終了する毎に中間扉を開け、ボ
ートをローグーを用いて次の室に順次移動させることに
より、ボート挿入→脱ガス→焼結→冷却→取り出しのサ
イクルを連続的に行うことを特徴とする特許請求の範囲
第7項記載の連続減圧雰囲気焼結炉。 6、焼結室における発熱体の配置を、左右の側面だけで
なく上下面にも配置した四面構造にすると共に、ボート
移動方向に発熱体を3分割し、そ−れぞれ独立して温度
制御を行うことにより、少くとも炉内でボートが占める
体積範囲内の温度バラツキが乙00以内であることを特
徴とする特許請求の範囲第1項または第2項記載の連続
減圧雰囲気焼結炉。 4、焼結室には、真空ポンプによって炉内のガスを排気
させる排気回路をつけると共に、非酸化性雰囲気ガスを
導入させるガス導入回路を設け、炉内を真空に引きなが
らガスを導入し、排気回路の中間に設けられた電磁弁に
よって、炉内を大気圧以下の所定の圧力に保ち、その減
圧ガス雰囲気下で品物を焼結させることを特徴とする特
許請求の範囲第1項、第2項または第3項記載の連続減
圧雰囲気焼結炉。 5、焼結室に導入するガスがCo、 N、 、 H,、
及びArであり、処理物の材質あるいは焼結条件に応じ
て、その何れかを選択できることを特徴とする特許請求
の範囲第1項、第)項、第3項または第を項記載の連続
減圧雰囲気焼結炉。 6、 冷却室に非酸化性ガスを導入させるガス導入回路
を設けると共に、室内に7台以上のファンを取りつけ、
ガスによる冷却もしくはガスを導入した後、ファンを回
すことによるガスファン強制冷却ができることを特徴と
する特許請求の範囲第1項、第2項、第3項、第4項ま
たは第5項記載の連続減圧雰囲気焼結炉。 Z 冷却室に導入する非酸化性ガスがN!、 Hユガス
であり、冷却条件によってその何れかを選択できること
を特徴とする特許請求の範囲第1項、第2項、第3項、
第を項、第5項または第3項記載の連続減圧雰囲気焼結
炉。
[Claims] 1. A sintering furnace for sintering compacts formed by powder metallurgy in a reduced-pressure gas atmosphere below atmospheric pressure. A degassing chamber is provided to heat the lubricant mixed in the powder at a temperature range of 500°C to 700°C and scatter it from the compact, and the degassed compact is sintered under reduced pressure. sintering chamber,
and a cooling chamber for cooling the sintered product in a non-oxidizing atmospheric gas.The degassing chamber, the sintering chamber, and the cooling chamber are successively arranged from the product insertion side in this order, with a cooling chamber provided between each chamber. By using intermediate doors, airtightness can be maintained independently, and by limiting the amount of processing in each chamber to boats/cases, temperature and atmosphere control during sintering can be improved.
A continuous reduced pressure atmosphere sintering furnace characterized by obtaining sintered bodies with good dimensional accuracy. 2. The processing time of the product in each of the degassing chamber, sintering chamber, and cooling chamber, that is, the residence time of the boat filled with the processed material, is the same, and every time this processing time ends, the intermediate door is opened and the boat is closed. Continuous reduced pressure atmosphere according to claim 7, characterized in that the cycle of boat insertion → degassing → sintering → cooling → removal is performed continuously by sequentially moving to the next chamber using a ROGOO. Sintering furnace. 6. The heating element in the sintering chamber is arranged not only on the left and right sides, but also on the top and bottom, making it a four-sided structure.The heating element is divided into three parts in the direction of boat movement, and each part can be adjusted independently to adjust the temperature. A continuous reduced-pressure atmosphere sintering furnace according to claim 1 or 2, characterized in that temperature variation within the volume range occupied by the boat in the furnace is within 000 by controlling the furnace. . 4. The sintering chamber is equipped with an exhaust circuit that uses a vacuum pump to exhaust the gas in the furnace, and a gas introduction circuit that introduces non-oxidizing atmospheric gas, and the gas is introduced while drawing a vacuum inside the furnace. Claims 1 and 2 are characterized in that the inside of the furnace is maintained at a predetermined pressure below atmospheric pressure by a solenoid valve provided in the middle of the exhaust circuit, and the article is sintered in the reduced pressure gas atmosphere. The continuous reduced pressure atmosphere sintering furnace according to item 2 or 3. 5. The gas introduced into the sintering chamber is Co, N, , H,...
and Ar, and any one of them can be selected depending on the material of the object to be treated or the sintering conditions. Atmosphere sintering furnace. 6. In addition to installing a gas introduction circuit to introduce non-oxidizing gas into the cooling room, install seven or more fans in the room.
Claims 1, 2, 3, 4, or 5, characterized in that cooling with gas or forced cooling with a gas fan can be performed by rotating a fan after introducing gas. Continuous reduced pressure atmosphere sintering furnace. Z The non-oxidizing gas introduced into the cooling chamber is N! , H Yugas, and any of them can be selected depending on the cooling conditions. Claims 1, 2, and 3,
The continuous reduced pressure atmosphere sintering furnace according to item 1, 5 or 3.
JP13734681A 1981-09-01 1981-09-01 Continuous sintering furnace in reduced pressure atmosphere Granted JPS5839702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13734681A JPS5839702A (en) 1981-09-01 1981-09-01 Continuous sintering furnace in reduced pressure atmosphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13734681A JPS5839702A (en) 1981-09-01 1981-09-01 Continuous sintering furnace in reduced pressure atmosphere

