JPS5897006A - Production of optical waveguide - Google Patents

Production of optical waveguide

Info

Publication number
JPS5897006A
JPS5897006A JP19459881A JP19459881A JPS5897006A JP S5897006 A JPS5897006 A JP S5897006A JP 19459881 A JP19459881 A JP 19459881A JP 19459881 A JP19459881 A JP 19459881A JP S5897006 A JPS5897006 A JP S5897006A
Authority
JP
Japan
Prior art keywords
substrate
thin film
refractive index
optical waveguide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19459881A
Other languages
Japanese (ja)
Inventor
Kazuhisa Kaede
楓 和久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP19459881A priority Critical patent/JPS5897006A/en
Publication of JPS5897006A publication Critical patent/JPS5897006A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • G02B6/1342Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using diffusion

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain an optical waveguide in a glass substrate by providing the high refractive index layers patterned with the 1st metallic film on the substrate, heating the surface of the substrate via an ion flow limiting layer and the 2nd thin film having a refractive index lower than that of the 1st film and applying voltage thereto. CONSTITUTION:A diffusion blocking film 2 of Al is provided on a glass substrate 1 and the 1st thin film 3 contg. a kind of metal Ag is formed thereon. Electrodes 4, 4' are provided thereon via the film 3, and the substrate is heated to 300 deg.C with a heater 5; at the same time a 300V voltage is applied thereto to form a high refractive index layer 6 on the surface of the substrate 1. Thereafter an ion flow limiting layer 7 which limits the flow of metallic ions, the 1st adhesion intensifying layer 8 consisting of Cr, the 2nd thin film 9 of NaF, and the 2nd adhesion intensifying layer 11 of Cr are formed on the substrate 1. Electrodes 11, 11' are disposed thereon, and the substrate is heated to 300 deg.C, then a 300V voltage is applied, whereby the optical waveguide embedded with the layer 6 in the middle part of the substrate 1 is formed.

Description

【発明の詳細な説明】 本発明は基板の内部に光導波路を形成する光導波路の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an optical waveguide in which the optical waveguide is formed inside a substrate.

元集積回路用線鮎なといわゆる平vjJ型光回路に用い
られる光導波路は、基本的には比較的高屈折率を有する
コア部が比較的低い屈折率を有するクラ、ド部によって
覆われた構造罠なっている。
The optical waveguide used in the so-called flat VJJ type optical circuit, originally used for integrated circuits, basically has a core portion with a relatively high refractive index covered by a core portion with a relatively low refractive index. The structure is becoming a trap.

従来、このような光導波路の製造方法として、本出願の
発明者が発明者の一人となっている同日出願の発明があ
る。これはドライ式の電界拡散法であって、ガラスなど
の基板に銀イオンなど基板の屈折率を高める金属イオン
を電界印加の下に拡散させて高屈折率層を形成し、さら
にナトリウムイオンなど基板の屈折率を前記高屈折率層
の屈折率よりも小さくする金属イオンを電界印加の下に
拡散させることにより、前記高屈折率層を基板の内部に
埋め込んで光導波路を形成せしめるものである。この方
法は光導波路をすべてドライプロセスで形成できるとと
もに1光導波路を深く埋め込むことができ、しかも、埋
め込みKl[’する時間が短かくてすむという特長があ
りた。
Conventionally, as a method for manufacturing such an optical waveguide, there is an invention filed on the same day, in which the inventor of the present application is one of the inventors. This is a dry electric field diffusion method in which metal ions such as silver ions that increase the refractive index of the substrate are diffused into a substrate such as glass under the application of an electric field to form a high refractive index layer, and then sodium ions and other metal ions that increase the refractive index of the substrate are diffused. The high refractive index layer is embedded inside the substrate to form an optical waveguide by diffusing metal ions that make the refractive index of the high refractive index layer smaller than that of the high refractive index layer under the application of an electric field. This method has the advantage that all optical waveguides can be formed by a dry process, one optical waveguide can be deeply buried, and the time required for embedding Kl[' is short.

