TW200933224A - Metal-diffused single polarization light waveguide chip and manufacturing method thereof - Google Patents

Metal-diffused single polarization light waveguide chip and manufacturing method thereof Download PDF

Info

Publication number
TW200933224A
TW200933224A TW97101998A TW97101998A TW200933224A TW 200933224 A TW200933224 A TW 200933224A TW 97101998 A TW97101998 A TW 97101998A TW 97101998 A TW97101998 A TW 97101998A TW 200933224 A TW200933224 A TW 200933224A
Authority
TW
Taiwan
Prior art keywords
waveguide
metal
top surface
wafer
optical waveguide
Prior art date
Application number
TW97101998A
Other languages
Chinese (zh)
Other versions
TWI357511B (en
Inventor
Rui-Qing Tu
jia-zhi Huang
Original Assignee
Univ Southern Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Southern Taiwan filed Critical Univ Southern Taiwan
Priority to TW97101998A priority Critical patent/TW200933224A/en
Publication of TW200933224A publication Critical patent/TW200933224A/en
Application granted granted Critical
Publication of TWI357511B publication Critical patent/TWI357511B/zh

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

A metal-diffused single polarization light waveguide chip and the manufacturing method thereof are disclosed. The chip is applicable to transmit the single polarization light with a wavelength between 1320 nm to 1550 nm. The metal-diffused single polarization light waveguide chip comprises a lithium niobate substrate along the Y tangential direction, at least a waveguide channel which is formed by the diffusion of the Zn atoms that provides the single polarization light to propagate along the X direction, and an electrode unit which provides a selective voltage to control the propagation phase of the single polarization light. This invention overcomes the conventional limit in which a waveguide channel for the propagation of the single polarization light cannot be made due to the lithium niobate substrate along the Y tangential direction used by the traditional proton exchange process, and provides a simpler process to fabricate a metal-diffused single polarization light waveguide chip with high anti-refraction ability and photoelectric control characteristic by use of Zn atom diffusion.

