JPS589793B2 - How to grow band crystals - Google Patents

How to grow band crystals

Info

Publication number
JPS589793B2
JPS589793B2 JP1428877A JP1428877A JPS589793B2 JP S589793 B2 JPS589793 B2 JP S589793B2 JP 1428877 A JP1428877 A JP 1428877A JP 1428877 A JP1428877 A JP 1428877A JP S589793 B2 JPS589793 B2 JP S589793B2
Authority
JP
Japan
Prior art keywords
shaped
band
crystal
seed crystal
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1428877A
Other languages
Japanese (ja)
Other versions
JPS53100177A (en
Inventor
伊東宏
松井都四郎
真木直明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1428877A priority Critical patent/JPS589793B2/en
Publication of JPS53100177A publication Critical patent/JPS53100177A/en
Publication of JPS589793B2 publication Critical patent/JPS589793B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 この発明は、帯状結晶の成長方法に関する。[Detailed description of the invention] The present invention relates to a method for growing band-shaped crystals.

帯状結晶の成長方法の二つとして、シリコンを例にとれ
ば第1図に示すように石英ガラスるつぼ11に多結晶シ
リコンを溶かして融液12を作り融液内に融液と反応し
難くまた融液により変形し難くしかも融液に濡れる無機
材料によって作られたスリツト13aを有する2枚のダ
イ13を設け種子結晶14を用いて2枚のダイ13で構
成された13a内の融液となじませた後、スリット13
aの開口部の断面とほぼ同形の断面を有する帯状シリコ
ン15を成長させるものがある。
Taking silicon as an example, there are two ways to grow band-shaped crystals. As shown in FIG. 1, polycrystalline silicon is melted in a quartz glass crucible 11 to form a melt 12. Two dies 13 having slits 13a made of an inorganic material that is not easily deformed by the melt and wetted by the melt are provided, and a seed crystal 14 is used to make the melt in the dies 13a made up of the two dies 13 similar to the melt. After that, slit 13
There is a method in which a band-shaped silicon 15 having a cross section substantially the same as that of the opening a is grown.

従来、帯状結晶の成長方法においては第1図に示すよう
に細い種子結晶14が用いられていた。
Conventionally, in the method of growing band-shaped crystals, a thin seed crystal 14 has been used as shown in FIG.

この細い種子結晶14は特に成長結晶にくびれ部を設け
る場合及び種子結晶自体の加工の難易を他の形のものと
比較した場合、断面が小さいために有利であるが、2枚
のダイで構成されたスリットに規定された融液表面上で
帯状結晶の幅を拡げることは極めて困難であった。
This thin seed crystal 14 is advantageous because of its small cross section, especially when providing a constriction in the growing crystal and when the difficulty of processing the seed crystal itself is compared with those of other shapes, but it is made up of two dies. It was extremely difficult to widen the width of the band-shaped crystal on the melt surface defined by the slit.

そしてこの種子結晶からスリットの幅に等しい帯状結晶
を得るには、その間に中間状態として三角形又は扇形の
幅が徐徐に拡がる部分を必要とする。
In order to obtain a band-shaped crystal equal to the width of the slit from this seed crystal, a triangular or fan-shaped portion in which the width gradually increases is required as an intermediate state.

例えば帯状結晶が太陽電池素子の基板として用いられる
ためには長方形つまり一定幅の形状であることが好まし
く、扇形の部分は帯状結晶にとって材料損失として捨て
られなければならない。
For example, in order for a band-shaped crystal to be used as a substrate for a solar cell element, it is preferably rectangular, that is, a shape with a constant width, and the fan-shaped portion must be discarded as material loss for the band-shaped crystal.

材料損失を低減させることは利用効率を高めることに相
当し、扇形又は三角形の部分を少なくし、細い種子結晶
より帯状結晶の幅まで短い距離で拡がる形状であること
が強く望まれていた。
Reducing material loss corresponds to increasing utilization efficiency, and it has been strongly desired that the number of fan-shaped or triangular portions be reduced, and that the shape extends over a shorter distance to the width of the band-shaped crystal than the thin seed crystal.

