JPS5938168B2 - Method for producing hard solid solution containing molybdenum - Google Patents

Method for producing hard solid solution containing molybdenum

Info

Publication number
JPS5938168B2
JPS5938168B2 JP54016581A JP1658179A JPS5938168B2 JP S5938168 B2 JPS5938168 B2 JP S5938168B2 JP 54016581 A JP54016581 A JP 54016581A JP 1658179 A JP1658179 A JP 1658179A JP S5938168 B2 JPS5938168 B2 JP S5938168B2
Authority
JP
Japan
Prior art keywords
molybdenum
solid solution
powder
tungsten
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54016581A
Other languages
Japanese (ja)
Other versions
JPS55109272A (en
Inventor
雅也 三宅
稔 中野
光雄 児玉
孝春 山本
昭夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP54016581A priority Critical patent/JPS5938168B2/en
Publication of JPS55109272A publication Critical patent/JPS55109272A/en
Publication of JPS5938168B2 publication Critical patent/JPS5938168B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、超硬合金、特に合金中のWCがMoCによっ
て置換されることを目的とした複合炭化物の製造に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the production of composite carbides intended for use in cemented carbide, particularly in which WC in the alloy is replaced by MoC.

従来、超硬合金の原料としてはWC粉末を主成分として
、これにT 1 y T at Nbt Mo、 H
fV、Cr等高融点金属炭化物もしくは炭窒化物を合金
の要求特性に応じて添加され、結合金属としては主とし
て鉄グループ金属が用いられている。
Conventionally, the raw material for cemented carbide has been mainly composed of WC powder, which has also been supplemented with T 1 y T at Nbt Mo, H
High melting point metal carbides or carbonitrides such as fV and Cr are added depending on the required characteristics of the alloy, and iron group metals are mainly used as the bonding metal.

しかしながらタングステンは比較的高価な金属であり、
地球上では極く僅かしか発見出来ないものであるので、
いわゆる「戦略」物資として考えられており、その利用
度は政治的な貴重価値ということが出来る。
However, tungsten is a relatively expensive metal;
Since it can only be found in very small quantities on earth,
It is considered as a so-called "strategic" material, and the degree to which it is used can be said to have political value.

WCを他の高融点金属炭化物に交換しうる他の炭化物と
してモリブデンのモノカーバイドがある。
Another carbide that can replace WC with another refractory metal carbide is molybdenum monocarbide.

このカーバイドのみがWCと同じ結晶構造である単純ヘ
キサゴナルタイプであり、その機械的性質はWCに近い
と思われる。
Only this carbide is a simple hexagonal type having the same crystal structure as WC, and its mechanical properties are thought to be close to WC.

しかしながらモリブデンモノカーバイドの単体の存在が
今日までも疑問視されており、専らタングステンカーバ
イドと固溶させることによりMoCを安定させる試みが
なされている。
However, the existence of molybdenum monocarbide alone has been questioned to this day, and attempts have been made to stabilize MoC by forming a solid solution with tungsten carbide.

この方法は1950年にW、 D awih lによっ
て初めて報告されたものであるが、この固溶体について
は当時工業的価値を見出さずに余り検討が行われていな
かった。
This method was first reported by W. D. Awihl in 1950, but at that time, no industrial value was found for this solid solution and not much study was conducted.

最近になってW価格の高騰にともなって、再び(Mox
Wy)C(X+Y=1)の固溶体を利用する研究が活
発になりつ\ある。
Recently, with the rise in W price, again (Mox
Research on the use of solid solutions of Wy)C(X+Y=1) is becoming more active.

しかし何故、今まで余り研究が行われず、また使用する
試みも積極的に行われなかったのか非常に興味深い。
However, it is very interesting to know why little research has been done on it, and no active attempts have been made to use it.

従来から行われているMo、C−WCの固溶体の製造法
はWC,MoおよびC粉末またはWp M 。
The conventional method for producing solid solutions of Mo and C-WC is to produce WC, Mo and C powders or Wp M .

およびC粉末にコバルトを加え、混合粉末とした後炭素
容器に充填して、1000〜2000℃の温度で反応さ
せる方法が良く行われている。
A commonly used method is to add cobalt to C powder, form a mixed powder, fill it in a carbon container, and react at a temperature of 1000 to 2000°C.