Description

200933224 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種光波導晶片及其製造方法,特別 是指一種供分光、耦合與相位調制的單極化光波導晶片及 其製造方法。 【先前技術】 - 光纖陀螺儀可以測定運動中的機構在慣性移動座標中 ❹ 的角速度變化,進而計算出運動中機構的絕對空間位移量 ,已被廣泛的使用在例如飛行器、自動化機器人系統和無 人駕駛載具中;而在光纖陀螺儀中,利用鈮酸鋰(lithium niobate)製作而用於提供光路徑分離與重合,及電光訊號 調制的光波導晶片,更是不可或缺的重要積體光學元件。 參閱圖1 ’目前的光波導晶片1的結構,大致如 US4984861號專利案所揭示’具有一平面方向是X切之頂 面ill的鈮酸鋰基材11、至少一概呈y字形的波導通道12 〇 (即1x2 balanced-bridge ),及—形成在該頂面1U上的電 極單元13,該波導通道12供預定波域範圍的單極化光傳播 ,該電極單元13包括多數以導電材_成且彼此對應地設 置在該波導通道12相反兩側的電極塊131,而提供選擇性 ' 的電壓以調控單極化光在該波導通道12中的傳播相位。 - 該波導通道12的形狀種類繁多,但大致說來是視所需 處理的光信號的方式’讓輸入的單極化光在波導通道傳播 中分離、及/或是耦合後傳播,故僅以基本的γ字形為例( 即1x2 balanced-bridge type)而不再多加舉例贅述。而其製 200933224 作方式,目前多是利用質子交換方式製作。 質子交換方式主要是將鈮酸鋰基材浸在苯曱酸或是焦 填酸等酸類中加熱,而在加熱的過程中讓酸類的氯離子渗 入藏酸鐘基材中並將㈣子替換出來而形成波導通道;而 在質子交換波導區域,由於造成非普極化折射率增加(△& >〇),同時在普極化折射率減少(△〜<0),因此可以單導非 . 普極化光極化。 〇 但是,一來製程因為必須先製作防止質子交換的保護 層以保護不需質子交換的區域,事後則又必須額外的以化 學溶液去除保護層的步驟,所以需要較多的製程步驟與時 間,二來,基於鈮酸鋰基材本身的特性,此等方式只適用 在X切及z切方向的鈮酸鋰基材上形成波導通道,若是想在 y切方向製作波導通道時,則會有應力破壞的顧慮,造成在 質子交換後波導表面龜裂,而幾乎無法製作出操作在長波 長波域範圍(1320〜1550nm)的單極化光波導晶片;其次, 〇 由於氫質子的質量輕’容易在環境熱干擾(加熱過程)及 長時間操作下,產生分佈的改變而造成元件特性飄移。因 此,仍有許多研究者,企圖在交換酸液種類及製程安排上 ,去尋求更能在高溫擾動下,可以操作穩定之單極化操作 波導。 ” 而在傳統銳酸鋰光波導元件製程中,除了質子交換法 之外,另外也有採用金屬鈦擴散方式製作波導通道,主要 是利用半導體製程在鈮酸鋰基材上鍍上一層鈦金屬,之後 以高溫(lOOOt〜1020。〇、長時間(6〜8小時)的熱處理, 6 200933224 讓鈦原子擴散進人該鈮酸鐘基材u後形成波導通道。此種 方式製作的光波導晶片的電光調制性,較質子交換方式製 作的光波導晶片來得高,直線波導損耗也較低,但抗光折 能力較低’同時在非普極化折射率及普極化折射率均增加 下(△ e 〇, △”。>〇),無法形成供單一極化導光用的波導通 道。 【發明内容】 〇 目此,本發明之—目的,即在提供-種具有較高的抗 光折能力與長時間操作穩定性的金屬擴散式單極化光波導 晶片。 此外,本發明之另-目的,即在提供一種製作上述金 屬擴散式單極化光波導晶片謂程成本較低的製造方法。 於疋,本發明一種金屬擴散式單極化光波導晶片,適 用傳播波長範圍至少涵蓋1320nm肖1550nm兩種波域範圍 的單極化光,包含一鈮酸鋰基材、至少一波導通道,及一 0 電極單元。 該銳酸經基材具有—平面方向是y切方向的頂面。 該波導通道主要由鋅原子自該頂面向下擴散形成,供 單極化光沿X方向傳播。 - Μ電極形成在該頂面上而提供選擇性的電壓以調 控單極化光在該波導通道中的傳播相位。 再者,本發明一種金屬擴散式單極化光波導晶片的製 造方法,製作適用傳播波長範圍至少涵蓋1320nm與 155(hnn兩種波域範圍的單極化光的單極化光波導晶片,包 200933224 含以下步驟。 y切方向的鈮酸鋰基材。 面定義出一波導通道圓樣。 φ向上形成一層主成分是鋅的 首先準備一頂面方向是 接著在該鈮酸鋰基材頂 然後自該魏酸鐘基材頂 金屬層。 再移除部分區域的金屬層 道圖樣的金屬層區塊。 以留下形狀對應於該波導通 Ο ❹ 然後將此半成品以800〜850。。熱處理i 5〜3小時,使鋅 原子擴散進人钱酸㈣材巾形成—供單減光傳播的波 導通道。 最後在該基材頂面上定義一可提供電廢以調控單極化 光,該波導通道中傳播相位的電極單^,完成該金屬擴散 式單極化光波導晶片的製作。 本發明的功效在於:克服質子交換於y切銳酸链基材 不易製作出操作在長波長波域範圍(132G〜i55Gnm)的單極 化光波導晶片的問題,而以鋅原子擴散形成在y铺銳酸鐘 基材的波導通道的光波導晶片,以製作出的光波導晶片具 有如同金屬鈦擴散一樣的無損電光調制特性,且直線波導 損耗也在可接受範圍(約在G.刪em),同時具有高的抗光 折能力。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 200933224 在本發明被詳細描述之前’要注意的是,在以下的說 明内容中,類似的元件是以相同的標號來表示。 參閱圖2,本發明一種金屬擴散式單極化光波導晶片2 的一較佳實施例,具有一鈮酸鋰基材21、至少一概呈γ字 形的波導通道22,及一形成在該基材21上的電極單元23 ’適用傳播波域範圍至少涵蓋1320nm與1550nm兩種波域 範圍以上的單極化光。 該鈮酸鋰基材21具有一平面方向是y切方向的頂面 211 ° 該波導通道22供預定波域範圍的單極化光傳播,主要 由鋅原子自頂面211向下擴散形成,供I320nm〜1550nm波 域範圍的單極化光傳播。類似地,雖然在本例中以γ字形 說明該波導通道22,但其實際形狀,可視所需處理傳播的 光L说的方式(耦合、分光)不同而有各式變化,由於該 波導通道22的形狀並非本發明的重點所在,故在此不多加 舉例資述。 該電極單元23包括一層以絕緣材料形成在該頂面211 上的絕緣層231 ’及多數以導電材料形成在該絕緣層231上 且彼此對應地設置在該波導通道22相反兩側的電極塊232 ’可提供選擇性的電壓以調控單極化光在該波導通道22中 的傳播相位。 從實驗結果得知’上述本發明的鋅原子擴散形成的波 導通道22,在適當製程條件操控下,其非普極化折射率增 加量甚大於普極化折射率增加量。因此,在長 200933224 波長範圍(1320〜1550nm),較容易造成當非普極化折射率 增加已足以導非普極化光時,而此時普極化折射率變動量 仍不足以使普極化光導通,所以其單極化導通現象是有一 疋頻寬限制’而在本發明中也證實在頻寬範圍( 1320〜1550nm)之内其極化訊熄比均可達32dB/cm左右,而 在一般晶片使用長度均大於2cm下,其傳播總極化訊熄比 可達60dB,而此值也可與傳統質子交換方式製作的波導通 道所能提供60dB的規格相比;此外,本發明的金屬擴散式 單極化光波導晶片2的頻寬約有230nm,足以容納在光纖 陀螺儀系統中,入射的寬頻自發性輻射光源所需的丨〇〇nm 頻寬需求。更詳細的實驗驗證請容後再續。 上述的金屬擴散式單極化光波導晶片2在經過以下製 造方法的詳細說明後,當可更加清楚明白。 參閱圖3,該金屬擴散式單極化光波導晶片2的製作, 是先進行步驟3卜準備平面方向是y七刀方向的頂φ 211的 銳酸鐘基材21。 然後進行步驟32,在基材21頂面211定義出一波導通 道圖樣,在此是利用技術已臻成熟的半導體黃光製程實施 〇 接著進行步驟33,利用鍍膜製程自該基材21頂面 向上形成一層厚度在5〜10nm的鎳膜後,之後繼續地自該鎳 膜向上形成-層厚度在4G〜5()nm的鋅媒,由該鎳膜與辞膜 共同構成一金屬層。 再進行步驟34,利用半導體掀離技術,移除掉部分的 10 200933224 金屬層,而留下形狀對應於該波導通道圖樣的金屬層區塊 之後進行步驟35,以800〜850°C熱處理上述該步驟34 製得的半成品1.5〜3小時,使得留下之金屬層區塊的鎳原子 與鋅原子擴散進入該鈮酸鋰基材21中,形成供單極化光傳 播的波導通道22。 最後進行步驟36,同樣利用半導體製程在該基材21上BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to an optical waveguide wafer and a method of fabricating the same, and more particularly to a single-polarized optical waveguide wafer for splitting, coupling, and phase modulation, and a method of fabricating the same. [Prior Art] - The fiber optic gyroscope can measure the angular velocity variation of the moving mechanism in the inertial moving coordinate, and then calculate the absolute spatial displacement of the moving mechanism. It has been widely used in, for example, aircraft, automated robot systems, and unmanned In the fiber-optic gyroscope, the optical waveguide wafer fabricated by lithium niobate for providing optical path separation and coincidence, and electro-optical signal modulation is an indispensable important integrated optics. element. Referring to Fig. 1 'the structure of the present optical waveguide wafer 1, substantially as disclosed in U.S. Patent No. 4,884,861, the lithium niobate substrate 11 having a plane sided top surface ill, at least one substantially y-shaped waveguide channel 12 〇 (ie, 1×2 balanced-bridge), and an electrode unit 13 formed on the top surface 1U, the waveguide channel 12 for unipolar light propagation in a predetermined wave domain, the electrode unit 13 comprising a plurality of conductive materials The electrode blocks 131 disposed on opposite sides of the waveguide channel 12 are provided corresponding to each other to provide a voltage of selectivity ' to control the propagation phase of the unipolar light in the waveguide channel 12. - The waveguide channel 12 has a wide variety of shapes, but is generally in the form of a light signal to be processed 'to separate the input unipolar light in the waveguide channel propagation, and/or to propagate after coupling, so only The basic gamma font is taken as an example (ie, 1x2 balanced-bridge type) and will not be described again. The system of 200933224 is currently produced by proton exchange. The proton exchange method mainly involves immersing the lithium niobate substrate in an acid such as benzoic acid or a pyrophoric acid, and in the process of heating, the chloride ion of the acid is infiltrated into the storic acid clock substrate and the (four) sub-substituting is formed. The waveguide channel; in the proton exchange waveguide region, due to the increase in the non-normal polarization index (Δ &> 〇), while reducing the refractive index in the general polarization (△ ~ < 0), it can be single-conductor. Polarized light polarization. 