実際は短い距離で幅が拡がっていることとは反対に扇形
の頂角は極めて小さくその頂角を大きく取って帯状結晶
の幅を拡げると、ダイ上端に成長結晶が固着してしまい
成長の経続ができなくなるのが従来技術の欠点であった
In reality, contrary to the fact that the width increases over a short distance, the apex angle of the fan shape is extremely small, and if the apex angle is increased to widen the width of the crystal band, the growing crystal will stick to the top of the die and the growth will continue. The drawback of the conventional technology was that it was impossible to do so.

もう一つの欠点としては、細い種子結晶を用いるとスリ
ット間隔を毛細管現象で上昇し、開口部の形状に規定さ
れた融液の温度分布が帯状成長に必要と考えられる均一
な温度分布よりはずれて局部的高低があるときに、種子
結晶が細いとダイの温度分布を修正することなく成長を
始めてしまう。
Another drawback is that when thin seed crystals are used, the slit spacing increases due to capillary action, and the temperature distribution of the melt determined by the shape of the opening deviates from the uniform temperature distribution considered necessary for band-like growth. If the seed crystal is thin when there are local highs and lows, it will start growing without correcting the temperature distribution of the die.

この場合、第1図に見られるような幅を拡げる作用は局
所的高温個所では、きかなくなり、ダイのスリットと同
じ形状つまり予定した幅の帯状結晶を成長させることが
不可能となっていた。
In this case, the effect of widening the width as seen in FIG. 1 was no longer effective in localized high temperature areas, making it impossible to grow a band-shaped crystal with the same shape as the slit of the die, that is, the intended width.

本発明は上述した点に対処して鑑みなされたもので、例
えば三角形或いは扇形の成長結晶部が少なく、ダイのス
リット上端で成長結晶が固着したりしない帯状結晶の成
長方法を提供するものである。
The present invention has been made in view of the above-mentioned problems, and provides a method for growing band-shaped crystals that has fewer triangular or sector-shaped growing crystal parts and does not cause the grown crystals to stick to the upper end of the slit of the die. .

以下実施例に従って本発明を詳細に説明する。The present invention will be described in detail below with reference to Examples.

第2図が本発明の実施例を説明するための帯状結晶の成
長様態を示す構成図である。
FIG. 2 is a configuration diagram showing a growth mode of a band-shaped crystal for explaining an embodiment of the present invention.

比重1.8の高純度グラファイトを幅30mm高さ30
mm厚み3mmに切り出し、先端を30度の角度に斜め
研削し、同質のグラファイト製ネジでスペーサを介して
間隔0.03mmをもつようにスリット25aを有する
2枚のダイ25を構成した。
High purity graphite with a specific gravity of 1.8, width 30mm and height 30mm
It was cut out to a thickness of 3 mm, the tips were obliquely ground at an angle of 30 degrees, and two dies 25 having slits 25a with a spacing of 0.03 mm were formed using graphite screws of the same material with a spacer interposed therebetween.

この2枚のダイ25を内径50mmφの石英ガラスるつ
ぼ27に配置した。
These two dies 25 were placed in a quartz glass crucible 27 with an inner diameter of 50 mmφ.

そしてダイ25以外の石英ガラスるつぼ中には比抵抗5
0Ωcmの高純度原料シリコン粒を40gr充填し、ド
ーピング用Asを5μg混入した。
The resistivity of the quartz glass crucible other than die 25 is 5.
40 gr of high purity raw material silicon grains of 0 Ωcm were filled, and 5 μg of As for doping was mixed.

次に引上炉中にるつぼをセットし、炉内を昇温した。Next, the crucible was set in a pulling furnace, and the temperature inside the furnace was raised.

約1時間後に炉内温度は1450℃迄上がり、高純度原
料シリコンとドーピング用Asは融解して、融液26と
なった。
After about 1 hour, the temperature inside the furnace rose to 1450° C., and the high-purity raw material silicon and doping As were melted to form a melt 26.