(W? Dawihl:Zp anog chem26
2(1950)212)この時にコバルトの役割りは炭
化物の生成を助け、かつMoとCがWC中に固溶するの
を促進するとされている。
(W? Dawihl: Zp anog chem26
2 (1950) 212) At this time, the role of cobalt is said to be to assist in the formation of carbides and to promote solid solution of Mo and C in WC.

確かにC。の存在がないと(MoW)Cの固溶体は得ら
れないようである。
Certainly C. It appears that a solid solution of (MoW)C cannot be obtained without the presence of .

一般に複合炭化物の製法では、はとんどの場合炭化物同
志もしくはCo等の拡散助材を用いて加熱すれば均一な
固溶体になりうる。
In general, in the method for producing composite carbides, in most cases, a uniform solid solution can be obtained by heating using a diffusion aid such as carbides or Co.

しかしMoCが70%以上含まれる固溶体組成では高温
加熱で相互拡散させるのみでは均一な固溶体が得られな
い。
However, in a solid solution composition containing 70% or more of MoC, a uniform solid solution cannot be obtained simply by interdiffusion by high-temperature heating.

これはMoCが高温では不安定であるが、(MOW)C
□−xや(MoW)3C2等の固溶体に分解しているの
でそのまま冷却しただけでは(Mo−W)CのWCタイ
プの固溶体が得られないからである。
This is because MoC is unstable at high temperatures, but (MOW)C
This is because it is decomposed into solid solutions such as □-x and (MoW)3C2, so a WC type solid solution of (Mo-W)C cannot be obtained by simply cooling it.

この安定化方法としては、高温で一度反応させ、Mo2
CとWCの拡散を行なった後、低温で長時間保持する方
法がある。
As a stabilization method, the Mo2
After diffusing C and WC, there is a method of holding it at a low temperature for a long time.

〔特開昭5l−146306(4))、Lかしながら低
温で、(MoW)CI Xp (MoW)3c2から
(MopW)Cをより出させるだめの拡散時間、再結晶
時間はかなり要する。
[JP-A-51-146306 (4)] It takes a considerable amount of diffusion time and recrystallization time to release more (MopW)C from (MoW)CI Xp (MoW)3c2 at a low temperature while keeping the temperature low.

このような方法を工業的に行なおうとすると、完全な炭
化物を得るために長時間炉中で加熱しなければならない
If such a process is to be carried out industrially, it must be heated in a furnace for a long time in order to obtain a complete carbide.

このことは1炉当りの生産性が低くなり、このために数
多くの炉が必要とされる。
This results in low productivity per furnace, which requires a large number of furnaces.

一方連続炉で行なおうとすれば長い加熱炉が必要とされ
、工業的には量産が難かしいという欠点がある。
On the other hand, if it were to be carried out in a continuous furnace, a long heating furnace would be required, which would make mass production difficult from an industrial perspective.

本発明の特徴は、(MO2W)C1−Xの安定領域内の
温度で加熱した後、(Mo、W)Cのモノカーバイドの
安定する温度まで低下した後、長時間加熱するという製
法〔特願昭5l−146306)よりもより工業的でか
つ高品質な製法を発見したことにある。
The feature of the present invention is that after heating at a temperature within the stability region of (MO2W)C1-X, the manufacturing method is heated for a long time after the temperature is lowered to a temperature at which monocarbide of (Mo,W)C is stable [Patent application The reason lies in the discovery of a manufacturing method that is more industrial and of higher quality than Sho 51-146306).

本発明の目的は、加熱が(Mo、W)Cのモノカーバイ
ド安定温度で行なわれ、かつ短時間の加熱で、−モノカ
ーバイドが製造しうろことにある。
An object of the present invention is to produce -monocarbide by heating at a temperature at which the monocarbide of (Mo,W)C is stable and by heating for a short time.

本発明の特徴の第1は、炭化物製造前の出発原料0.3
〜20μからなる(MO,W)の固溶体からなる合金粉
末と炭素からなる。
The first feature of the present invention is that 0.3% of the starting material before carbide production
It consists of an alloy powder consisting of a solid solution of (MO, W) consisting of ~20μ and carbon.