〇 However, once the process has to make a protective layer to prevent proton exchange to protect the area that does not require proton exchange, the additional step of removing the protective layer with a chemical solution is necessary afterwards, so more process steps and time are required. Secondly, based on the characteristics of the lithium niobate substrate itself, these methods are only suitable for forming waveguide channels on the lithium niobate substrate in the X-cut and z-cut directions. If the waveguide channel is to be fabricated in the y-cut direction, there will be The stress cracking concerns cause cracking of the waveguide surface after proton exchange, and it is almost impossible to fabricate a single-polarized optical waveguide wafer operating in the long-wavelength wavelength range (1320 to 1550 nm); secondly, due to the low mass of hydrogen protons' It is easy to cause distribution changes due to environmental thermal interference (heating process) and long-time operation, causing component characteristics to drift. Therefore, there are still many researchers who are attempting to operate a stable single-polarized operating waveguide under high temperature disturbances in exchange for acid type and process arrangement. In the traditional lithium acid lithium optical waveguide component process, in addition to the proton exchange method, there is also a metal titanium diffusion method for making the waveguide channel, mainly by using a semiconductor process to plate a layer of titanium metal on the lithium niobate substrate, and then Heat treatment at a high temperature (lOOOO~1020. 〇, long time (6-8 hours), 6 200933224 allows titanium atoms to diffuse into the yttrium acid substrate u to form a waveguide. Electro-optic modulation of the optical waveguide wafer fabricated in this manner Compared with the proton exchange method, the optical waveguide wafer is made higher, the linear waveguide loss is lower, but the resistance to photo-deflection is lower, and both the non-normal polarization index and the general polarization index increase (Δ e 〇, △".>〇), a waveguide channel for single polarization light guide cannot be formed. [Explanation] In view of the above, the object of the present invention is to provide a high resistance to light folding and long Time-operated metal diffusion type single-polarized optical waveguide wafer. Further, another object of the present invention is to provide a metal diffusion type single-polarized optical waveguide wafer The invention relates to a metal diffusion type single-polarized optical waveguide wafer, which is suitable for unipolar light having a wavelength range of at least 1320 nm and a range of 1550 nm, including a lithium niobate substrate. At least one waveguide channel, and a 0 electrode unit. The sharp acid has a top surface in a y-cut direction through a substrate. The waveguide channel is mainly formed by diffusion of zinc atoms from the top surface downward for unipolarized light along Propagating in the X direction. - A germanium electrode is formed on the top surface to provide a selective voltage to regulate the propagation phase of the single polarized light in the waveguide. Further, the present invention is a metal diffused single polarized optical waveguide wafer. The manufacturing method is to fabricate a single-polarized optical waveguide wafer having a propagation wavelength range covering at least 1320 nm and 155 (hnn both wavelength ranges of single-polarized light, and the package 200933224 includes the following steps. The y-cut lithium niobate substrate. A waveguide channel is defined. φ is formed upwards to form a layer of zinc which is first prepared in a top surface direction and then on top of the lithium niobate substrate and then from the top metal layer of the Wei acid clock substrate. In addition to the metal layer pattern of the metal layer pattern in part of the area, the shape of the metal layer is corresponding to the waveguide, and then the semi-finished product is 800 to 850. Heat treatment i 5 to 3 hours to diffuse the zinc atom into the human acid (4) Material towel formation—a waveguide channel for single dimming propagation. Finally, an electrode is provided on the top surface of the substrate to provide electric waste to regulate unipolar light, and the phase of the electrode in the waveguide channel is propagated to complete the diffusion of the metal. Fabrication of a single-polarized optical waveguide wafer. The effect of the present invention is that it is difficult to fabricate a single-polarized optical waveguide wafer operating in a long wavelength range (132G to i55Gnm) by overcoming proton exchange on the y-cut acid chain substrate. The problem is that the optical waveguide wafer formed by the diffusion of zinc atoms in the waveguide channel of the yaki acid clock substrate has a non-destructive electro-optic modulation characteristic like the diffusion of titanium metal, and the linear waveguide loss is also in an acceptable range. (About G. delete em), and has a high resistance to light folding. The above and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. 