しかし、塩め込みに用いる金属イオンは一般に拡散すべ
き基板の中を容易に移動できるため、高屈折率層を形成
する金属イオンを移動させるのに必要な量以上の金属イ
オンが一度に基板の中に浸透してしまり。そのため、前
記高屈折率層が所期の深さに埋め込まれるまでの間埋め
込みに用いる金属イオンの基板への浸透を保つには、埋
め込みに用いる金属イオンの拡散源となる薄膜の厚さを
必要以上に厚くしておかなければならないが、との膜厚
が厚くなると、基板や基板の上に形成した電極などの他
の薄膜との膨張係数の差や相互の付着力の弱さのため薄
膜が基板からはがれやすくなり、埋め込みプロセスに障
害を生じやすいという欠点があった。
However, since the metal ions used for salt infusion can generally easily move through the substrate to be diffused, more metal ions than are necessary to move the metal ions forming the high refractive index layer can be absorbed into the substrate at once. It has penetrated inside. Therefore, in order to maintain the penetration of the metal ions used for embedding into the substrate until the high refractive index layer is embedded to the desired depth, the thickness of the thin film that serves as a diffusion source for the metal ions used for embedding must be increased. However, as the film thickness increases, the difference in expansion coefficient between the substrate and other thin films such as electrodes formed on the substrate and the weak mutual adhesion force may occur. This has the disadvantage that it tends to peel off from the substrate, causing problems in the embedding process.

本発明の目的は上記の欠点を除去し、すべてドライプロ
セスで形成できるとと亀に、光導波路を深く埋め込むこ
とができ、しかも埋め込みに要する時間が短かくて済む
という特長を保ちつつ、さらに1埋め込みに用いる金属
イオンの拡散源となる薄膜の厚さを不易INK厚くしな
いで済ませ、しかも薄膜の基板からのはがれを生じに<
<シて安定な埋め込みプロセスが行なえるような光導波
路の製造方法を提供することKある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks, to form the optical waveguide by a dry process, and to maintain the features that the optical waveguide can be deeply embedded and the time required for embedding is short. This eliminates the need to increase the thickness of the thin film that serves as a diffusion source for metal ions used for embedding, and also prevents the thin film from peeling off from the substrate.
<An object of the present invention is to provide a method for manufacturing an optical waveguide that allows a stable embedding process.

以下に、本発明による光導波路の製造方法について実施
例により図面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing an optical waveguide according to the present invention will be described below using examples with reference to the drawings.

第1図〜第7図は本発明による光導波路の製造方法の最
も好ましい一実施例を示したものである。
1 to 7 show a most preferred embodiment of the method for manufacturing an optical waveguide according to the present invention.

