JPS58118609A - Production of optical waveguide - Google Patents

Production of optical waveguide

Info

Publication number
JPS58118609A
JPS58118609A JP57001315A JP131582A JPS58118609A JP S58118609 A JPS58118609 A JP S58118609A JP 57001315 A JP57001315 A JP 57001315A JP 131582 A JP131582 A JP 131582A JP S58118609 A JPS58118609 A JP S58118609A
Authority
JP
Japan
Prior art keywords
substrate
refractive index
optical waveguide
high refractive
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57001315A
Other languages
Japanese (ja)
Inventor
Kazuhisa Kaede
楓 和久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57001315A priority Critical patent/JPS58118609A/en
Publication of JPS58118609A publication Critical patent/JPS58118609A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • G02B6/1345Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using ion exchange

Abstract

PURPOSE:To make coupling of an optical waveguide to optical fibers with high efficiency possible by penetrating metallic ions into substrates of glass or the like to increase the refractive index thereof, and applying an electric field while heating a diffusion source and the substrates thereby decreasing optical guiding loss, making the waveguide stable thermally and mechanically, and making the section thereof roughly circular. CONSTITUTION:A diffusion preventing layer 2, a thin film layer 3 of silver and an anode electrode 4 consisting of chromium are vapor deposited on a glass substrate 1. A cathode electrode of aluminum is vacuum deposited on the opposite side thereof. The substrate 1 is heated and an electric field is applied thereto to ionize the silver of the layer 3 and to penetrate the same into the substrate, whereby a high refractive index part of a semicircular section is obtained. Further, a mixture of sodium nitrate and clay is kneaded into paste and the paste is coated on the substrate and is dried; thereafter, the substrate is dried and heated and an electric field is applied thereto to embed the part 7 into the substrate 1, whereby the high refractive index part 7' of roughly a circular sectional shape is obtained and said part is acted as an optical waveguide.

Description

【発明の詳細な説明】 本発明は基板に形成され次元導波路の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a dimensional waveguide formed in a substrate.

基板に形成された光導波路は、光回路の小形化、集積化
、また信頼性の向上を計る上で、重要な役割を果してい
る。この光導波路は、基本的には、比獣的高い屈折率t
−有するコア部が比較的低い屈折率′t−有するクラッ
ド部によって覆われた構造上とっている。従来、このよ
りな光導波路の製造方法として、高屈折率層を形成する
几めの金属イオンを基板の表面付近に拡散させて、光導
波W&ヲ形成する方法が知られている。しかし、この方
法では第1図に示すように、基板101に形成され次元
導波路102の断面形状が千円形になっているため、元
ファイバとの結合効率の低下を招くという欠点があっ友
。ま九、光導波Wr102t−伝搬する元のパワーが基
板1010表面付近に集中する九め、基板1010表面
に存在する傷や埃等の影響を受けて、散乱損失が大きく
なるという欠点があった。
Optical waveguides formed on substrates play an important role in reducing the size and integration of optical circuits and improving their reliability. This optical waveguide basically has an extremely high refractive index t
- A core portion having a relatively low refractive index 't- is covered by a cladding portion having a relatively low refractive index 't. Conventionally, as a method for manufacturing such a rigid optical waveguide, a method has been known in which a fine amount of metal ions forming a high refractive index layer is diffused near the surface of a substrate to form an optical waveguide W&W. However, as shown in FIG. 1, this method has the disadvantage that the cross-sectional shape of the dimensional waveguide 102 formed on the substrate 101 is a thousand circles, which leads to a decrease in the coupling efficiency with the original fiber. Also, the original power propagating through the optical waveguide Wr102t is concentrated near the surface of the substrate 1010, which is affected by scratches, dust, etc. on the surface of the substrate 1010, resulting in a large scattering loss.

本発明の目的は上記の欠点を除去し、元ファイバとの結
合効率が高く、また元の伝搬損失が小さい光導波路の製
造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing an optical waveguide that eliminates the above-mentioned drawbacks, has high coupling efficiency with the original fiber, and has low original propagation loss.