200933224 Before the present invention is described in detail, it is to be noted that in the following description, similar elements are denoted by the same reference numerals. Referring to FIG. 2, a preferred embodiment of a metal diffusion type single-polarized optical waveguide wafer 2 has a lithium niobate substrate 21, at least one γ-shaped waveguide channel 22, and a substrate formed on the substrate. The electrode unit 23' on 21 applies a unipolar light having a propagation wave domain range covering at least 1320 nm and 1550 nm. The lithium niobate substrate 21 has a top surface 211 ° whose plane direction is the y-cut direction. The waveguide channel 22 transmits unipolar light in a predetermined wave domain range, and is mainly formed by diffusion of zinc atoms downward from the top surface 211. Single-polarized light propagation in the I320nm~1550nm wave domain. Similarly, although the waveguide channel 22 is illustrated in a gamma-shape in this example, its actual shape may vary depending on the manner (coupling, splitting) of the light L to be processed and processed, since the waveguide channel 22 is varied. The shape is not the focus of the present invention, so no more examples are given here. The electrode unit 23 includes an insulating layer 231 ′ formed of an insulating material on the top surface 211 and electrode blocks 232 formed on the insulating layer 231 with a conductive material and disposed opposite to each other on opposite sides of the waveguide channel 22 . A selective voltage can be provided to regulate the propagation phase of the unipolar light in the waveguide channel 22. It is known from the experimental results that the waveguide channel 22 formed by the diffusion of the zinc atom of the present invention has a non-normalized refractive index increase amount which is much larger than the generalized refractive index increase amount under the control of an appropriate process condition. Therefore, in the long wavelength range of 200933224 (1320~1550nm), it is easier to cause the non-normalized refractive index increase to be sufficient to guide the non-polarized light, while the generalized refractive index variation is still insufficient to make the Pole The light is turned on, so its single-polarization conduction phenomenon has a bandwidth limitation. In the present invention, it is also confirmed that the polarization-to-extinguish ratio can reach about 32 dB/cm within the bandwidth range (1320 to 1550 nm). When the length of the general wafer is more than 2 cm, the total polarization extinction ratio of the propagation is up to 60 dB, and this value can also be compared with the specification of the waveguide channel made by the conventional proton exchange method to provide 60 dB; in addition, the present invention The metal diffused single-polarized optical waveguide wafer 2 has a bandwidth of about 230 nm, which is sufficient to accommodate the 丨〇〇nm bandwidth requirement of the incident broadband self-radiating radiation source in the fiber optic gyroscope system. More detailed experimental verification should be continued later. The metal diffusion type single-polarized optical waveguide wafer 2 described above can be more clearly understood after the detailed description of the following manufacturing method. Referring to Fig. 3, the metal diffusion type single-polarized optical waveguide wafer 2 is produced by first performing the step 3 to prepare a sharp acid clock substrate 21 having a top φ 211 whose plane direction is the y-knife direction. Then, in step 32, a waveguide channel pattern is defined on the top surface 211 of the substrate 21, which is performed by a semiconductor yellow light process which has been matured by the technique, and then proceeds to step 33, from the top surface of the substrate 21 by the coating process. After forming a nickel film having a thickness of 5 to 10 nm, a zinc medium having a thickness of 4 G to 5 () nm is formed continuously from the nickel film, and the nickel film and the film are combined to form a metal layer. Then, in step 34, using a semiconductor stripping technique, a portion of the 10 200933224 metal layer is removed, leaving a metal layer block having a shape corresponding to the waveguide channel pattern, and then performing step 35, heat treating at 800 to 850 ° C. The semi-finished product obtained in step 34 is 1.5 to 3 hours, so that nickel atoms and zinc atoms remaining in the metal layer block are diffused into the lithium niobate substrate 21 to form a waveguide channel 22 for unipolar light propagation. Finally, step 36 is performed on the substrate 21 by using a semiconductor process.