本実施例による製造方法では、第1図に示すように、ま
ず厚さ1〜3 mm f) B K 7ガラスのガラス
基板lの上に、す7トオ7法によりパターン形成が施さ
れ真空蒸着により塗布されたアル<=ラムの薄膜からな
る拡散阻止層2を設ける。次に第2図に示すように1真
空蒸着により約1〜5μmの厚さで拡散源の金属となる
鎖の薄膜3を設け、さらに上下両IIK電極4,4′を
形成する。その後第3図に示すように1前記各金属の層
2,3,4゜4′が設けられたガラス基板lを250℃
〜550℃位のガラス歪温度以下に加熱器5を用いて加
熱するとともに2〜300 V/mmの電界を印加する
ことKより、第4図に示すように、銀イオンをガラス基
板1の中に拡散させ、所期の拡散深さを有する高屈折率
部6を形成せしめる。ここで、拡散阻止層2.残存する
銀の薄膜3.電極4,4′を除去した後、第5図に示す
ように、まずガラス基板1の上にアルミニウムの薄膜か
らなり、埋め込みに用いる金属イオンの流れを制限する
ためのイオン流制限層7を設け、その上に、上下の薄膜
7゜9の接着力の強化を計るためのクロムからなる第1
の接着力強化層8を設ける。この第1の接着力強化層8
は埋め込みに用いる前記金属イオンの流れを制限する働
きも兼ねている。次に第1の接着力強化層8の上に、前
記高屈折率部6を基板内部に埋め込むための金属イオン
の拡散源となる弗化す) IJウムの薄膜9を約2〜1
0μmの厚さで設け、その上に1クロムからなる第2の
接着力強化層10を介して、電極11を設ける。さらに
、前記各薄膜層7,8,9110.11が設けられた側
とは反対側の基板表面に電極11’を設ける。ここで前
記各薄膜層7.819,10,11.11’はいずれも
真空蒸着により形成されている。その徒弟6図に示すよ
うに、前記各薄膜層7,8,9゜10.11.11’が
設けられた前記ガラス基板l−を再び250℃〜550
℃位のガラス歪温度以下に加熱器5を用いて加熱すると
ともに2〜300V/mmの電界を印加することにより
、ナトリウムイオンをガラス基板1の中に拡散させ、前
記高屈折率部6を所期の埋め込み深さまで埋め込む。そ
の結果、第7図に示すように、ガラス基板1oI!2面
から所定の距離を有する位置に高屈折率層6が形成され
る。これが光導波路として働く。
In the manufacturing method according to this embodiment, as shown in FIG. 1, a pattern is first formed on a glass substrate l of BK7 glass with a thickness of 1 to 3 mm by a vacuum evaporation method. A diffusion prevention layer 2 is provided, which is made of a thin film of Al<=Ram coated by a method. Next, as shown in FIG. 2, a thin chain film 3 of about 1 to 5 .mu.m thick serving as a diffusion source metal is formed by vacuum evaporation, and both upper and lower IIK electrodes 4, 4' are formed. Thereafter, as shown in FIG.
By heating the glass substrate 1 to below the glass strain temperature of ~550°C using a heater 5 and applying an electric field of 2~300 V/mm, silver ions are injected into the glass substrate 1 as shown in FIG. to form a high refractive index portion 6 having a desired diffusion depth. Here, diffusion prevention layer 2. Remaining silver film3. After removing the electrodes 4 and 4', as shown in FIG. 5, an ion flow restriction layer 7 made of a thin aluminum film is first provided on the glass substrate 1 to restrict the flow of metal ions used for embedding. On top of that, there is a first layer made of chromium to strengthen the adhesion between the upper and lower thin films 7°9.
An adhesive force reinforcing layer 8 is provided. This first adhesive force reinforcing layer 8
also functions to restrict the flow of the metal ions used for embedding. Next, on the first adhesive force strengthening layer 8, a thin film 9 of about 2 to 1 fluoride (IJ) is applied, which will serve as a diffusion source for metal ions for embedding the high refractive index portion 6 inside the substrate.
It is provided with a thickness of 0 μm, and an electrode 11 is provided thereon with a second adhesion reinforcing layer 10 made of 1 chromium interposed therebetween. Further, an electrode 11' is provided on the surface of the substrate opposite to the side on which the thin film layers 7, 8, 9110.11 are provided. Here, each of the thin film layers 7.819, 10, 11.11' is formed by vacuum deposition. As shown in FIG.
Sodium ions are diffused into the glass substrate 1 by heating it with a heater 5 to a temperature below the glass strain temperature of about 0.degree. C. and applying an electric field of 2 to 300 V/mm. Embed to the depth of the period. As a result, as shown in FIG. 7, the glass substrate 1oI! A high refractive index layer 6 is formed at a position having a predetermined distance from the two surfaces. This acts as an optical waveguide.

本実施例により作られ走光導波路として、基板との屈折
率差Δnが0.O2N2.07、高屈折率部の断面の直
径が50μm以上、埋め込み深さが30μm以上のもの
が得られる。これは多モードの光導波路として極めて適
しており、また光導波損失も極めて小さい。tた光導波
路パターンは、前記拡散阻止層2のパターンを従来から
良く知られている7オトエ、チングやリフトオフ法を用
いて形成することにより任意の形状に形成することがで
きる。
The optical traveling waveguide made according to this example has a refractive index difference Δn with respect to the substrate of 0. O2N2.07, the cross-sectional diameter of the high refractive index portion is 50 μm or more, and the embedding depth is 30 μm or more. This is extremely suitable as a multimode optical waveguide, and the optical waveguide loss is also extremely small. The shaped optical waveguide pattern can be formed into any shape by forming the pattern of the diffusion blocking layer 2 using the conventionally well-known etching, etching, or lift-off method.