第2の特徴は1100〜2100’Cの温度範囲から選
ばれる、MoとWの混合比率に応じた、モノカバーイト
の安定温度域あるいはそれ以上の温度で加熱されること
、第3の特徴は、上記温度範囲で加熱した炭化物を粉砕
、圧縮、混合等の機械的処理により炭化物に歪を与える
こと。
The second feature is that it is heated at a temperature in the stable temperature range of monocoverite or higher, which is selected from the temperature range of 1100 to 2100'C, depending on the mixing ratio of Mo and W. The third feature is , Applying strain to the carbide by mechanical treatment such as crushing, compression, and mixing of the carbide heated in the above temperature range.

第4の特徴は歪を与えた炭化物を再度モノカーバイドの
安定温度域内で再炭化することにある。
The fourth feature is that the strained carbide is re-carburized within the stable temperature range of monocarbide.

以下本発明の効果について説明する。The effects of the present invention will be explained below.

合金粉末の特徴は、タングステンのアンモニウム塩と、
モリブデンのアンモニウム塩を溶液状態で混合して、W
とMoのバラ塩を共析させるか、HNO3やH(lにて
WO3もMoO3も共沈させるかによって微細混合した
酸化物粉末を得た後、これを還元してMoとWの各組成
からなる合金粉末を得る。
The characteristics of the alloy powder are tungsten ammonium salt and
By mixing the ammonium salt of molybdenum in a solution state, W
After obtaining a finely mixed oxide powder by eutectoiding loose salts of and Mo, or co-precipitating both WO3 and MoO3 with HNO3 and H(l), this is reduced to form a mixture of Mo and W. An alloy powder is obtained.

この合金粉末に炭素粉末を混合し、1100〜2100
°C・温度で炭化させることにある。
Mix carbon powder with this alloy powder,
The purpose is to carbonize at a temperature of °C.

この時の炭化温度は合金粉末の粒度により決定すればよ
いが、炭化物の生成温度は1100°C以上あれば十分
満足する。
The carbonization temperature at this time may be determined by the particle size of the alloy powder, but a carbide formation temperature of 1100°C or higher is sufficient.

また、MoとWの合金粉の製造法として、金−属粉の混
合粉末を高温で加熱・拡散により固溶体を得る方法もあ
るが、粉砕するので面倒である。
Another method for producing alloy powder of Mo and W is to obtain a solid solution by heating and diffusing a mixed powder of metal powder at high temperature, but this method requires pulverization, which is troublesome.

しかし使用する粉末が細かければ、加熱温度が下げられ
るので可能性もある。
However, if the powder used is finer, the heating temperature can be lowered, making it possible.

W中のMoの拡散では加熱温度で拡散可能な粒子の大き
さは次の表1の関係にある。
In the diffusion of Mo in W, the sizes of particles that can be diffused at the heating temperature have the relationships shown in Table 1 below.

即ち、金属Mo粉末及び、W粉末を出発原料としだ時1
時間の加熱時間では0.5μ位の微細粉末なら2000
℃以下で十分固溶体になる。
That is, when using metal Mo powder and W powder as starting materials 1
The heating time is 2000 for fine powder of about 0.5μ.
It becomes a solid solution at temperatures below ℃.

しかし1μ以上の粉末では2000℃以上の加熱温度が
必要であるので、金属粉末から合金粉末を作るには難か
しい。
However, since powders with a diameter of 1 μm or more require heating temperatures of 2000° C. or more, it is difficult to make alloy powders from metal powders.

しかしながら溶液の状態から混合したり酸化物の状態で
混合すtut、粒子径は非常に小さくなり低い温度で固
溶させることが出来るので、容易に低温で合金粉末を作
りうる。
However, when mixed from a solution state or in an oxide state, the particle size becomes very small and a solid solution can be formed at a low temperature, so an alloy powder can be easily produced at a low temperature.

モリブデン、タングステンが共存するアンモニウム塩の
水溶液中では水溶液中の遊離塩酸濃度によって、析出し
てくるタングステンやモリブデンの童が変化し、本発明
者は、遊離塩酸濃度が0.1〜5規定であれば、モリブ
デンとタングステンを所定の比率で微細かつ均一に析出
させることを見い出した。
In an aqueous solution of ammonium salt in which molybdenum and tungsten coexist, the amount of tungsten and molybdenum that precipitates changes depending on the concentration of free hydrochloric acid in the aqueous solution. For example, we have discovered that molybdenum and tungsten can be finely and uniformly precipitated in a predetermined ratio.