炉内温度を更に上げて1500℃にすると、融液26は
2枚のダイで構成したスリツト25aの間を上昇し始め
、10分後にスリット開口部24を埋めた。
When the temperature inside the furnace was further increased to 1500° C., the melt 26 began to rise between the slits 25a made up of two dies, and filled the slit openings 24 after 10 minutes.

加熱をやや低め成長に必要な温度条件を作り出すと、あ
らかじめ中心軸よりかた寄った2枚のダイ25の配置か
ら中心軸に近い端の温度が低く石英ガラスるつぼ27に
近い端の温度は高いことがわかった。
When heating is slightly lowered to create the temperature conditions necessary for growth, the temperature at the end near the center axis is low and the temperature at the end near the quartz glass crucible 27 is high, due to the arrangement of the two dies 25 that are offset from the center axis. I understand.

光温度計による測定では中心軸側で1405℃るつぼ側
で1412℃であった。
Measurement using an optical thermometer showed that the temperature was 1405°C on the central axis side and 1412°C on the crucible side.

先端を0.2mm以下に鋭くした2mm角の細い種子結
晶を種子結晶装着部において引上軸21に取り付け、低
温部の中心軸に近いスリット開口部24の融液に種子結
晶を命中させて定時間そのまま保持し、その後毎分1m
mの引上げ速度で引上げを開始し、炉の加熱条件を変え
て帯状結晶の幅に拡がる様に操作した。
A thin seed crystal of 2 mm square with a sharp tip of 0.2 mm or less is attached to the pulling shaft 21 in the seed crystal mounting part, and the seed crystal is determined by hitting the melt in the slit opening 24 near the central axis of the low temperature part. Hold the time as it is, then 1m/min.
Pulling was started at a pulling speed of m, and the heating conditions of the furnace were changed so as to spread the width of the band-shaped crystal.

そして6回同じ試みを繰返して最大拡がり角度つまり三
角形の頂度は3度であることを見い出した。
After repeating the same experiment six times, he found that the maximum spread angle, or the apex of the triangle, was 3 degrees.

また3度の三角形領域は最後迄続かないで、石英ガラス
るつぼ端より10mmの所で幅aの拡がる作用が止るこ
とを見い出した。
It has also been found that the 3 degree triangular region does not continue to the end, and the action of expanding the width a stops at a location 10 mm from the edge of the quartz glass crucible.

最終的な形状として種子結晶より400mmの高さを有
する三角形部とそれに続く幅20mmの帯状結晶が得ら
れた。
The final shape was a triangular part having a height of 400 mm above the seed crystal, followed by a band-shaped crystal with a width of 20 mm.

その電気的特性はN型0.1Ωcmであり、太陽電池用
基板として満足のできるものであった。
Its electrical properties were N-type 0.1 Ωcm, which was satisfactory as a substrate for solar cells.

次に種子結晶装着部を開放し、幅29mm長さ100m
m厚さ0.2mmの板状種子結晶を引上げ軸21に取り
付けた。
Next, open the seed crystal attachment part, width 29mm length 100m
A plate-shaped seed crystal with a thickness of 0.2 mm was attached to the pulling shaft 21.

引上げ軸21を下降させ、スリット開口部24の融液に
命中させて上記した細い種結晶の引上げ条件と同じ操作
で引上げた。
The pulling shaft 21 was lowered, hit the melt in the slit opening 24, and was pulled up under the same conditions as those for pulling up the thin seed crystal described above.

スリット開口部24の中心軸側とるつぼ側では上記した
ように7℃の温度差があったにもかかわらず、リボン結
晶の幅は片方に偏ることなく、スリット開口部24全域
にわたって拡がった。
Although there was a temperature difference of 7° C. between the central axis side of the slit opening 24 and the crucible side as described above, the width of the ribbon crystal was not biased to one side and spread over the entire slit opening 24.

拡がると同時に帯状結晶は割れ始め割れが進行して成長
に至らなかった。
At the same time as it spread, the band-shaped crystals began to crack and the cracks progressed and did not grow.

帯状結晶が割れ破壊に至る理由は、スリット開口部24
より薄い平板状種子結晶を用いたことにより機械的強度
不足が原因であると考えられる。
The reason why the band-shaped crystal cracks and breaks is because the slit opening 24
This is thought to be due to insufficient mechanical strength due to the use of thinner tabular seed crystals.