以上に本発明の一実施例について述べた。ここで本実施
例において祉基板としてガラスを用いたが、LiNbO
5等の結晶基板を用いてもよい。まえ、第1の薄膜に含
まれる金属として銀を用いたが、弗化リチウムなどに含
まれるリチウムなど、金属イオンとして浸透したとき、
基板の屈折率よりも屈折率が大きくなる他の金属を用い
てもよいことは明らかである。また、前記各薄膜層の形
成には真空蒸着法を用いたが、スバ、タリング法や化学
沈着法を用いてもよい。なお、多モート°系に適した光
導波路が得られることはもちろんであるが、金属イオン
の拡散時間や拡散阻止層のパターン幅を、多モード系を
目的とした光導波路のときよりも小さくすることにより
、単一モード系に適し走光導波路が得られることも言う
までもない。
One embodiment of the present invention has been described above. Here, although glass was used as the welfare substrate in this example, LiNbO
A crystal substrate such as No. 5 may also be used. Previously, silver was used as the metal contained in the first thin film, but when lithium, such as lithium contained in lithium fluoride, penetrates as a metal ion,
It is clear that other metals having a refractive index greater than that of the substrate may also be used. Moreover, although the vacuum evaporation method was used to form each of the thin film layers, it is also possible to use a deposition method, a taring method, or a chemical deposition method. Of course, it is possible to obtain an optical waveguide suitable for multi-mode systems, but the diffusion time of metal ions and the pattern width of the diffusion blocking layer can be made smaller than those for optical waveguides intended for multi-mode systems. Needless to say, by doing so, a traveling optical waveguide suitable for a single mode system can be obtained.

最仮に、本発明による光導波路の製造方法の特徴を列挙
すれば、すべてドライの処理工程で製作できること、ま
た、埋め込み用の金属イオンの拡散源の膜厚が従来より
も薄くて済むため、拡散源となる薄膜がはがれにくく々
りたことにより安定した埋め込みプロセスを行なうこと
ができること、さらには形成され走光導波路は光導波損
失がlトさく、熱的にも機械的にも安定であること岬で
ある。
At the very least, the characteristics of the method for manufacturing an optical waveguide according to the present invention are that it can be manufactured using a dry processing process, and that the film thickness of the diffusion source for embedding metal ions can be thinner than in the conventional method. A stable embedding process can be performed because the source thin film does not peel off and cracks, and the formed optical traveling waveguide has low optical waveguide loss and is thermally and mechanically stable. It is a cape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第7図は光導波路製造の各プロセスにおける基
板の側面図を示したものである。 なお図面に使用した符号はそれぞれ以下のものを示す。 l・・・・・・ガラス基板、2・・・・・・拡散阻止層
、3・旧・・第1の薄膜、4・・・・・・電極(陽極)
、41・・・・・・電極(陰極)、5・・・・・・加熱
器、6・・・・・・高屈折率層、7・・・・・・イオン
流制限層、8,10・・・・・・接着力強化層、9・・
・・・・第2の薄膜、11・・・・・・電極(陽極)、
11’・・・・・・電極(陰極)。 第1図 第3図 第4図 第7図
1 to 7 show side views of a substrate in each process of manufacturing an optical waveguide. The symbols used in the drawings indicate the following. 1... Glass substrate, 2... Diffusion prevention layer, 3... Old... First thin film, 4... Electrode (anode)
, 41... Electrode (cathode), 5... Heater, 6... High refractive index layer, 7... Ion flow limiting layer, 8, 10 ...Adhesive strength layer, 9...
... second thin film, 11 ... electrode (anode),
11'... Electrode (cathode). Figure 1 Figure 3 Figure 4 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 光学的に透明度の高い基板の上に1この基板の中に金属
イオンとして浸透したとき前記基板の屈折率が大きくな
る少なくとも一種類の金属を含有する第1の薄膜を設け
、この第1の薄膜を設けた前記基板を加熱するとともに
電界を印加するととKより、前記第1の薄膜に含有され
る前記金属を金属イオンとして前記基板に浸透させて表
面近傍に高屈折率層を形成し、しかる後に、前記基板の
上に、この基板の中に金属イオンとして浸透したとき前
記基板の屈折率が前記高屈折率層の屈折率よりも小さく
なる少なくとも一種類の金属を含有する第2の薄膜を設
け、この第2の薄膜を設けた前記基板を加熱するととも
に電界を印加して、前記第2の薄膜に含有される前記金
属を金属イオンとして前記基板に浸透させることにより
、前記基板の表面から所定の距離にある基板内部に前記
高屈折率層を埋め込んで光導波路を形成せしめる光導波
路の製造方法において、前記第2の薄膜と前記基板の間
K、電界を印加したとき前記第2の薄膜に含まれる金属
の金属イオイが流れる量を制限するイオン流制限層を少
なくとも一層設けたことを%做とする光導波路の製造方
法。
A first thin film containing at least one metal that increases the refractive index of the substrate when it permeates into the substrate as metal ions is provided on a highly optically transparent substrate, and the first thin film When the substrate provided with is heated and an electric field is applied, the metal contained in the first thin film is infiltrated into the substrate as metal ions to form a high refractive index layer near the surface. Afterwards, a second thin film containing at least one metal that, when infiltrated into the substrate as metal ions, causes the refractive index of the substrate to be smaller than the refractive index of the high refractive index layer. The substrate provided with the second thin film is heated and an electric field is applied to cause the metal contained in the second thin film to permeate into the substrate as metal ions, from the surface of the substrate. In the method for manufacturing an optical waveguide, in which the high refractive index layer is embedded inside a substrate at a predetermined distance to form an optical waveguide, when an electric field is applied between the second thin film and the substrate, the second thin film 1. A method of manufacturing an optical waveguide, which comprises providing at least one ion flow restriction layer for restricting the amount of metal sulfur contained in the metal sulfur.
JP19459881A 1981-12-04 1981-12-04 Production of optical waveguide Pending JPS5897006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19459881A JPS5897006A (en) 1981-12-04 1981-12-04 Production of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19459881A JPS5897006A (en) 1981-12-04 1981-12-04 Production of optical waveguide

