JPS59170206A - Production of tungsten-cerium oxide powder - Google Patents
Production of tungsten-cerium oxide powderInfo
- Publication number
- JPS59170206A JPS59170206A JP58042983A JP4298383A JPS59170206A JP S59170206 A JPS59170206 A JP S59170206A JP 58042983 A JP58042983 A JP 58042983A JP 4298383 A JP4298383 A JP 4298383A JP S59170206 A JPS59170206 A JP S59170206A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- cerium oxide
- tungsten
- cerium
- compd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- BTAFASHNLKDBSO-UHFFFAOYSA-N [W+4].[O-2].[Ce+3] Chemical compound [W+4].[O-2].[Ce+3] BTAFASHNLKDBSO-UHFFFAOYSA-N 0.000 title claims description 7
- 229910000420 cerium oxide Inorganic materials 0.000 claims abstract description 25
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000000203 mixture Substances 0.000 claims abstract description 8
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 claims abstract description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 19
- 229910052721 tungsten Inorganic materials 0.000 claims description 12
- 239000010937 tungsten Substances 0.000 claims description 12
- 150000001785 cerium compounds Chemical class 0.000 claims description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- OZECDDHOAMNMQI-UHFFFAOYSA-H cerium(3+);trisulfate Chemical compound [Ce+3].[Ce+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O OZECDDHOAMNMQI-UHFFFAOYSA-H 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 17
- 238000000354 decomposition reaction Methods 0.000 abstract description 8
- 238000000034 method Methods 0.000 abstract description 4
- 239000007772 electrode material Substances 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract 2
- 238000010304 firing Methods 0.000 abstract 1
- 239000006185 dispersion Substances 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 3
- 229910003452 thorium oxide Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- IADRPEYPEFONML-UHFFFAOYSA-N [Ce].[W] Chemical compound [Ce].[W] IADRPEYPEFONML-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000000941 radioactive substance Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
耐消耗性、アーク点弧性の向上を得るため、主に酸化ト
リウムが添加はれている。−
←テ季暢−特に、酸化トリウムを20
重量%前後添加したタングステン電極棒は、低消耗およ
び良好なアーク点弧性を示し、電極関係の広゛ρ分野で
使用されている。DETAILED DESCRIPTION OF THE INVENTION Thorium oxide is mainly added to improve wear resistance and arc ignition properties. In particular, tungsten electrode rods containing approximately 20% by weight of thorium oxide exhibit low consumption and good arc ignition properties, and are used in a wide range of electrode-related fields.
しかしながら、タングステン粉末に添加はねる酸化トリ
ウムは、放射性物質であることから、人手が困難なうえ
、その取り扱い、保管、管理等の問題が帝り、安全性、
経済性の面において不利な点が多い。However, since the thorium oxide that is added to tungsten powder is a radioactive substance, it is difficult to handle, and there are problems with its handling, storage, and management.
There are many disadvantages in terms of economy.
したがって1近年、トリエテ、トタンゲステン電極棒に
替わるタングステン材料の開発が試みらilて来た。Therefore, in recent years, attempts have been made to develop a tungsten material to replace the tungsten electrode rod.
その結果、酸化セリウムを0.2〜30重量%添加した
タングステン電極棒は、良好なアーク点弧性を示し、耐
消耗、耐変形に優れ、トリエテ、トタンゲステン電極棒
に替わる材料として有力である。As a result, a tungsten electrode rod to which 0.2 to 30% by weight of cerium oxide is added exhibits good arc ignition properties, is excellent in wear resistance and deformation resistance, and is a promising material as a substitute for Triete and tungsten electrode rods.
ところで、電極材料に最も要求はれる特性、すなわち、
良好なアーク点弧性、耐消耗、耐変形等は、タングステ
ン中に存在する酸化セリウム粒子の粒径および分散状態
に依存する。By the way, the properties most required for electrode materials are:
Good arc ignitability, wear resistance, deformation resistance, etc. depend on the particle size and dispersion state of cerium oxide particles present in tungsten.