次に種子結晶装着部を開放し、幅30mm以上、長さ1
00mm、厚さは先端が0.2mm、後方の端で4mm
の楔形断面を有する種子結晶22を引上軸21に取り付
けた。
Next, open the seed crystal mounting part and make a width of 30 mm or more and a length of 1.
00mm, thickness is 0.2mm at the tip and 4mm at the rear end.
A seed crystal 22 having a wedge-shaped cross section was attached to the pulling shaft 21.

取り付けにあたっては、種子結晶22が楔形断面を有す
るため、先端の開口部が先端に近ずくに従って狭くなる
保持部材を引上げ軸21の下部に接続した。
For attachment, since the seed crystal 22 has a wedge-shaped cross section, a holding member whose opening at the tip becomes narrower as it approaches the tip was connected to the lower part of the pulling shaft 21.

引上げ軸21を下降させ、スリット開口部24に命中さ
せて細い種子結晶の引上げ条件と同じ操作で引上げた。
The pulling shaft 21 was lowered, hit the slit opening 24, and was pulled up under the same conditions as those used for pulling up thin seed crystals.

この結果スリット開口部24の中心軸側とるつぼ側では
7℃の温度差があったにもかかわらず、帯状結晶22の
幅は片方に偏ることなくスリット開口部24全域に渡っ
て拡がり、長さ800mmの帯状結晶が80%の歩留り
で成長できた。
As a result, even though there was a temperature difference of 7°C between the central axis side of the slit opening 24 and the crucible side, the width of the band-shaped crystal 22 was not biased to one side, but spread over the entire slit opening 24, and the length A band-shaped crystal of 800 mm could be grown with a yield of 80%.

80%の高歩留りで成長できた理由は第1に30mm幅
のスリットの融液に30mm以上の幅を有する種子結晶
を用いたこと、第2に平板状の種子結晶では帯状結晶は
割れ易く使用に耐えないが、上部の厚みを増加すること
によって、垂直断面が楔形を有する種子結晶を用いたた
めに、機械的強度が増し、割れることなく成長できるよ
うになったことである。
The reason why we were able to grow with a high yield of 80% is firstly because we used a seed crystal with a width of 30mm or more in the melt of the 30mm wide slit, and secondly because when we use flat seed crystals, band-shaped crystals are easily broken. However, by increasing the thickness of the upper part and using a seed crystal with a wedge-shaped vertical cross section, the mechanical strength was increased and it became possible to grow without cracking.

電気的特性はN型、0.1Ωcmであった。The electrical characteristics were N type and 0.1 Ωcm.

なお上記実施例においてシリコンを例にあげ説明したが
Ge、■−V化合物半導体、■−■化合物半導体に適用
し得ることは勿論のことである。
Although the above embodiments have been explained using silicon as an example, it goes without saying that the present invention can also be applied to Ge, -V compound semiconductors, and -■ compound semiconductors.

またスリットを有するダイの材料として濡れて毛細管現
象を用いる物質のグラファイトを例に上げたけれども濡
れない物質においても例えばガス圧等を併用することに
より上記発明の内容が実現され得る。
In addition, although graphite, which is a substance that wets and uses capillary action, is used as an example of the material of the die having slits, the content of the invention described above can be realized even with non-wettable substances by using gas pressure, etc. in combination.

さらにスリットを有するダイは2枚の平板に限らず、中
空のダイであっても良い。
Furthermore, the die having the slit is not limited to two flat plates, and may be a hollow die.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の帯状結晶の成長方法を説明するための図
、第2図は本発明の一実施例の帯状結晶の成長方法の説
明図。 21・・・・・・引上げ軸、22・・・・・・楔形種結
晶、23・・・・・・シリコン帯状結晶、24・・・・
・・スリット開口部、25・・・・・・スリット、26
・・・・・・シリコン融液、27・・・・・・石英ガラ
スるつぼ。
FIG. 1 is a diagram for explaining a conventional method for growing a band-shaped crystal, and FIG. 2 is a diagram for explaining a method for growing a band-shaped crystal according to an embodiment of the present invention. 21... Pulling shaft, 22... Wedge-shaped seed crystal, 23... Silicon band crystal, 24...
...Slit opening, 25...Slit, 26
... Silicon melt, 27 ... Quartz glass crucible.