定義出該可提供電壓的電極單元23 一此過程是先以絕緣材 料在該基材21頂面上形成該層絕緣層231,之後,再以例 如鋁、鎳、鈦、銅等金屬或是含此等金屬的合金,或是其 他例如透明的銦錫氧化物等導電材料定義出對應於該波導 通道22兩側的平行電極塊232,完成金屬擴散式單極化光 波導晶片2的製作。 雖然質子S換方式,在z切及χ切銳酸链基材上都能製 作波導通道,但是在電光操控時,主要是湘沿基材Z方向 的電場在經由電光係數r”產生所需之相位調制功能,所以 製作在Ζ切(y傳播)^ ;日日片時,必須有一電極塊需置於波導 通道上,而此方式定总田恭 易因電極熱效應,造成波導通道局部 加熱效應下,使輸出相杨 ^谷易不穩疋,然而使用X切(y傳 播)晶片’此時電極可以番认、木播 以置於波導兩侧,便可避免此熱電 極效應,所以相對而+甘认,λ 、 。其輸出會較為穩定,同時因電極在 兩側,絕緣層的製作太彳 乍在低頻操作時也可以省略,惟在高頻 操作時’因需要維持足 ^ 疋夠的光波與電訊波之速度匹配要求 ,通常還是會加上—絕緣 巴緣層,因此,在光纖陀螺儀用的波 200933224 導晶片通道,都被限制在χ切(y傳播)方向的鈮酸鋰基材 上。 因此’本發明首先開創以鎳均勻穩定的附著在y切(χ 傳播)方向的銳酸經基材頂面,繼之再以鋅附著在鎳上, 進而同時擴散形成供單極化光傳播的波導通道,而在電極 安排上,也是同樣置於波導兩側,所以如同χ切(y傳播) • 方向,並無熱電極之困擾’因此也會具有相同之相位操作 ❹ 穩定度。此外,更值得一提的是,根據實驗,無論是X切 方向、Z切方向的鈮酸鋰基材,也都可以先藉著鎳附著在鈮 酸鐘基材上’繼之再於鎳膜上形成鋅膜,在適當製程條件 下’進而同時擴散形成傳播單極化光的波導通道,而突破 質子交換製程在y切鈮酸鋰基材之限制。 參閲圖4’為驗證本發明的金屬擴散式單極化光波導晶 片2的電光調制特性’波導通道22形成如圖所示的1χ2的 光切換器的架構,當其中一路徑上波導受到電光調制時, 〇 參閱如圖5所示的電光調制輸出圖,從量得之切換電壓與 光場分佈的計算下,可以得知本發明金屬擴散式單極化光 波導晶片2的線性電光係數(EO coefficient,I*33)—在傳 播1550nm波域範圍的單極化光時,= 3〇 5pm/v ’ ' 1320nm波域範圍的單極化光時,r33 = 30.7pm/V,與目前由 鈦擴散形成波導通道的光波導晶片相近,證實本發明的金 屬擴散式單極化光波導晶片的電光操作特性良好。 综上所述,本發明主要是提供適用傳播波長範圍涵蓋 1320nm〜1550nm範圍的單極化光的金屬擴散式單極化光波 12 200933224 ,開創以鎳均勻穩定的附著在y切方 ,繼之再以鋅附著在鎳上,製作單極 ,除克服了質子交換在y切鈮酸鋰的 導晶片及其製造方法The electrode unit 23 defining the voltage supply is formed by forming the insulating layer 231 on the top surface of the substrate 21 with an insulating material, and then, for example, a metal such as aluminum, nickel, titanium or copper or An alloy of such metals, or other conductive material such as transparent indium tin oxide, defines parallel electrode blocks 232 corresponding to both sides of the waveguide channel 22, and the fabrication of the metal diffusion type monopolarized optical waveguide wafer 2 is completed. Although the proton S is changed, the waveguide channel can be fabricated on both the z-cut and the tangent sharp acid chain substrate, but in the electro-optical manipulation, the electric field in the Z direction along the substrate is mainly required to be generated via the electro-optic coefficient r". Phase modulation function, so when making a tangent (y-propagation) ^; day-day film, there must be an electrode block to be placed on the waveguide channel, and this method is determined by the electrode thermal effect, resulting in the local heating effect of the waveguide channel. The output phase Yang ^ Valley is not stable, but the X-cut (y-propagation) wafer is used. At this time, the electrode can be recognized and the wood is placed on both sides of the waveguide to avoid the hot electrode effect. , λ , . The output will be more stable, and because the electrodes are on both sides, the production of the insulating layer is too long to be omitted in the low-frequency operation, but in the high-frequency operation, it is necessary to maintain enough light and telecommunications. Wave speed matching requirements, usually with the addition of insulating edge layer, therefore, the wave of the laser wave gyro 200933224 wafer channel is limited to the tantalum (y-propagation) direction of the lithium niobate substrate. because The invention firstly creates a sharp acid which is uniformly and stably attached to the y-cut (χ propagation) direction of nickel through the top surface of the substrate, and then adheres to the nickel by zinc, and simultaneously diffuses to form a waveguide for unipolar light propagation. The channel, and in the electrode arrangement, is also placed on both sides of the waveguide, so it is like the tangent (y-propagation) • direction, there is no problem with the hot electrode' so it will have the same phase operation 稳定 stability. In addition, it is more worthwhile It is mentioned that, according to the experiment, the lithium niobate substrate in the X-cut direction and the Z-cut direction can also be attached to the tantalum clock substrate by nickel, and then the zinc film is formed on the nickel film. Under appropriate process conditions, and then simultaneously diffuse to form a waveguide channel that propagates unipolar light, and break through the proton exchange process in the y-cut lithium niobate substrate. See Figure 4' for verification of the metal diffusion type single polarization of the present invention. The electro-optical modulation characteristic of the optical waveguide wafer 2's waveguide channel 22 forms the structure of the optical switch of 1χ2 as shown in the figure. When the waveguide on one of the paths is modulated by electro-optic, see the electro-optic modulation output diagram as shown in FIG. From the calculation of the switching voltage and the distribution of the light field, the linear electro-optic coefficient (EO coefficient, I*33) of the metal diffusion type single-polarized optical waveguide wafer 2 of the present invention can be known to be in the range of the 1550 nm wave domain. When polarized light, = 3 〇 5 pm / v ' ' 1320 nm unipolar light in the wave domain range, r33 = 30.7 pm / V, similar to the optical waveguide wafer currently formed by diffusion of titanium into the waveguide channel, confirming the metal of the present invention The electro-optic operation characteristics of the diffused single-polarized optical waveguide wafer are good. In summary, the present invention mainly provides a metal-diffused single-polarized light wave 12 directionally applicable to a single-polarized light having a wavelength range of 1320 nm to 1550 nm. The nickel is uniformly and stably attached to the y-cut, and then the zinc is attached to the nickel to prepare a monopole, in addition to overcoming the proton exchange in the y-cut lithium niobate wafer and the manufacturing method thereof