本発明の方法によって得だ合金粉末は炭素と反応させ1
100°C以上の温度で加熱すれば、完全な(MoW)
C粉末とな9得る。
The alloy powder obtained by the method of the present invention is reacted with carbon.
If heated at a temperature of 100°C or higher, complete (MoW)
C powder is obtained.

しかし、210000以上ではモノカーバイトが安定し
ない、粗粒の(MoW)C粉末を得る時は、(MoW)
03の還元温度を上げ、更に炭化温度を高くすれば、6
μ程度の炭化物も得られる。
However, when obtaining coarse-grained (MoW)C powder where monocarbide is not stable at 210,000 or more, (MoW)
If the reduction temperature of 03 is increased and the carbonization temperature is further increased, 6
Carbide of μ size can also be obtained.

さらに上記方法によって得られた炭化物の結合炭素量を
(Mo、W)Cのモノカーバイドの化学量論組成に近づ
けるには、次の方法が有効であることがわかった。
Furthermore, it has been found that the following method is effective in bringing the amount of bonded carbon in the carbide obtained by the above method close to the stoichiometric composition of the (Mo, W)C monocarbide.

すなわち、本発明者らは(MO2W)Cの工業的安定し
た生産方法を種々検討した結果非常に能率的な方法を発
見した。
That is, the present inventors investigated various methods for industrially stable production of (MO2W)C, and as a result, discovered a very efficient method.

すなわち高温ではMo、Wの拡散反応により(Mo、W
)の合金粉末をモノカーバイドの安定温度、あるいはそ
れ9上の温度で反応させた後、こiを常温まで素早く冷
却して、高温の未反応状態のまま1次炭化物とする、こ
の場合炭素は数係近く粉末層内に残っている。
That is, at high temperatures, due to the diffusion reaction of Mo and W (Mo, W
) is reacted at the stable temperature of monocarbide or at a temperature above it, and then quickly cooled to room temperature to form primary carbide in the high temperature unreacted state. In this case, carbon is A few coefficients remain in the powder layer.

この1次炭化物は機械粉砕機にかけて若干細かくした後
、再度、(Mo、W)Cの安定温度で短時間加熱するこ
とにより完全なモノカーバイトである(Mo、W)C粉
末に変換しうろことを発見した。
This primary carbide is crushed into a slightly finer powder by a mechanical pulverizer, and then heated again for a short time at the stable temperature of (Mo, W)C to convert it into (Mo, W)C powder, which is a complete monocarbide. I discovered that.

もしこの機械粉砕が面倒であれば連続炉等を用いて急冷
速度を早くすれば冷却時の急激な収縮により、反応物に
歪が入るので、再度、加熱すれば同じように固溶反応が
促進する場合もある。
If this mechanical pulverization is troublesome, use a continuous furnace to speed up the quenching rate.The rapid contraction during cooling will cause distortion in the reactants, so heating again will accelerate the solid solution reaction in the same way. In some cases.

本方法は工業的には連続炉の組み合せにより大量の処理
が可能であハ途中工程で簡単な衝撃装置を具備すれば、
常に安定した炭化物を得ることが出来る。
Industrially, this method can process large quantities by combining continuous furnaces, and if a simple impact device is installed in the middle of the process,
A stable carbide can always be obtained.

まだ1次反応物に不均一部分がある場合はいくら加熱条
件を変えても安定した炭化物になり得ない。
If there are still non-uniform parts in the primary reactant, stable carbide cannot be obtained no matter how much the heating conditions are changed.

本発明の方法ではボールミル等の粉砕機を用いれば反応
物の均一性が増し、2次加熱でよく反応する。
In the method of the present invention, if a pulverizer such as a ball mill is used, the uniformity of the reactants will increase, and the reactants will react well by secondary heating.

本発明において炭化物の安定のみならず炭化物中に窒素
を含む場合、もしくは酸素を若干含む場合でも同じ効果
が出る。
In the present invention, the same effect is obtained not only when the carbide is stabilized but also when the carbide contains nitrogen or a small amount of oxygen.