即ち、本発明は光学的に透明度の高い基板に、該基板に
浸透し九とき該基板の屈折率が高くなる第1の金属イオ
ンt−選択的に浸透させて高屈折率部を形成する第1の
工程と、前記基板の中に浸透したとき前記基板の屈折率
が前記高屈折率層の屈折率よシも小さくなる第2の金属
イオンを前記基板に浸透させることによシ前記高屈折率
部を前記基板の内部に埋め込む第2の工程とを含む光導
波路の製造方法において、前記第1の工程を経た基板の
前記高屈折率部が形成されている側の面の上に前記第2
の金属イオンを含む塩と粘土の混合物からなる前記i@
2の金属イオンの拡散源を設け、該拡散源及び前記基板
を加熱し、かつ前記塩を溶融状態にすると共に電界を印
加することによシ前記第2の金属イオンを前記基板に浸
透させて前記第2の工程を行なうこと全特徴とする光導
波路の製造方法である。
That is, the present invention provides a method of forming a high refractive index portion by selectively permeating a first metal ion, which permeates into the substrate and increases the refractive index of the substrate, into an optically transparent substrate. 1 and the high refractive index layer by infiltrating into the substrate a second metal ion which, when infiltrated into the substrate, makes the refractive index of the substrate smaller than the refractive index of the high refractive index layer. a second step of embedding a high refractive index portion inside the substrate; 2
The i@ consisting of a mixture of salt and clay containing metal ions of
A second metal ion diffusion source is provided, and the second metal ions are infiltrated into the substrate by heating the diffusion source and the substrate, melting the salt, and applying an electric field. The method for manufacturing an optical waveguide is characterized in that the second step is performed.

以下、本発明を図面を参照して詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第2図(a)〜(d)は本発明による光導波路の製造方
法の一実施例を示す工程図である。第2図(、l)に示
し次ように、まずBK7ガラスからなる基板lに、リフ
トオフ法によシバターンが形成されたアルミニウムから
なる拡散阻止層2と約1〜10μmの厚さの銀の薄膜層
3及びクロムからなる陽電極4を順次真空蒸着によシ形
成する。また前記基板1のこれらの拡散阻止層2.銀の
薄膜層3及び陽電極4が形成されていない側の面にアル
ミニウムからなる陰電極5を真空蒸着によシ形成する。
FIGS. 2(a) to 2(d) are process diagrams showing one embodiment of the method for manufacturing an optical waveguide according to the present invention. As shown in FIG. 2(, l), first, a diffusion blocking layer 2 made of aluminum with a shiva pattern formed thereon by a lift-off method and a thin film of silver with a thickness of about 1 to 10 μm are deposited on a substrate l made of BK7 glass. A layer 3 and a positive electrode 4 made of chromium are successively formed by vacuum evaporation. Moreover, these diffusion prevention layers 2. of the substrate 1. A negative electrode 5 made of aluminum is formed by vacuum evaporation on the side where the silver thin film layer 3 and the positive electrode 4 are not formed.

ここで、前記拡散阻止層2.銀の薄膜層3.陽電極4及
び陰電極5が形成された前記基板1’i、250℃〜5
50℃位のガラス歪温度以下に加熱器6t−用いて加熱
すると共に2〜300 V/smの電界を印加すること
によシ、前記銀の薄膜層3の銀をイオン化して前記基板
lの中に浸透させる。その結果、第2図(b)に示した
ように、前記基板1の表面付近には半円形状の断面をも
つ高屈折率部7が得られる。
Here, the diffusion prevention layer 2. Silver thin film layer 3. The substrate 1'i on which the positive electrode 4 and the negative electrode 5 are formed, 250 ° C. ~ 5
The silver in the silver thin film layer 3 is ionized by heating with a heater 6t to a temperature below the glass strain temperature of about 50° C. and applying an electric field of 2 to 300 V/sm. Let it penetrate inside. As a result, as shown in FIG. 2(b), a high refractive index portion 7 having a semicircular cross section is obtained near the surface of the substrate 1.

次に、前記拡散阻止層2.陽電極4及び陰電極5が除去
され表面が露出されている前記基板1の前記高屈折率部
7が形成され次面及び反対側の面の上に、硝酸す) I
Jウムと粘土の混合物を水によりペースト状にして塗布
する。これらは前記高屈折率部7が形成された側ではす
) IJウムイオンの拡散源8となシ、反対側の面では
前記基板1から移動してき九ナトリウムイオン等を吸収
するイオン吸収層9となる。さらに、前記拡散源8及び
イオン吸収層9の前記基板1とは反対の側にはそれぞれ
チタン板からなる陽極板10及び陰極板11t−設は念
後、前記拡散源8及びイオン吸収層9に含まれる水分を
除去して十分に乾燥させる。ここで、前記拡散源8及び
イオン吸収層9等が設けられた前記基板1t”、250
℃〜550℃位のガラス歪温度以下に加熱器6を用いて
加熱すると共に2〜300V/■の電界を印加して、溶
融状態となった前記硝酸ナトリウムのナトリウムイオン
金前記基板1の中に拡散させて前記高屈折率部7を前記
基板1の内部に埋め込む。ここで、前記拡散源81イオ
ン吸収層9.陽極板lO及び陰極板11t−除去すると
、前記埋め込みの結果として第2図(d)に示したよう
に、前記基板1の内部に埋め込まれたほぼ円形の断面形
状をもつ高屈折率部7′が得られる。
Next, the diffusion prevention layer 2. The high refractive index portion 7 of the substrate 1 from which the anode 4 and the cathode 5 have been removed and the surface has been exposed is coated with nitric acid on the next surface and the opposite surface.
A mixture of Jum and clay is made into a paste with water and applied. These serve as a diffusion source 8 for IJium ions (on the side where the high refractive index portion 7 is formed), and serve as an ion absorption layer 9 that absorbs sodium ions, etc. that have migrated from the substrate 1 on the opposite side. . Furthermore, an anode plate 10 and a cathode plate 11t each made of a titanium plate are installed on the opposite side of the diffusion source 8 and the ion absorption layer 9 from the substrate 1. Remove any moisture contained and dry thoroughly. Here, the substrate 1t'', 250
The sodium ion gold of the sodium nitrate in a molten state is heated using a heater 6 to a temperature below the glass strain temperature of approximately 550°C to 550°C, and an electric field of 2 to 300V/■ is applied to the substrate 1. The high refractive index portion 7 is embedded inside the substrate 1 by diffusion. Here, the diffusion source 81 ion absorption layer 9. When the anode plate lO and the cathode plate 11t are removed, as a result of the embedding, a high refractive index portion 7' having a substantially circular cross-sectional shape is embedded inside the substrate 1, as shown in FIG. 2(d). is obtained.