向的鍵•酸鐘基材頂面 化光傳播的波導通道 製程限制外,由於無需右彳卜昼為办丨& i八 A 南有化予蝕刻與清除之製程,預期也 會有較低的製程成本鱼日车間銘龙。& , /、矸間卽嚙。此外,根據量測結果及 相關文獻探討得知, 單極化光波導晶片 本發明主要由鋅擴散形成波導通道的 ’不但可以適用傳播波長範圍涵蓋The key to the key channel of the acid clock substrate for the top surface of the light-propagating waveguide is not limited by the process of etching and cleaning. Cost fish day workshop Ming Long. & , /, 卽 卽. In addition, according to the measurement results and related literatures, the single-polarized optical waveguide wafer is mainly formed by zinc diffusion to form a waveguide channel.

⑽⑽〜⑽⑽r_單極化光,同時具有高抗光折能力 ’電光係數也與目前的由鈦形成波導料的金屬擴散式光 波導晶片相似’且預期將有更穩定的長時間輸出操作穩定 性表現,不但可以結合其他光路與適當電極安排,可以作 為在光通訊系統中的光調制器,同時可與無線微波傳輸系 統結合,作為微波與光波訊號轉換的調制元件,或是在有 線電視傳輸中,提供具有類比調制的功能的積體光學元件 ,也能進一步地與波導感測元件及生醫感測技術結合,發 展成為可攜式具光訊號調制的生醫波導感測元件與系統, 確實達到本發明的創作目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一立體圖’說明一習知的單極化光波導晶片; 圖2是一立體圖’說明本發明之金屬擴散式單極化光 13 200933224 波導晶片的-較佳實施例; 圖 3 β —、去 疋—流程圖,說明圖2之金屬擴散式單極化光波 導晶片的製造方法; TSI λ β 疋—元件結構圖’作為驗證此發明製程,在電光 調制特性輪出下所需的基本架構;及 圖5是一電光調制輸出圖,說明從量得之切換電壓可 再與另外量測之光場分佈之計算下,得知本發明金屬擴散 式單極化光波導晶片的線性電光係數。(10) (10) ~ (10) (10) r_single-polarized light, while having high resistance to photo-breaking ability' electro-optical coefficient is similar to the current metal-diffused optical waveguide wafer formed of titanium as a waveguide material' and is expected to have more stable long-term output operation stability performance, It can be combined with other optical paths and appropriate electrode arrangements. It can be used as a light modulator in an optical communication system. It can also be combined with a wireless microwave transmission system as a modulation component for microwave and optical signal conversion, or in cable transmission. The integrated optical component with analog modulation function can be further combined with the waveguide sensing component and the biomedical sensing technology to develop into a portable biosensor waveguide sensing component and system with optical signal modulation. The purpose of the invention. The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a conventional single-polarized optical waveguide wafer; FIG. 2 is a perspective view showing a preferred embodiment of the metal diffusion type unipolarized light 13 200933224 waveguide wafer of the present invention. Figure 3 β -, de-疋 - flow chart, illustrating the manufacturing method of the metal diffusion type single-polarized optical waveguide wafer of Fig. 2; TSI λ β 疋 - element structure diagram ' as a verification process of the invention, in the electro-optic modulation characteristic wheel The basic structure required is shown; and FIG. 5 is an electro-optical modulation output diagram, which shows that the metal diffusion type unipolar light of the present invention can be obtained from the calculation of the switching voltage of the quantity and the measurement of the light field distribution of another measurement. The linear electro-optic coefficient of the waveguide wafer.