しかしながら、最も工・般的な製造方法である金属タン
グステン粉末に、酸化セリウム粉末を添加して機械的に
混合する方法は、ワチ細な粉末どうしの混合であるため
、酸化セリウム粒子をタングステン中に均一に分散はせ
ることが大変困難である。However, the most technical and general manufacturing method, which involves adding cerium oxide powder to metallic tungsten powder and mechanically mixing it, involves mixing fine powders, so cerium oxide particles are mixed into tungsten. It is very difficult to disperse it uniformly.
また、分散を更に向上させるため挿潰器等の混合機を長
時間使用した場合、タングステン粒子の粒界破壊、同時
に容器等の成分が混入するおそれがあり、最終的に得ら
れる電極棒の拐質特性が低下する欠点があった。In addition, if a mixer such as a crusher is used for a long time to further improve dispersion, there is a risk of grain boundary destruction of the tungsten particles and contamination of components from the container, etc., resulting in fragmentation of the final electrode rod. There was a drawback that quality characteristics deteriorated.
本発明は、混合時における上記難点を解消するためのも
のであり、その要旨は、金属タングステン粉末に、セリ
ウム化合物を溶液として混合した後、水素雰囲気中50
0〜500℃で加熱分解し、タングステン中に酸化セリ
ウムとして微細に、かつ均一に分散はせることを特徴と
するタングステン−酸化セリウム粉末の製造法に関する
ものである。The present invention is intended to solve the above-mentioned difficulties in mixing, and its gist is that after mixing a cerium compound with metal tungsten powder as a solution,
The present invention relates to a method for producing tungsten-cerium oxide powder, which is characterized by thermal decomposition at 0 to 500°C and finely and uniformly dispersing cerium oxide in tungsten.
本発明に用いるセリウム化合物は、いづハも同一条件で
製造を行なうことが可能である。The cerium compound used in the present invention can be produced under the same conditions all the time.
製造法としては、一般に、セリウム化合物水溶液を金属
タングステン粉末に添加混合して蒸発乾固、きらに、水
素雰囲気中300〜500℃でセリウム化合物を分解し
、続いて900〜1100℃で2次還元を行なってタン
グステン−酸化セリウム粉末が製造はねる。The production method generally involves adding and mixing an aqueous cerium compound solution to metallic tungsten powder, evaporating to dryness, decomposing the cerium compound at 300 to 500°C in a hydrogen atmosphere, and then performing secondary reduction at 900 to 1100°C. The tungsten-cerium oxide powder is produced by this process.
したがって、以上の様な湿式ドープによる製造法によれ
ば、混合工程においてセリウム化合物は溶液であるため
、タングステン粒子表面に付着し粉末とした場合、酸化
セリウム粒子が極めて微細に、かつ均一に混合された粉
末が製造出来る。Therefore, according to the wet doping manufacturing method described above, since the cerium compound is in the form of a solution during the mixing process, when it is attached to the surface of the tungsten particles and turned into powder, the cerium oxide particles are mixed extremely finely and uniformly. powder can be produced.
以下、実施例により詳細に説明する。Hereinafter, it will be explained in detail using examples.
実施例
純度998%以上のセリウム化合物を製精したメタノー
ルに加熱溶解して濾過した後、純度999%以上の金属
タングステン粉末に添加混合した0次に、この混合粉を
攪拌しながら70〜80℃で加熱濃縮、ざらに蒸発乾固
して、タングステン−セリウム化合物の粉末を得た。Example A cerium compound with a purity of 998% or more was heated and dissolved in purified methanol, filtered, and then added to and mixed with metal tungsten powder with a purity of 999% or more.Then, the mixed powder was heated at 70 to 80°C while stirring. The mixture was heated and concentrated and roughly evaporated to dryness to obtain a tungsten-cerium compound powder.
ここで、セリウム化合物の添加量は、最終的に得られる
混合粉全体に対する割合として、02〜60重量%にす
るのが好ましい。Here, the amount of the cerium compound added is preferably 02 to 60% by weight based on the entire mixed powder finally obtained.