Publications (1)

Publication Number Publication Date
JPS5897006A true JPS5897006A (en) 1983-06-09

Family

ID=16327205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19459881A Pending JPS5897006A (en) 1981-12-04 1981-12-04 Production of optical waveguide

Country Status (1)

Country Link
JP (1) JPS5897006A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029262A1 (en) * 2013-08-30 2015-03-05 日立化成株式会社 Method for manufacturing optical member, optical member, transparent member for forming optical member, optical waveguide, and optical module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50136050A (en) * 1974-04-09 1975-10-28
JPS5392149A (en) * 1977-01-24 1978-08-12 Mitsubishi Electric Corp Method of fabricating thin film light wave guide
JPS56126810A (en) * 1980-03-10 1981-10-05 Nippon Telegr & Teleph Corp <Ntt> Preparation for light waveguide line

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50136050A (en) * 1974-04-09 1975-10-28
JPS5392149A (en) * 1977-01-24 1978-08-12 Mitsubishi Electric Corp Method of fabricating thin film light wave guide
JPS56126810A (en) * 1980-03-10 1981-10-05 Nippon Telegr & Teleph Corp <Ntt> Preparation for light waveguide line

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029262A1 (en) * 2013-08-30 2015-03-05 日立化成株式会社 Method for manufacturing optical member, optical member, transparent member for forming optical member, optical waveguide, and optical module
CN105492932A (en) * 2013-08-30 2016-04-13 日立化成株式会社 Method for manufacturing optical member, optical member, transparent member for forming optical member, optical waveguide, and optical module
JPWO2015029262A1 (en) * 2013-08-30 2017-03-02 日立化成株式会社 Manufacturing method of optical member, optical member, transparent member for forming optical member, optical waveguide, and optical module

Similar Documents

Publication Publication Date Title
EP0585565B1 (en) Optical waveguide device and manufacturing method of the same
US4711514A (en) Product of and process for forming tapered waveguides
US4136439A (en) Method for the production of a light conductor structure with interlying electrodes
JPS5897006A (en) Production of optical waveguide
US5160360A (en) Process for producing low-loss embedded waveguide
JPS58118610A (en) Production of tapered optical waveguide
JPS5897005A (en) Production of optical waveguide
JP3378009B2 (en) Method of manufacturing waveguide embedded at multiple embedding depths
EP1471377A1 (en) Electro-optic modulator
JPS6112241B2 (en)
JPS5879203A (en) Production of optical waveguide
TW200933224A (en) Metal-diffused single polarization light waveguide chip and manufacturing method thereof
US5057135A (en) Method of quickly manufacturing an optical waveguide
JPS58134609A (en) Production of optical waveguide
JPS58118609A (en) Production of optical waveguide
JPH05313032A (en) Manufacture of optical waveguide
US9494737B2 (en) Optical waveguide and method for manufacturing same
JPS58134610A (en) Production of optical waveguide
JPS58118606A (en) Production of optical waveguide
JPS6066210A (en) Production of optical waveguide
JPS58118608A (en) Production of optical waveguide
JPS58118607A (en) Production of optical waveguide
JPH0623804B2 (en) Method of manufacturing embedded optical waveguide
JP2606525B2 (en) Optical waveguide device and manufacturing method thereof
JPS61256946A (en) Production of distributed refractive index type plane lens