以上モリブデン、タングステン複合化合物について述べ
たが、これが、rva、Vay VIa族金属と非金属
成分とから成るBI型固溶体と併存しても本発明効果は
変とない。
Although the molybdenum and tungsten composite compound has been described above, the effects of the present invention will not change even if it coexists with a BI type solid solution consisting of rva, Vay group VIa metals and non-metallic components.

また、炭化物の安定化のために炭素を、窒素、酸素で置
換するほか、Bで置換しても効果はある。
In addition to replacing carbon with nitrogen or oxygen, it is also effective to replace carbon with B in order to stabilize carbides.

実施例 I Mo粉末を54g、W粉末を46gを28係アンモニア
水に溶解した。
Example I 54 g of Mo powder and 46 g of W powder were dissolved in 28% ammonia water.

このアンモニウム塩ヲ塩酸で徐々に中和していき、遊離
塩酸濃度4規定のところでタングステンとモリブデンの
混合水酸化物を共沈させた。
This ammonium salt was gradually neutralized with hydrochloric acid, and a mixed hydroxide of tungsten and molybdenum was coprecipitated when the free hydrochloric acid concentration was 4N.

これを乾燥して、モリブデンとタングステンの酸化物を
つくり、モリブデンとタングステンの混合状態を電子顕
微鏡で調べたところ、均一で微細に混合していた。
This was dried to create an oxide of molybdenum and tungsten, and when the mixture of molybdenum and tungsten was examined using an electron microscope, it was found that the mixture was uniform and fine.

この酸化物を空気中で800℃で焼結した。This oxide was sintered at 800°C in air.

この混合粉末なNiボートに装入し、ボートに蓋をかぶ
してH2気流中1000°Cでmxしたところ4μの合
金粉末となった。
This mixed powder was charged into a Ni boat, the boat was covered with a lid, and mx was carried out at 1000°C in an H2 stream, resulting in a 4μ alloy powder.

この(Mo8.7Wo、3)の合金粉末に炭素粉末を9
.0重量上扉え、ボールミルで36時間混合した。
Add 9% of carbon powder to this (Mo8.7Wo, 3) alloy powder.
.. The mixture was mixed in a ball mill for 36 hours under a zero weight topper.

該混合粉末を(M o 。The mixed powder (Mo).

、7 Wo、3 ) Cのモノカーバイトが安定する温
度範囲、すなわち水素気流中1700℃で1時間反応さ
せた。
, 7 Wo, 3) The reaction was carried out at a temperature range in which C monocarbide is stable, that is, at 1700° C. in a hydrogen stream for 1 hour.

該炭化物を1度冷却シ、ボールミルで1時間粉砕した後
、再び、該炭化物のモノカーバイトが安定する温度、す
なわち水素気流中1400℃で炭化した、得られた炭化
物の特性を調べたところ、表2に示す如く結合炭素が理
論値近く十分に入り、すべてWCタイプのモノカーバイ
ドになっていた。
The carbide was cooled once and ground in a ball mill for 1 hour, and then carbonized again at a temperature at which the monocarbide of the carbide is stable, that is, 1400 ° C. in a hydrogen stream.The characteristics of the obtained carbide were investigated. As shown in Table 2, the amount of bonded carbon was sufficiently close to the theoretical value, and all were WC type monocarbide.

実施例 2 実施例1に示す製造法にて(M Oo、、sa WC,
15) Cの固溶炭化物の試作を試みた。
Example 2 Using the manufacturing method shown in Example 1 (M Oo,, sa WC,
15) An attempt was made to make a prototype of solid solution carbide of C.

実施例1の如くあらかじめ(M OO,85WO,□、
)の合金粉末を試作し該合金粉末と9.8重量%の炭素
粉末さらに2ヂのCo粉末を十分混合した。
As in Example 1, (M OO, 85WO, □,
) was prepared as a prototype, and the alloy powder was thoroughly mixed with 9.8% by weight of carbon powder and 2 parts of Co powder.