続いて、この粉末を、ステンレス製ボートを用いて、1
ボート当り15〜2 Kg充填し、還元炉中温度600
〜500℃で加熱分解してセリウム化合物を酸化セリウ
ムとした。苫らに炉中、水素流量107+L’/hr
l is度900〜1100℃で1時間2次還元した後
、放冷 プレンダー混合してタングステン−酸セリウム
粉末を得た。Next, this powder was mixed in a stainless steel boat for 1
Fill each boat with 15 to 2 kg, and reduce the temperature in the furnace to 600.
The cerium compound was converted into cerium oxide by thermal decomposition at ~500°C. Hydrogen flow rate 107+L'/hr in Toma et al. furnace
After secondary reduction at 900 to 1100° C. for 1 hour, the mixture was left to cool and mixed in a blender to obtain tungsten-cerium oxide powder.
次に、酸化セリウム粒子の分散状態および相質特性を観
察するため、酸化セリウム含有量が10重量%の混合粉
を用いて、加圧成形、焼結、転打加工ざらに研削を行な
って電極棒(φ32)を製造した。Next, in order to observe the dispersion state and phase characteristics of the cerium oxide particles, a mixed powder with a cerium oxide content of 10% by weight was pressed, sintered, rolled and roughly ground to form an electrode. A rod (φ32) was manufactured.
硝酸第1セリウムを用いて製造した電極棒の組織を光学
顕微鏡で観察した。その倍率100倍の組織写真を第1
図に示す。尚、黒い部分が酸化セリウム粒子である。The structure of an electrode rod manufactured using cerous nitrate was observed using an optical microscope. The first tissue photo at 100x magnification
As shown in the figure. Note that the black parts are cerium oxide particles.
比較として、両粉末を機械的に混合して得られた電極棒
の倍率100倍の組織写真を第2図に示した。For comparison, FIG. 2 shows a photograph of the structure of an electrode rod obtained by mechanically mixing both powders at a magnification of 100 times.
次に、2サンプルの倍率400倍の組織写真を用いて、
’75 X 75μ−中に存在する酸化セリウム粒子数
を9箇所測定した。第6図および第4図は、各々、硝酸
第1セリウム、硫酸セリウムを用いて製造した電極棒の
結果を示す。Next, using tissue photographs of the two samples at a magnification of 400 times,
The number of cerium oxide particles present in '75 x 75μ was measured at nine locations. FIG. 6 and FIG. 4 show the results of electrode rods manufactured using cerous nitrate and cerium sulfate, respectively.
ここでは、分解温度が、300.500.600℃の時
の酸化セリウム粒子の分散状態について観察し同時に、
良好な分散が得らねる時の分解条件を決定した。図中、
実線は、本発明による粉末を用いて製造した電極棒を示
し、破線は、粉末混合より成る電極棒を示す。Here, we observed the dispersion state of cerium oxide particles when the decomposition temperature was 300.500.600°C, and at the same time,
The decomposition conditions were determined when good dispersion could not be obtained. In the figure,
The solid line shows an electrode rod made using the powder according to the invention, and the dashed line shows an electrode rod made of a powder mixture.
この図から明らかなように、本発明により、分解温度を
300〜500℃として製造したタングステン−酸化セ
リウム電極棒の組織中には、単に粉末混合して製造した
電極棒よりも、酸化セリウム粒子が多く、また一定値を
示していることから、微細に、かつ均一に分散している
ことが確認できる。As is clear from this figure, there are more cerium oxide particles in the structure of the tungsten-cerium oxide electrode rod manufactured according to the present invention at a decomposition temperature of 300 to 500°C than in the electrode rod manufactured by simply mixing powder. Since it shows a large amount and a constant value, it can be confirmed that it is finely and uniformly dispersed.
尚、分解温度が300℃未満の時は、セリウム化合物の
分解反応が進行しにくく、未反応のセリウム化合物は、
2次還元温度で分解されることになり、粒子が粗大化は
ねる。また500℃より高い温度では)図中に示すよう
に、酸化セリウム粒子数が80〜100WA程度となり
、微細な分散を得るこきが不可能となる。In addition, when the decomposition temperature is less than 300°C, the decomposition reaction of the cerium compound is difficult to proceed, and the unreacted cerium compound is
It will be decomposed at the secondary reduction temperature, and the particles will become coarse and splatter. Furthermore, at temperatures higher than 500° C., as shown in the figure, the number of cerium oxide particles becomes approximately 80 to 100 WA, making it impossible to obtain fine dispersion.