これが光導波路となる。This becomes an optical waveguide.

本実施例によシ得られt光導波路は、従来作られていた
半円形の−r面形状をもつ光導波路と比軟すると、はぼ
円形のm面形状をもつ几め元ファイバとの接続の際の結
合効率が高く、を次元導波路が基板の内部に埋め込まれ
ているため、基板表面の傷や埃等による散乱を受けに<
<、元の伝搬損失が小さいという点において優れている
The T optical waveguide obtained in this example is compared with the conventional optical waveguide having a semicircular −r plane shape. The coupling efficiency is high during the process, and since the dimensional waveguide is embedded inside the substrate, it is less susceptible to scattering caused by scratches, dust, etc. on the substrate surface.
<, is superior in that the original propagation loss is small.

以上、本発明の一実施例について述べた。ここで、第1
の金属イオンとして銀イオンを用い九が、タリウムイオ
ンやリチウムイオン等を用いてもよい。また第1の基板
に第1の遣属イオンを浸透させる方法としてドライプロ
セスを用い7’Cが、溶融塩中の金属イオンを基板に浸
透させるウエットプロセスを用いてもよい。さらに、埋
め込みの工程である第2の工程を行なう際に第2の金属
イオンとしてす) IJクムイオンを基板に浸透させ九
が、カリクムイオンなどその浸透部が$1の金属イオン
の浸透部の屈折率よシも小さくなる金属イオンであれば
よい。l?、イオン吸収層として硝酸ナトリウムと粘土
の混合物を用い九が、アルンニウムなどからなる金属薄
膜を用いてもよい。
An embodiment of the present invention has been described above. Here, the first
Although silver ions are used as the metal ions, thallium ions, lithium ions, etc. may also be used. Alternatively, a dry process may be used as a method for infiltrating the first ions into the first substrate, and a wet process may be used in which the metal ions in the molten salt are infiltrated into the substrate. Furthermore, when carrying out the second process, which is the embedding process, the IJ cum ions are infiltrated into the substrate. Any metal ion that is also small in size will suffice. l? Although a mixture of sodium nitrate and clay is used as the ion absorption layer, a metal thin film made of alumium or the like may also be used.

最後に本発明による製造方法を用いて作られた光導波路
の特徴を列挙すれば、断面形状がほぼ円形の光導波路が
得られる九め元ファイバとの接続の際の結合効率が良い
こと、得られ次元導波路は基板の内部に形成石れている
九め光導波損失が小さく、また熱的、機械的にも安定で
あること等である。
Finally, the characteristics of the optical waveguide manufactured using the manufacturing method according to the present invention are as follows: an optical waveguide with a substantially circular cross-section can be obtained; it has good coupling efficiency when connected to a nine-point fiber; The optical waveguide is formed inside the substrate, has low optical waveguide loss, and is thermally and mechanically stable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法によシ作られ次元導波路の断面図、第2
図(a)〜(d)は本発明による光導波路の製造方法の
一実Mガを示す工程図である。 101・・・・・・基板、102・・・・・・光導波路
、1・・・・・・基板、2・・・・・・拡散阻止層、3
・・・・・・絹の薄膜層、4・・・・・・陽電極、5・
・・・・・陰電極、6・・・・・・加熱器、7゜7′・
・・・・・高屈折率部、8・・・・・・拡散源、9・・
・・・・イオン吸収層、10・・・・・・陽極板、11
・・・・・・陰極板。 ’J−z (I
Figure 1 is a cross-sectional view of a dimensional waveguide made by the conventional method;
Figures (a) to (d) are process diagrams showing one example of the method for manufacturing an optical waveguide according to the present invention. 101...Substrate, 102...Optical waveguide, 1...Substrate, 2...Diffusion prevention layer, 3
... Thin film layer of silk, 4 ... Positive electrode, 5.
...Cathode, 6...Heater, 7゜7'・
...High refractive index section, 8... Diffusion source, 9...
... Ion absorption layer, 10 ... Anode plate, 11
...Cathode plate. 'J-z (I