Claims (1)

【特許請求の範囲】 1 所望の結晶物質からなる融液にスリットを有するダ
イを配し、前記スリツトを介して前記融液に種子結晶を
接触させ、その種子結晶を引き上げることにより帯状結
晶を成長させる方法において前記種子結晶の最下端部の
幅を前記ダイのスリットの幅以上に構成し前記融液の表
面の幅方向全域に接触するようにしたことを特徴とする
帯状結晶の成長方法。 2 前記種子結晶の垂直断面が楔形であることを特徴と
する前記特許請求の範囲第1項記載の帯状結晶の成長方
法。
[Claims] 1. A die having a slit is disposed in a melt made of a desired crystalline substance, a seed crystal is brought into contact with the melt through the slit, and the seed crystal is pulled up to grow band-shaped crystals. A method for growing a band-shaped crystal, characterized in that the width of the lowermost end of the seed crystal is greater than the width of the slit of the die so that it contacts the entire surface of the melt in the width direction. 2. The method for growing a band-shaped crystal according to claim 1, wherein the vertical cross section of the seed crystal is wedge-shaped.
JP1428877A 1977-02-14 1977-02-14 How to grow band crystals Expired JPS589793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1428877A JPS589793B2 (en) 1977-02-14 1977-02-14 How to grow band crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1428877A JPS589793B2 (en) 1977-02-14 1977-02-14 How to grow band crystals

Publications (2)

Publication Number Publication Date
JPS53100177A JPS53100177A (en) 1978-09-01
JPS589793B2 true JPS589793B2 (en) 1983-02-22

Family

ID=11856898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1428877A Expired JPS589793B2 (en) 1977-02-14 1977-02-14 How to grow band crystals

Country Status (1)

Country Link
JP (1) JPS589793B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5756075B2 (en) 2012-11-07 2015-07-29 株式会社タムラ製作所 Method for growing β-Ga 2 O 3 single crystal

Also Published As

Publication number Publication date
JPS53100177A (en) 1978-09-01

Similar Documents

Publication Publication Date Title
JPS604599B2 (en) Method for producing lithium tantalate single crystal
JP5788925B2 (en) Method for growing β-Ga 2 O 3 single crystal
JP2001322892A (en) Method of producing single crystal material, seed substrate, die and device for producing single crystal material
JPS589793B2 (en) How to grow band crystals
US3162507A (en) Thick web dendritic growth
CN106835264A (en) A kind of seedholder
JPS6111916B2 (en)
JP2005277186A (en) Sheet and its manufacturing method, and solar battery using sheet
JPS5932434B2 (en) Band-shaped silicon crystal production equipment
JPS6033799B2 (en) Capillary dice for crystal growth
JP7222669B2 (en) SINGLE CRYSTAL GROWTH METHOD, SEED CRYSTAL, AND SINGLE CRYSTAL
JPS609000B2 (en) Band-shaped silicon crystal growth device
JPS5932431B2 (en) Method for manufacturing band-shaped silicon crystals
JPS5950640B2 (en) Manufacturing equipment for band-shaped silicon crystals
JPS5932430B2 (en) Manufacturing equipment for band-shaped silicon crystals
JP3255753B2 (en) Method of growing rutile rod-shaped single crystal
JP2006282426A (en) Langasite single crystal and its production method
JP2014205618A (en) β-Ga2O3-BASED SINGLE CRYSTAL AND SUBSTRATE
Kuroda et al. Evaluation of Temperature Distribution of Melt in Silicon Ribbon Growth
CN206494982U (en) A kind of seedholder
JP2001181091A (en) Method for growing rutile single crystal
Bates et al. Thick silicon growth techniques
JPH0631200B2 (en) Single crystal growth method
TWI304844B (en)
JPS5850960B2 (en) How to grow band-shaped silicon crystals