該混合粉末を入れた黒鉛ボートを真空炉に挿入し、16
00℃まで約3時間かけて昇温し、最高温度で1時間加
熱した後室温まで10時間で冷却した。
Insert the graphite boat containing the mixed powder into a vacuum furnace and heat it for 16 minutes.
The temperature was raised to 00° C. over about 3 hours, heated at the maximum temperature for 1 hour, and then cooled to room temperature over 10 hours.

粉末の炭素量を調べた結果を表3に示す。Table 3 shows the results of examining the carbon content of the powder.

やはり結合炭素は少なく、反応率は74.2%にすぎな
かった。
As expected, the amount of bonded carbon was small, and the reaction rate was only 74.2%.

このX線回析結果では、 やはり(Mo 、W)2Cのピークが多量に残った。In this X-ray diffraction result, As expected, a large amount of the peak of (Mo 2 , W) 2C remained.

従来の複合炭化物の製造法ではMoCのモノカーバイド
は形成されない。
MoC monocarbide is not formed in conventional composite carbide manufacturing methods.

次にこの粉末をショークラシーで相粉砕した後、水素気
流中1250℃で加熱されたタンマン炉中に挿入し、約
40分間加熱した。
Next, this powder was phase-pulverized using Chaucracy, and then placed in a Tammann furnace heated at 1250° C. in a hydrogen stream, and heated for about 40 minutes.

この炭化物の特性を調べた結果を表4に示す。Table 4 shows the results of investigating the characteristics of this carbide.

X線結果では(Mo、W)2Cのピークはほとんど消え
、全てWCタイプの結晶形となった。
In the X-ray results, the (Mo, W)2C peak almost disappeared, and all the crystals were of the WC type.

本発明の方法を用いれば、どんな1次炭化物もモノカー
バイドに変換串来ることがわかった。
It has been found that any primary carbide can be converted to monocarbide using the method of the present invention.

実施例 3 実施例1の方法にしたがって(Moo、、Wo、1)の
合金粉末を得た。
Example 3 According to the method of Example 1, alloy powder of (Moo, Wo, 1) was obtained.

該合金粉末2700g炭素310gCo粉末33gをボ
ー゛ルミルにて15時間粉砕して歪を与えた後、水素気
流中にて1200℃で30分間反応させた。
2,700 g of the alloy powder, 310 g of carbon, and 33 g of Co powder were ground in a ball mill for 15 hours to give strain, and then reacted in a hydrogen stream at 1,200° C. for 30 minutes.

得られた1次炭化物をボールミルで10時間粉砕した後
、再度水素気流中で1250℃30分間の加熱を行った
The obtained primary carbide was pulverized in a ball mill for 10 hours, and then heated again at 1250° C. for 30 minutes in a hydrogen stream.

得られた炭化物は表5の如くであった。The obtained carbide was as shown in Table 5.

得られた炭化物は、X線で調べたところWCタイプのモ
ノカーバイドのみであった。
When the obtained carbide was examined by X-ray, it was found to be only WC type monocarbide.

実施例 4 実施例1で得た( M o 。Example 4 (M o ) obtained in Example 1.

、7W6.3 )Cの炭化物(結合炭素/理論炭素が9
9.8%のもの)に、TiCNbC,TaCを各2重量
%加え、ボールミルで3時間混合した後、水素気流中1
800℃1時間加熱反応された。
, 7W6.3) Carbide of C (bonded carbon/theoretical carbon is 9
9.8%), added 2% by weight each of TiCNbC and TaC, mixed in a ball mill for 3 hours, and then mixed in a hydrogen stream for 1% by weight.
A heating reaction was carried out at 800°C for 1 hour.

該炭化物を1度冷却しボールミルで1時間粉砕した後、
1400°Cで炭化した。
After cooling the carbide once and pulverizing it in a ball mill for 1 hour,
Carbonized at 1400°C.

該炭化物の特性を調べたところ、結合炭素が理論値近く
のものが得られ、又全てWCタイプのモノカーバイトが
生成されていた。
When the properties of the carbide were investigated, it was found that the bonded carbon content was close to the theoretical value, and all of the carbides were WC type monocarbide.