次に、得らノ1だタングステン−10%酸化セリウムN
極aを、J l5fi格(J工5−Z3233) K基
ツき、試験時間、20,40.60分間でアーク消耗試
験、更に始動電流値測定を行なって材質特性について観
察した。その結果を第1表に示した。Next, the obtained tungsten-10% cerium oxide N
Pole a was subjected to an arc consumption test with a test time of 20, 40, and 60 minutes, and a starting current value was measured to observe the material properties. The results are shown in Table 1.
比較例として、試料扁1の分解条件を、6oO−Cとし
て製造した電極棒および両粉末を機械的に混合して製造
した電極棒の結果も示した。As a comparative example, the results of an electrode rod manufactured by changing the decomposition conditions of Sample Flat 1 to 6oO-C and an electrode rod manufactured by mechanically mixing both powders are also shown.
第1表
以上の実施例から明らかな様に、本発明によるドープ法
および分解条件に基づいて製造したタングステン粉末中
には、酸化セリウム粒子が極めて微細に、かつ均一に分
散はれる。As is clear from the Examples shown in Table 1 and above, cerium oxide particles are extremely finely and uniformly dispersed in the tungsten powder produced based on the doping method and decomposition conditions of the present invention.
したがって、この粉末から成るタングステン−図
酸化セリウム電極棒は、第1/および第1表に示す様に
電極材料として優れた組織、アーク点弧性および耐消耗
性を有するものである。Therefore, the tungsten-diagram cerium oxide electrode rod made of this powder has excellent structure, arc ignitability, and wear resistance as an electrode material, as shown in Tables 1 and 1.
第1図は、本発明にしたがって、硝酸第1セリウムを使
用して製造したタングステン−10%酸化セリウム電極
棒の光学顕微鏡による組織写真を示す0
第2図は、タングステン粉末と酸化セリウム粉末とを機
械的に混合して製造した電極棒の光学顕微鏡による組織
写真を示す。
第3図および第4図は、各々、硝酸第1セリウム、硫酸
セリウムをドープ剤として製造した電極棒の倍率400
倍の組織写真を用いて、75 X 75μsr?中に存
在する酸化セリウム粒子数を9箇所について測定した結
果全示す。尚、破線は、粉末混合により製造した電極棒
の結果を示す〇
0QJJ
′ff寸襞1o1つ
)1−〇 〕馴 808りFIG. 1 shows an optical microscope micrograph of a tungsten-10% cerium oxide electrode produced using cerous nitrate according to the present invention. FIG. The structure photograph taken by the optical microscope of the electrode rod manufactured by mechanical mixing is shown. Figures 3 and 4 show electrode rods manufactured using cerous nitrate and cerium sulfate as doping agents at a magnification of 400, respectively.
Using a magnified tissue photograph, 75 x 75μsr? The results of measuring the number of cerium oxide particles present at nine locations are shown in full. In addition, the broken line shows the results of the electrode rod manufactured by powder mixing.
Claims (1)
して混合した後、水素雰囲気中300〜500℃で加熱
分解し、タングステン中に酸化セリウムとして微細に、
かつ均一に分散はせることを特徴とするタングステン−
酸化セリウム粉末の製造法。 2セリウム化合物が、硝酸第1セリウムである特許請求
の範囲第1項記載のタングステン−酸化セリウム粉末の
製造法。 3セリウム化合物が、硫酸セリウムである特許請求の範
囲第1項記載のタングステン−酸化セリウム粉末の製造
法。[Claims] 1. After mixing a cerium compound in a solution with metallic tungsten powder, the mixture is thermally decomposed at 300 to 500°C in a hydrogen atmosphere to finely form cerium oxide in tungsten.
Tungsten is characterized by being able to be dispersed uniformly.