14 200933224 【主要元件符號說明】 1 光波導晶片 23 電極單元 11 基材 231 絕緣層 111 頂面 232 電極塊 12 波導通道 31 步驟 13 電極單元 32 步驟 131 電極塊 33 步驟 2 光波導晶片 34 步驟 21 基材 35 步驟 211 頂面 36 步驟 22 波導通道 1514 200933224 [Description of main components] 1 Optical waveguide wafer 23 Electrode unit 11 Substrate 231 Insulation layer 111 Top surface 232 Electrode block 12 Waveguide channel 31 Step 13 Electrode unit 32 Step 131 Electrode block 33 Step 2 Optical waveguide wafer 34 Step 21 Base Material 35 Step 211 Top Surface 36 Step 22 Waveguide Channel 15

Claims (1)

200933224 十、申請專利範圍: 1. 一種金屬擴散式單極化光波導晶片,適用傳播波長範圍 至少涵蓋1320nm與1550nm兩種波域範圍的單極化光, 包含: 一銳酸經基材’具有一平面方向是y切方向的頂面 , 至少一波導通道,主要由鋅原子自該頂面向下擴散 形成,供單極化光沿X方向傳播;及 一電極單元,形成在該頂面上而提供選擇性的電壓 以調控單極化光在該波導通道中的傳播相位。 2. 依據申請專利範圍第1項所述之金屬擴散式單極化光波 導晶片,其中,該波導通道更包含銻原子向下擴散形成 〇 3·依據申請專利範圍第2項所述之金屬擴散式單極化光波 導晶片,其中,該電極單元具有一層形成在該頂面上的 絕緣層,及設置於該波導通道兩側的平行電極塊。 4· 一種金屬擴散式單極化光波導晶片的製造方法,製作適 用傳播波長範圍至少涵蓋1320nm與1 55Onm兩種波域範 圍的單極化光的單極化光波導晶片,包含·· (a) 準備一頂面方向是y切方向的銳酸鋰基材; (b) 在該鈮酸鋰基材頂面定義出一波導通道圖樣; (c) 自該鈮酸鋰基材頂面向上形成一層主成分是鋅的金 屬層, (d) 移除部分區域的金屬層以留下形狀對應於該波導通 16 200933224 道圖樣的金屬層區塊; (Ο將該步驟(d)製得的半成品以800〜85(TC熱處理 1.5〜3小時,使鋅原子擴散進入該銳酸鐘基材中形成 一供單極化光傳播的波導通道;及 (f)在該基材頂面上定義一可提供電壓以調控單極化光 在該波導通道中傳播相位的電極單元。 5,依據申請專利範圍第4項所述之金屬擴散式單極化光波 q 導晶片的製造方法,其中,該步驟(c)形成的金屬層包 括一層與該頂面連接且厚度在5〜10nm的鎳膜,及一層 自該鎳膜向上形成且厚度在4〇〜5 Onm的鋅膜。 6. 依據申請專利範圍第4項所述之金屬擴散式單極化光波 導晶片的製造方法,其中,該步驟(d )是以掀離技術留 下形狀對應於該波導圖樣的金屬層區塊。 7. 依據申請專利範圍第4項所述之金屬擴散式單極化光波 導晶片的製造方法’其中,該步驟(f)定義的該電極單 〇 元具有一以絕緣材料形成在該頂面的絕緣層,及以導電 材料形成在該絕緣層上且分別對應於該波導通道兩側的 平行電極塊。 17200933224 X. Patent application scope: 1. A metal diffused single-polarized optical waveguide wafer suitable for unipolar light with a wavelength range of at least 1320 nm and 1550 nm, including: a plane direction is a top surface of the y-cut direction, and at least one waveguide channel is mainly formed by diffusion of zinc atoms from the top surface downward for the single-polarized light to propagate in the X direction; and an electrode unit formed on the top surface A selective voltage is provided to regulate the propagation phase of the single polarized light in the waveguide channel. 2. The metal diffusion type single-polarized optical waveguide chip according to claim 1, wherein the waveguide channel further comprises a germanium atom diffused downward to form a crucible. 3. The metal diffusion according to claim 2 A single-polarized optical waveguide wafer, wherein the electrode unit has a layer of insulating layers formed on the top surface, and parallel electrode blocks disposed on both sides of the waveguide channel. 4. A method for fabricating a metal diffusion type single-polarized optical waveguide wafer, which is a single-polarized optical waveguide wafer suitable for transmitting unipolar light having a wavelength range of at least 1320 nm and 1 55 Onm, including (a) Preparing a lithium acetate substrate with a top surface in the y-cut direction; (b) defining a waveguide channel pattern on the top surface of the lithium niobate substrate; (c) forming a top surface of the lithium niobate substrate One layer of the main component is a metal layer of zinc, (d) removing a metal layer of a portion of the region to leave a metal layer block having a shape corresponding to the pattern of the waveguide pass 16 200933224; (a semi-finished product obtained by the step (d) Heated at 800 to 85 (TC for 1.5 to 3 hours to diffuse zinc atoms into the sharp acid clock substrate to form a waveguide for unipolar light propagation; and (f) define a voltage supply on the top surface of the substrate An electrode unit for regulating a phase of propagation of a single-polarized light in the waveguide channel. 5. A method of manufacturing a metal diffusion type single-polarized light wave q-guide wafer according to claim 4, wherein the step (c) The formed metal layer includes a layer and the top a nickel film having a thickness of 5 to 10 nm and a zinc film formed upward from the nickel film and having a thickness of 4 〇 5 5 Onm. 6. The metal diffusion type unipolar light according to claim 4 A method of manufacturing a waveguide wafer, wherein the step (d) is to leave a metal layer block having a shape corresponding to the waveguide pattern by a detachment technique. 7. The metal diffusion type single polarization according to claim 4 The method for manufacturing an optical waveguide wafer, wherein the electrode unit defined in the step (f) has an insulating layer formed of an insulating material on the top surface, and a conductive material is formed on the insulating layer and respectively corresponding to the insulating layer Parallel electrode blocks on either side of the waveguide channel. 17
TW97101998A 2008-01-18 2008-01-18 Metal-diffused single polarization light waveguide chip and manufacturing method thereof TW200933224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97101998A TW200933224A (en) 2008-01-18 2008-01-18 Metal-diffused single polarization light waveguide chip and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97101998A TW200933224A (en) 2008-01-18 2008-01-18 Metal-diffused single polarization light waveguide chip and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW200933224A true TW200933224A (en) 2009-08-01
TWI357511B TWI357511B (en) 2012-02-01