実施例 5 実施例1で得た( M Oo、7 %a)の合金粉末に
炭素粉末を9重量%のもの(A粉末と称す)及びB4C
粉末と炭素粉末の混合粉(重量比2:8)11重量%の
もの(B粉末と称す)をそれぞれボールミルで36時間
混合後、1700℃で水素気流中1時間反応させた。
Example 5 The (MOo, 7%a) alloy powder obtained in Example 1 containing 9% by weight of carbon powder (referred to as A powder) and B4C
A mixed powder of powder and carbon powder (weight ratio 2:8) of 11% by weight (referred to as B powder) was mixed in a ball mill for 36 hours, and then reacted at 1700° C. for 1 hour in a hydrogen stream.

該化合物を1度冷却して1時間ボールミルで粉砕後14
00℃でA粉末を水素、窒素の混合気流中及び水素と炭
酸ガスの混合気流中(混合比9:1)で反応させた。
The compound was cooled once and ground in a ball mill for 1 hour.
Powder A was reacted at 00° C. in a mixed gas flow of hydrogen and nitrogen and in a mixed gas flow of hydrogen and carbon dioxide (mixing ratio 9:1).

又B粉末は水素気流中で反応させた。Powder B was also reacted in a hydrogen stream.

これらの化合物を調べたところ、表6の結果になった。When these compounds were investigated, the results shown in Table 6 were obtained.

実施例 6 各1〜2μの粒度のWO356gとMoO382g及び
H2WO461gとH2MoO392gをそれぞれ混式
ボールミルで120時間混合した。
Example 6 356 g of WO and 382 g of MoO, each having a particle size of 1 to 2 μm, and 461 g of H2WO and 392 g of H2MoO were mixed in a mixed ball mill for 120 hours.

該混合物を乾燥後空気中800°Cで焼結した。The mixture was dried and sintered at 800°C in air.

さらにH2気流中1000℃で還元したところ、3μの
(Mo 0.7W0.3)の合金粉末が得られた。
Further reduction was performed at 1000° C. in a H2 stream, and a 3μ (Mo 0.7W0.3) alloy powder was obtained.

この(M o □、7 W □、3 )合金粉末に炭素
粉末を9重量上顎え、36時間ボールミル混合し、20
00℃で1時間炭化し、室温で粉砕した後、1400°
C水素気流中で炭化した。
This (M o □, 7 W □, 3) alloy powder was loaded with 9 weights of carbon powder, mixed in a ball mill for 36 hours, and then mixed in a ball mill for 20 hours.
After carbonizing at 00℃ for 1 hour and grinding at room temperature, 1400℃
Carbonized in a hydrogen stream.

該炭化物の結合炭素量は理論炭素量の99.6%、99
.8%であった。
The amount of bonded carbon in the carbide is 99.6% of the theoretical carbon amount, 99
.. It was 8%.

Claims (1)

【特許請求の範囲】 1 モリブテンとタングステンの複合炭化物もしくは炭
窒化物で、単純へキサゴナル型の結晶構造を有する1種
もしくはそれ以上の硬質相から構成する固溶体の製造に
おいて、モリブデンとタングステンの化合物を溶液まだ
は粉末状で十分に撹拌することにより得だ混合物を還元
し、モリブデンとタングステンの固溶体である合金粉末
として、該合金粉末に適当量の炭素を加えて混合物とし
だ後、1100°Cから2100℃の温度範囲で該混合
物を反応させ1次炭化物とし、該1次炭化物に歪を加え
る加工を行った後、再び1100°Cから1800°C
の温度で加熱することを特徴とするモリブデンを含む硬
質固溶体の製造法。 2 モリブデンとタングステンの化合物が水酸化物、酸
化物であることを特徴とする特許請求の範囲第1項記載
のモリブデンを含む硬質固溶体の製造法。 3 モリブデン及びタングステンのアンモニウム塩を溶
液中で、撹拌、混合するにあたり、溶液中の遊離塩酸濃
度を0.1〜5規定にすることを特徴とする特許請求の
範囲第1項記載のモリブデンを含む硬質固溶体の製造法
。 4 モリブテンとタングステンの固溶体からなる合金粉
末と炭素の混合物に5係以下のFe、Ni。 Coなどの金属を加えて反応させることを特徴とする特
許請求の範囲第1項記載のモリブデンを含む硬質固溶体
の製造法。
[Scope of Claims] 1. A compound of molybdenum and tungsten in the production of a solid solution consisting of one or more hard phases having a simple hexagonal crystal structure, which is a composite carbide or carbonitride of molybdenum and tungsten. While the solution is still in powder form, the resulting mixture is reduced by thorough stirring, and an appropriate amount of carbon is added to the alloy powder to form an alloy powder, which is a solid solution of molybdenum and tungsten. The mixture is reacted to form a primary carbide in a temperature range of 2100°C, and after processing to add strain to the primary carbide, the temperature is heated again from 1100°C to 1800°C.
A method for producing a hard solid solution containing molybdenum, the method comprising heating at a temperature of . 2. The method for producing a hard solid solution containing molybdenum according to claim 1, wherein the compound of molybdenum and tungsten is a hydroxide or an oxide. 3. Contains molybdenum according to claim 1, characterized in that when stirring and mixing molybdenum and tungsten ammonium salts in a solution, the free hydrochloric acid concentration in the solution is set to 0.1 to 5 normal. Method for producing hard solid solutions. 4 A mixture of alloy powder consisting of a solid solution of molybdenum and tungsten and carbon with a coefficient of 5 or less of Fe and Ni. A method for producing a hard solid solution containing molybdenum according to claim 1, characterized in that a metal such as Co is added and reacted.
JP54016581A 1979-02-14 1979-02-14 Method for producing hard solid solution containing molybdenum Expired JPS5938168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54016581A JPS5938168B2 (en) 1979-02-14 1979-02-14 Method for producing hard solid solution containing molybdenum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54016581A JPS5938168B2 (en) 1979-02-14 1979-02-14 Method for producing hard solid solution containing molybdenum