Method for producing cerium oxide powder. 2. The method for producing tungsten-cerium oxide powder according to claim 1, wherein the 2-cerium compound is cerous nitrate. 2. The method for producing tungsten-cerium oxide powder according to claim 1, wherein the tricerium compound is cerium sulfate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58042983A JPS59170206A (en) | 1983-03-14 | 1983-03-14 | Production of tungsten-cerium oxide powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58042983A JPS59170206A (en) | 1983-03-14 | 1983-03-14 | Production of tungsten-cerium oxide powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59170206A true JPS59170206A (en) | 1984-09-26 |
JPH0224881B2 JPH0224881B2 (en) | 1990-05-31 |
Family
ID=12651269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58042983A Granted JPS59170206A (en) | 1983-03-14 | 1983-03-14 | Production of tungsten-cerium oxide powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59170206A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0197455A2 (en) * | 1985-04-01 | 1986-10-15 | Shanghai Lamp Factory | A process for preparing and use of ceriated tungsten electrode material |
JPS62286698A (en) * | 1986-06-03 | 1987-12-12 | Toho Kinzoku Kk | Tungsten electrode material |
EP1683879A3 (en) * | 2005-01-24 | 2006-09-06 | Osram Sylvania Inc. | Additives for suppressing tungsten leachability |
US7989064B2 (en) | 2005-01-24 | 2011-08-02 | Global Tungsten & Powders Corp. | Ceramic-coated tungsten powder |
-
1983
- 1983-03-14 JP JP58042983A patent/JPS59170206A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0197455A2 (en) * | 1985-04-01 | 1986-10-15 | Shanghai Lamp Factory | A process for preparing and use of ceriated tungsten electrode material |
JPS61288044A (en) * | 1985-04-01 | 1986-12-18 | シヤンハイ ランプ フアクトリイ | Tungsten electrode material containing cerium and its production |
JPS62286698A (en) * | 1986-06-03 | 1987-12-12 | Toho Kinzoku Kk | Tungsten electrode material |
EP1683879A3 (en) * | 2005-01-24 | 2006-09-06 | Osram Sylvania Inc. | Additives for suppressing tungsten leachability |
US7989064B2 (en) | 2005-01-24 | 2011-08-02 | Global Tungsten & Powders Corp. | Ceramic-coated tungsten powder |
Also Published As
Publication number | Publication date |
---|---|
JPH0224881B2 (en) | 1990-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4590090A (en) | Method for making interdiffused, substantially spherical ceramic powders | |
DE3633309C2 (en) | Composition based on zirconia and process for its manufacture | |
US3531245A (en) | Magnesium-aluminum nitrides | |
CN106219547A (en) | A kind of method of the solid-liquid doping method preparation superfine WC power containing Cr | |
US4622068A (en) | Sintered molybdenum alloy process | |
Retoux et al. | First direct synthesis by high energy ball milling of a new lanthanum molybdate | |
DE69426613T2 (en) | Process and manufacture of a hydrogen storage alloy | |
JPS59170206A (en) | Production of tungsten-cerium oxide powder | |
Broyde | Lanthanum and yttrium tungsten bronzes | |
US3070436A (en) | Method of manufacture of homogeneous compositions | |
KR100707855B1 (en) | Manufacturing method of metal fine particles-feedstock for powder injection molding | |
US2848315A (en) | Process for producing titanium, zirconium, and alloys of titanium and zirconium by reduction of oxides of titanium or zirconium | |
US2696661A (en) | Article of manufacture | |
US2077873A (en) | Tungsten metal and process for making the same | |
JP4023711B2 (en) | Method for producing high purity fine tungsten carbide powder without the need for a grinding step | |
JPH0869903A (en) | Manufacture of ntc thermistor | |
JPS5938168B2 (en) | Method for producing hard solid solution containing molybdenum | |
Zhao et al. | A Low‐Temperature Molten Salt Synthesis of LiNiVO4 Cathode Material for Lithium Ion Batteries | |
JPS6267102A (en) | Production of sintered bronze alloy powder | |
KR20040072991A (en) | Method for manufacturing Nano Fe-base powder with mill scale | |
JPH02271919A (en) | Production of fine powder of titanium carbide | |
JPS6152081B2 (en) | ||
JPH05163511A (en) | Production of alloy powder | |
JPH0986934A (en) | Production of nio/ysz complex powder | |
JPH0375214A (en) | Preparation of carbide |