Publications (2)

Publication Number Publication Date
JPS5839702A true JPS5839702A (en) 1983-03-08
JPH0128083B2 JPH0128083B2 (en) 1989-06-01

Family

ID=15196489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13734681A Granted JPS5839702A (en) 1981-09-01 1981-09-01 Continuous sintering furnace in reduced pressure atmosphere

Country Status (1)

Country Link
JP (1) JPS5839702A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861424U (en) * 1981-10-22 1983-04-25 東北金属工業株式会社 vacuum sintering equipment
JPH01212707A (en) * 1988-02-18 1989-08-25 Mitsubishi Metal Corp Reduction degreasing furnace
JPH0332010U (en) * 1989-08-09 1991-03-28
JPH03289420A (en) * 1990-03-27 1991-12-19 Shibuya Kogyo Co Ltd Carton take-out device
CN107020376A (en) * 2016-01-31 2017-08-08 湖南大学 A kind of metal base grinding wheel atmosphere sintering device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214312U (en) * 1975-07-18 1977-02-01
JPS53120611A (en) * 1977-03-30 1978-10-21 Sumitomo Electric Ind Ltd Sintering furnace for powder metallurgy
JPS5426205A (en) * 1977-07-29 1979-02-27 Sumitomo Electric Ind Ltd Preparation of superhard alloy containing molybdenum
JPS55178700U (en) * 1979-06-12 1980-12-22

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214312B2 (en) * 1973-07-02 1977-04-20

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214312U (en) * 1975-07-18 1977-02-01
JPS53120611A (en) * 1977-03-30 1978-10-21 Sumitomo Electric Ind Ltd Sintering furnace for powder metallurgy
JPS5426205A (en) * 1977-07-29 1979-02-27 Sumitomo Electric Ind Ltd Preparation of superhard alloy containing molybdenum
JPS55178700U (en) * 1979-06-12 1980-12-22

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861424U (en) * 1981-10-22 1983-04-25 東北金属工業株式会社 vacuum sintering equipment
JPH01212707A (en) * 1988-02-18 1989-08-25 Mitsubishi Metal Corp Reduction degreasing furnace
JPH0332010U (en) * 1989-08-09 1991-03-28
JPH03289420A (en) * 1990-03-27 1991-12-19 Shibuya Kogyo Co Ltd Carton take-out device
CN107020376A (en) * 2016-01-31 2017-08-08 湖南大学 A kind of metal base grinding wheel atmosphere sintering device

Also Published As

Publication number Publication date
JPH0128083B2 (en) 1989-06-01

Similar Documents

Publication Publication Date Title
JPS5839702A (en) Continuous sintering furnace in reduced pressure atmosphere
JPS63183103A (en) Sintering method for injection molding
CN108115129A (en) A kind of 3D printing room with thermal treatment bin
JPH0112801B2 (en)
JPH0456707A (en) Continuous type vacuum furnace
JP2000017305A (en) Degreasing sintering furnace
JPH09111309A (en) Continuous sintering furnace
US6821478B2 (en) Method and device for sintering aluminum based sintered parts
JP3196305B2 (en) Vacuum furnace
JP2572017B2 (en) Cooling method of treated material in Matsufuru furnace
US3971679A (en) Method of annealing oriented silicon steel
JPS62167803A (en) Vacuum sintering and quick cooling method and vacuum sintering and quick cooling furnace
JP2009091638A (en) Heat-treatment method and heat-treatment apparatus
CN114322587B (en) Continuous sintering control method
EP0378995B1 (en) Method of producing zinc oxide whiskers
JPS58130270A (en) Continuous vacuum carburizing furnace and its operation method
CN117146580B (en) Eight-chamber vacuum continuous sintering furnace control method and eight-chamber vacuum continuous sintering furnace
JPS61190004A (en) Reduction annealing furnace of metallic powder
CN111215623A (en) Powder metallurgy densification pressureless sintering method of Ti-Al alloy
US3820766A (en) Vacuum furnace
JP3547700B2 (en) Continuous vacuum carburizing furnace
JPS6347330A (en) Method and apparatus for sealing continuous heat treatment furnace
JPH06346104A (en) Sintering method and sintering furnace
JP2871111B2 (en) Cooling method in vacuum furnace
CN211683499U (en) Novel 3D printer with active cooling function