Publications (2)

Publication Number Publication Date
JPS55109272A JPS55109272A (en) 1980-08-22
JPS5938168B2 true JPS5938168B2 (en) 1984-09-14

Family

ID=11920239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54016581A Expired JPS5938168B2 (en) 1979-02-14 1979-02-14 Method for producing hard solid solution containing molybdenum

Country Status (1)

Country Link
JP (1) JPS5938168B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638465U (en) * 1986-07-04 1988-01-20

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108425058A (en) * 2018-03-09 2018-08-21 自贡硬质合金有限责任公司 One kind (WMo) C base cemented carbide materials and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638465U (en) * 1986-07-04 1988-01-20

Also Published As

Publication number Publication date
JPS55109272A (en) 1980-08-22

Similar Documents

Publication Publication Date Title
Alizadeh et al. Synthesis of boron carbide powder by a carbothermic reduction method
EP3028994B1 (en) Method for producing silicon carbide single crystal
Chen et al. Synthesis and formation mechanism of high‐purity Ti3AlC2 powders by microwave sintering
SE500646C2 (en) Ways to prepare a carbide of molybdenum and tungsten
JP3963649B2 (en) Method for producing tungsten carbide by vapor-phase carburization
US4454105A (en) Production of (Mo,W) C hexagonal carbide
CA1149581A (en) Process for producing titanium carbonitride
US4216034A (en) Process for the production of a hard solid solution
JPS63260808A (en) Manufacture of transition metal carbide
JPS5938168B2 (en) Method for producing hard solid solution containing molybdenum
CN1485450A (en) Method for producing WC-Fe composite powder of ultra fine grain by tungsten alloy scrap
Wang et al. Synthesis of monodisperse and high-purity α-Si3N4 powder by carbothermal reduction and nitridation
CN106573775A (en) Novel process and product
JPS61141674A (en) Tungsten silicide alloy sintered body and manufacture
JPH10298613A (en) Phosphorus-containing iron powder
CN113929099A (en) Preparation method of superfine tungsten carbide powder
JPS58213617A (en) Production of titanium carbonitride powder
WO2003091467A2 (en) Process for manufacturing an alloy material for use in the manufacture of synthetic diamonds
JPS59170206A (en) Production of tungsten-cerium oxide powder
JPS58213618A (en) Production of powder of composite carbonitride solid solution
JPS6154727B2 (en)
JPS6152081B2 (en)
KR820000588B1 (en) Process for the production of a hard solid solution
CN112028042B (en) Carbon thermal reduction preparation method of CoP, product and application
JPS589821B2 (en) Manufacturing method of cemented carbide containing molybdenum