Claims (1)

【特許請求の範囲】[Claims] 光学的に透明度の高い基板に、鉄基板に浸透したとき該
基板の屈折率が高くなる第1の金属イオンt−選択的に
浸透させて高屈折率部全形成する第1の工程と、前記基
板の中に浸透し九とき前記基板の屈折率が前記高屈折率
部の屈折率よシも小さくなる第2の金属イオンを前記基
板に浸透させることによプ前記高屈折率部金前記基板の
内部に埋め込む第2の工程とを含む光導波路の製造方法
において、前記第1の工程を経た基板の前記高屈折率部
が形成されている側の面の上に前記第2の金属イオン金
倉む塩と粘土の混合物からなる前記第2の金属イオンの
拡散源を設け、該拡散源及び前記基板を加熱し、かつ前
記塩を溶融状態にすると共に電界を印加することによシ
前記第2の金属イオ/を前記基板に浸透させて前記第2
の工程を行なうことを特徴とする光導波路の製造方法。
a first step of selectively infiltrating into a highly optically transparent substrate a first metal ion that increases the refractive index of the substrate when infiltrated into the iron substrate to form the entire high refractive index portion; By infiltrating the substrate with second metal ions, the refractive index of the substrate becomes smaller than the refractive index of the high refractive index portion. a second step of embedding the second metal ion into the inside of the substrate, the second metal ion gold plate is placed on the surface of the substrate that has undergone the first step on the side where the high refractive index portion is formed; the second metal ion diffusion source made of a mixture of salt and clay, heating the diffusion source and the substrate, melting the salt, and applying an electric field. of metal ions permeate into the substrate to form the second
1. A method for manufacturing an optical waveguide, comprising the steps of:
JP57001315A 1982-01-07 1982-01-07 Production of optical waveguide Pending JPS58118609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57001315A JPS58118609A (en) 1982-01-07 1982-01-07 Production of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57001315A JPS58118609A (en) 1982-01-07 1982-01-07 Production of optical waveguide

Publications (1)

Publication Number Publication Date
JPS58118609A true JPS58118609A (en) 1983-07-14

Family

ID=11498061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57001315A Pending JPS58118609A (en) 1982-01-07 1982-01-07 Production of optical waveguide

Country Status (1)

Country Link
JP (1) JPS58118609A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341406A (en) * 1989-07-07 1991-02-21 Hoya Corp Production of optical waveguide
CN106291816A (en) * 2015-05-12 2017-01-04 中兴通讯股份有限公司 A kind of method improving glass based optical waveguide chip uniformity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341406A (en) * 1989-07-07 1991-02-21 Hoya Corp Production of optical waveguide
CN106291816A (en) * 2015-05-12 2017-01-04 中兴通讯股份有限公司 A kind of method improving glass based optical waveguide chip uniformity
CN106291816B (en) * 2015-05-12 2019-07-26 中兴通讯股份有限公司 A method of improving glass based optical waveguide chip uniformity

Similar Documents

Publication Publication Date Title
US3880630A (en) Method for forming optical waveguides
JPS6160401B2 (en)
JPS58118609A (en) Production of optical waveguide
JPS6112241B2 (en)
JPS58134609A (en) Production of optical waveguide
JPH02440Y2 (en)
JP2672662B2 (en) Manufacturing method of optical waveguide
JPS58118606A (en) Production of optical waveguide
US4136212A (en) Method for the production of light conductor structures with interlaying electrodes
JPH1039151A (en) Optical waveguide and its production
JPS5879203A (en) Production of optical waveguide
JPS6066210A (en) Production of optical waveguide
JPS58134610A (en) Production of optical waveguide
JPS58118608A (en) Production of optical waveguide
JPS5897005A (en) Production of optical waveguide
JPS58209709A (en) Star coupler for multimode optical fiber and its manufacture
JPS58118607A (en) Production of optical waveguide
JPH0350241B2 (en)
JPH0214300B2 (en)
JPS5897006A (en) Production of optical waveguide
JPH0531123B2 (en)
JPS60177304A (en) Optical attenuator
JPH0251446A (en) Preparation of optical wave guide
JPS6012515A (en) Manufacture of optical waveguide circuit
RU2073659C1 (en) Method for manufacturing of integral microlenses