Family

ID=44865820

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97101998A TW200933224A (en) 2008-01-18 2008-01-18 Metal-diffused single polarization light waveguide chip and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW200933224A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI459110B (en) * 2011-03-02 2014-11-01 Univ Nat Taiwan Nonlinear optical crystal optical waveguide and method for manufacturing the same
TWI572917B (en) * 2013-02-04 2017-03-01 鴻海精密工業股份有限公司 Polarization splitter
TWI572913B (en) * 2012-11-29 2017-03-01 鴻海精密工業股份有限公司 Electro-optical modulator
CN110133802A (en) * 2019-06-13 2019-08-16 天津领芯科技发展有限公司 A kind of novel lithium niobate optical waveguide wafer and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI459110B (en) * 2011-03-02 2014-11-01 Univ Nat Taiwan Nonlinear optical crystal optical waveguide and method for manufacturing the same
TWI572913B (en) * 2012-11-29 2017-03-01 鴻海精密工業股份有限公司 Electro-optical modulator
TWI572917B (en) * 2013-02-04 2017-03-01 鴻海精密工業股份有限公司 Polarization splitter
CN110133802A (en) * 2019-06-13 2019-08-16 天津领芯科技发展有限公司 A kind of novel lithium niobate optical waveguide wafer and preparation method thereof

Also Published As

Publication number Publication date
TWI357511B (en) 2012-02-01

Similar Documents

Publication Publication Date Title
Su et al. Silicon photonic platform for passive waveguide devices: materials, fabrication, and applications
US20030031445A1 (en) Method and system for reducing dn/dt birefringence in a thermo-optic PLC device
Kiyat et al. Low-power thermooptical tuning of SOI resonator switch
EP3958032B1 (en) Athermal optical filter with active tuning and simplified control
JP5313198B2 (en) Waveguide polarizer
JPH04213406A (en) Lightguide tube and manufacture thereof
CN110568551A (en) Lithium niobate optical waveguide chip
Pernice et al. Design of a silicon integrated electro-optic modulator using ferroelectric BaTiO 3 films
US9354395B2 (en) Optical waveguide element and method of producing the same
CN107037532A (en) Long-period waveguide grating and waveguide preparation method, optical modulator and light modulating method
JP2007047326A (en) Thermo-optic optical modulator and optical circuit
Ren et al. Low power consumption 4-channel variable optical attenuator array based on planar lightwave circuit technique
Chen et al. Achieving higher modulation efficiency in electrooptic polymer modulator with slotted silicon waveguide
TW200933224A (en) Metal-diffused single polarization light waveguide chip and manufacturing method thereof
JP2000352633A (en) Optical waveguide, waveguide type optical device using same, and manufacture of the device
CN102132206B (en) There is the electrooptic modulator for alleviating DC bias drift of the bias electrode based on doped semiconductor Metal Contact
Yan et al. Efficient thermal tuning employing metallic microheater with slow-light effect
Ma et al. Compactly integrated polarization insensitive 24-channel variable optical attenuator arrays using silica-based
TW588167B (en) Polarization-insensitive planar lightwave circuits and method for fabricating the same
Chen et al. Lithium-Niobate Mach-Zehnder Interferometer With Enhanced Index Contrast by SiO 2 Film
Eldada et al. Rapid direct fabrication of active electro-optic modulators in GaAs
JP2963989B1 (en) Light modulator
Nedeljković Silicon photonic modulators for the mid-infrared
Ibrahim et al. A thermo-optic multimode interference switch structure based on vinyltriethoxysilane (VTES) hybrid organic–inorganic sol–gel
US20100092682A1 (en) Method for Fabricating a Heater Capable of Adjusting Refractive Index of an Optical Waveguide

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees