JPS58118606A - Production of optical waveguide - Google Patents

Production of optical waveguide

Info

Publication number
JPS58118606A
JPS58118606A JP57001312A JP131282A JPS58118606A JP S58118606 A JPS58118606 A JP S58118606A JP 57001312 A JP57001312 A JP 57001312A JP 131282 A JP131282 A JP 131282A JP S58118606 A JPS58118606 A JP S58118606A
Authority
JP
Japan
Prior art keywords
substrate
refractive index
optical waveguide
high refractive
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57001312A
Other languages
Japanese (ja)
Inventor
Kazuhisa Kaede
楓 和久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57001312A priority Critical patent/JPS58118606A/en
Publication of JPS58118606A publication Critical patent/JPS58118606A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • G02B6/1345Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using ion exchange

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To make an optical waveguide stable thermally and mechanically and low in loss and to improve the coupling efficiency thereof to optical fibers by forming said waveguide into a sectional shape of roughly a circular shape. CONSTITUTION:When a substrate 4 provided with a thin film layer 1 of aluminum, a thin film layer 2 of silver, an anode electrode 3 consisting of chromium and a cathode electrode 3' of aluminum by vacuum deposition is heated to glass deforming temp. or below with a heater 5 and the respective electrodes are removed after applying an electric field thereto the diffuse silver ions into the substrate 4, a high refractive index part 6 having a section of a semicircular shape is formed in the substrate 4. The substrate 4, and a substrate 7 contg. a thin film layer 9 of silver and an anode electrode 10 consisting of chromium are press stuck by using jigs 8 for press sticking in such a way that the cathode 10 and the anode 10 are located mutually on the outer sides. Both substrates are heated, and an electric field is applied thereto to force the part 6 into the substrate 4. At the same time, the silver of the layer 9 is ionized and is penetrated into the substrate 7. As a result, the high refractive index part 6' having a sectional shape of a roughly circular shape is obtained in the substrate 4, and said part acts as an optical waveguide.

Description

【発明の詳細な説明】 本発明は基板に形成された先導波路の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a guiding waveguide formed on a substrate.

基板に形成された光導波路は、光回路の小形化、集積化
、また信頼性の向上等を計る上で重要な役割を果してい
る。この先導波路は、基1本的には、比較的高い屈折率
を有するコア部が比較的低い屈折率を有するクラッド部
によって覆われた構造をとっている。従来このような光
導波路の製造方法として、高屈折率層を形成するための
金属イオンを基板に拡散させる工程だけで光導波路を形
成する方法が知られている。しかし、この方法では、第
1図に示すように、基板11に形成された光導波路12
の断面形状が半円形になっているため、光ファイバとの
結合効率が低いという欠点があった。
Optical waveguides formed on substrates play an important role in making optical circuits smaller, more integrated, and improving reliability. This guiding waveguide basically has a structure in which a core portion having a relatively high refractive index is covered with a cladding portion having a relatively low refractive index. Conventionally, as a method for manufacturing such an optical waveguide, a method is known in which an optical waveguide is formed only by a step of diffusing metal ions for forming a high refractive index layer into a substrate. However, in this method, as shown in FIG.
Since the cross-sectional shape of the optical fiber is semicircular, the coupling efficiency with the optical fiber is low.

本発明の目的は、上記の欠点を除去し、光ファイバとの
結合効率の高い光導波路の製造方法を提供するととくあ
る。
An object of the present invention is to eliminate the above-mentioned drawbacks and provide a method for manufacturing an optical waveguide with high coupling efficiency with an optical fiber.

本発明によれば、ガラスよシなるI!1の基板に、該第
1の基板に浸透したとき該第1の基板の屈折率が高くな
る金属イオンを選択的に浸透させて高屈折率部を形成す
る第1の工程と、前記1J1の工程を経た前記!!1の
基板の前記高屈折率部が形成された側に、ガラスよシな
る第2の基板を圧着させる第2の工程と、前記第2の基
板に含まれる修飾酸化物の陽イオンを拡散源として該陽
イオンを前記第1の基板に浸透させる電界拡散を行なう
ことによシ前記第1の基板に形成した前記高屈折率部を
前記!J1の基板の内部に埋め込む第3の工程とを含む
光導波路の製造方法が得られる。
According to the present invention, I! a first step of forming a high refractive index portion by selectively infiltrating the first substrate with metal ions that increase the refractive index of the first substrate when permeated into the first substrate; The above process has been completed! ! a second step of press-bonding a second substrate made of glass to the side of the first substrate on which the high refractive index portion is formed; The high refractive index portion formed on the first substrate is formed by performing electric field diffusion to cause the cations to permeate into the first substrate. A method for manufacturing an optical waveguide is obtained, which includes a third step of embedding the optical waveguide inside the substrate J1.

以下、本発明を図面を参照して詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

W&2図(a)〜(d)は本発明による光導波路の製造
方法の一実施例を示す工程図である。第2図(31)に
示したように、まずリフトオフ法によりパターンが形成
されたアルミニウムの薄膜層1と約1〜10μ調の厚さ
の銀の薄膜層2とクロムからなる陽電極3及びアルミニ
ウムからなる陰電極3′とが、順次真空蒸着により設け
られた厚さ1〜3sllのBK7ガラスからなる第1の
基板4を、250°C〜550°C位のガラス歪温度以
下に加熱器5を用いて加熱すると共に、2〜300V/
smの電界を印加して銀イオンを前記第1の基板4の中
に拡散させる。拡散後、アルミニウムの薄膜層1、陽電
極3及び陰電極3′等を除去する。前記I81の基板4
には、拡散の結果として、W&2図(b)に示したよう
に、半円形状の断面をもつ高屈折率部6が形成されてい
る。
W&2 Figures (a) to (d) are process diagrams showing one embodiment of the method for manufacturing an optical waveguide according to the present invention. As shown in FIG. 2 (31), first, an aluminum thin film layer 1 with a pattern formed by a lift-off method, a silver thin film layer 2 with a thickness of about 1 to 10 μm, a positive electrode 3 made of chromium, and an aluminum A first substrate 4 made of BK7 glass with a thickness of 1 to 3 sll, on which a cathode 3' consisting of 2 to 300V/
An electric field of sm is applied to diffuse silver ions into the first substrate 4. After the diffusion, the aluminum thin film layer 1, the positive electrode 3, the negative electrode 3', etc. are removed. Board 4 of said I81
As a result of diffusion, a high refractive index portion 6 having a semicircular cross section is formed as shown in Figure W&2 (b).

次に、第2図(C)に示したように、アルミニウムから
なる陰電極10を前記高屈折率部6が形成されていない
側に真空蒸着によシ新たに形成した前記第1の基板4と
、厚さ1〜3flのBK7ガラスからなり、かつその一
方の側に約1〜10μ鯛の厚さの銀の薄膜層9及びクロ
ムからなる陽電極10’を順次真空蒸着によシ形成し九
第2の基板7とを、圧着用治具8を用いて前記陰電極1
0と前記陽電極10′とが互いに外側になるように圧着
し、250°C〜550°C位のガラス歪温度以下に加
熱器5を用いて加熱すると共に、2〜300V/−の電
界を印加することによシ前記第2の基板7に含まれる修
飾酸化物の陽イオンであるナトリウムイオンやカリウム
イオン等を前記第1の基板4に浸透させて、前記第1の
基板4の中に形成されている前記高屈折率部6を前記第
1の基板4の内部に押し込む、このとき、同時に前記銀
の薄膜層9の銀がイオン化され前記第2の基板に浸透す
る。その結果、第2図(dlK示したように、前記第1
の基板4の内部にほぼ円形の断面形状をもつ高屈折率部
6′が得られる。これが光導波路と々る。
Next, as shown in FIG. 2(C), a cathode 10 made of aluminum is newly formed on the side where the high refractive index portion 6 is not formed by vacuum evaporation on the first substrate 4. and a positive electrode 10' made of BK7 glass with a thickness of 1 to 3 fl, and on one side thereof a thin film layer 9 of silver with a thickness of about 1 to 10 μm and a positive electrode 10' made of chromium are sequentially formed by vacuum evaporation. 9. The second substrate 7 is attached to the negative electrode 1 using a crimping jig 8.
0 and the positive electrode 10' are pressed together so that they are on the outside of each other, and are heated using a heater 5 to below the glass strain temperature of about 250°C to 550°C, and an electric field of 2 to 300 V/- is applied. By applying the voltage, sodium ions, potassium ions, etc., which are cations of the modified oxide contained in the second substrate 7, are allowed to permeate into the first substrate 4. The formed high refractive index portion 6 is pushed into the first substrate 4. At this time, at the same time, the silver in the silver thin film layer 9 is ionized and permeates into the second substrate. As a result, as shown in Figure 2 (dlK), the first
A high refractive index portion 6' having a substantially circular cross-sectional shape is obtained inside the substrate 4. This leads to the optical waveguide.

本実施例によシ得られた光導波路は、#1ぼ円形の断面
形状をもつため、従来作られていた半円形の断面形状を
もつ光導波路に較べて、光ファイバとの接続の際の結合
効率の点において優れている。
Since the optical waveguide obtained in this example has a #1 approximately circular cross-sectional shape, it is easier to connect to an optical fiber than a conventionally produced optical waveguide with a semicircular cross-sectional shape. Excellent in terms of coupling efficiency.

以上、本発明の一実施例について述べた。ここで、本実
施例において金属イオンとして銀イオンを用いたが、タ
リウムイオンやリチウムイオン等を用いてもよい。また
、ガラスとしてBK7ガラスを用いたが、ソーダライム
ガラス等を用いてもよい。
An embodiment of the present invention has been described above. Here, although silver ions were used as metal ions in this example, thallium ions, lithium ions, etc. may also be used. Further, although BK7 glass was used as the glass, soda lime glass or the like may also be used.

最後に1本発明による製造方法を用いて作られた光導波
路の特徴を列挙すれば、断面形状がほぼ円形に近い光導
波路が得られるため、光ファイバとの接続の際の結合効
率が良いこと、形成され走光導波路は基板の内部に形成
されているため、光導波損失が小さく、熱的、機械的に
も安定であること等である。
Finally, to enumerate the characteristics of the optical waveguide made using the manufacturing method according to the present invention, it is possible to obtain an optical waveguide with a nearly circular cross-sectional shape, so that the coupling efficiency when connecting with an optical fiber is good. Since the formed optical waveguide is formed inside the substrate, the optical waveguide loss is small and it is thermally and mechanically stable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法によシ作られ走光導波路の断面図、第2
図(al〜(d)は本発明による光導波路の製造方法の
一実施例を示す工程図である。 11・・・・・・基板、12・・・・・・光導波路、1
・・・・・・アルミニウムの薄膜層、2・・・・・・銀
の薄膜層、3・・・・・・陽電極、3′・・・・・・陰
電極、4・・・・・・基板、5・・・・・・加熱器、6
・・・・・・高屈折率部、7・・・・・・基板、8・・
・・・・圧着用治具、9・・・・・・嫁の薄膜層、10
・・・・・・陰電極、10′・・・・・・陽電極。 半1反 メ を
Figure 1 is a cross-sectional view of a light traveling waveguide made by the conventional method;
Figures (al to (d)) are process diagrams showing an example of the method for manufacturing an optical waveguide according to the present invention. 11... Substrate, 12... Optical waveguide, 1
...Aluminum thin film layer, 2...Silver thin film layer, 3...Positive electrode, 3'...Nathode, 4...・Substrate, 5... Heater, 6
...High refractive index section, 7...Substrate, 8...
...Jig for crimping, 9... Thin film layer of bride, 10
......Cathode electrode, 10'...Positive electrode. half a game

Claims (2)

【特許請求の範囲】[Claims] (1)ガラスよυなるIllの基板に、該第1の基板に
浸透したとき#第1の基板の屈折率が高くなる金属イオ
ンを選択的に浸透させて高屈折率部を形成する第1の工
程と、前記第1の工程を経た前記I!1の基板の前記高
屈折率部が形成された側に、ガラスよシなる1g2の基
板を圧着させる第2の工程と、前記第2の基板に含まれ
る修飾酸化物の陽イオンを拡散源として咳陽イオンを前
記第1の基板に浸透させる電界拡散を行なうことにより
前記@1の基板に形成した前記高屈折率部を前記I81
の基板の内部に埋め込む第3の工程とを含む光導波路の
製造方法。
(1) A first step in which a high refractive index portion is formed by selectively permeating a metal ion, which increases the refractive index of the first substrate when permeated into the first substrate, into a substrate of Ill such as glass. and the above-mentioned I! which has undergone the above-mentioned first step. A second step of press-bonding a 1g2 substrate made of glass to the side of the first substrate on which the high refractive index portion is formed, and using cations of the modified oxide contained in the second substrate as a diffusion source. The high refractive index portion formed on the substrate @1 by performing electric field diffusion to permeate cough cations into the first substrate is
a third step of embedding the optical waveguide inside the substrate.
(2)前記$2の工程以前に前記第2の基板の前記第1
の基板とは接しない側に少なくとも一種類の金属を含む
薄膜層を形成して、前記第2の工程を行なった後前記第
3の工程において前記金属の金属イオンを前記WjI2
の基板に浸透させる工程を同時に行なうことを特徴とす
る特許請求の範囲第1項記載の先導波路の製造方法。
(2) Before the step of $2, the first
After forming a thin film layer containing at least one kind of metal on the side not in contact with the substrate and performing the second step, metal ions of the metal are added to the WjI2 in the third step.
2. The method of manufacturing a guiding waveguide according to claim 1, wherein the step of infiltrating into the substrate is performed simultaneously.
JP57001312A 1982-01-07 1982-01-07 Production of optical waveguide Pending JPS58118606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57001312A JPS58118606A (en) 1982-01-07 1982-01-07 Production of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57001312A JPS58118606A (en) 1982-01-07 1982-01-07 Production of optical waveguide

Publications (1)

Publication Number Publication Date
JPS58118606A true JPS58118606A (en) 1983-07-14

Family

ID=11497978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57001312A Pending JPS58118606A (en) 1982-01-07 1982-01-07 Production of optical waveguide

Country Status (1)

Country Link
JP (1) JPS58118606A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134731A (en) * 1984-12-06 1986-06-21 Nec Corp Production of optical control circuit
US5366655A (en) * 1990-11-21 1994-11-22 Kao Corporation Stable sodium percarbonate particle and process for preparing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134731A (en) * 1984-12-06 1986-06-21 Nec Corp Production of optical control circuit
US5366655A (en) * 1990-11-21 1994-11-22 Kao Corporation Stable sodium percarbonate particle and process for preparing same

Similar Documents

Publication Publication Date Title
US6996324B2 (en) Optical waveguide and method for fabricating the same
JPH04234005A (en) Manufacture of lightguide tube by ion exchange method
US4647147A (en) Fiber optic to integrated optical chip coupler
JP2000147292A (en) Manufacture of grating in waveguide
US4021216A (en) Method for making strip microchannel electron multiplier array
JPS58118606A (en) Production of optical waveguide
JPS6160401B2 (en)
JPS58118607A (en) Production of optical waveguide
US5708750A (en) Manufacture of a buried wave guide at several burying depths
JPS58134609A (en) Production of optical waveguide
JPS58118609A (en) Production of optical waveguide
JPH0140324B2 (en)
JPS58134610A (en) Production of optical waveguide
JPS58118608A (en) Production of optical waveguide
JPH0244041B2 (en)
JPS57176005A (en) Manufacture of optical waveguide circuit
JPS5879203A (en) Production of optical waveguide
JPS5921522B2 (en) Terminal treatment method for plastic-clad optical fiber
JPS59116705A (en) Optical mixing coupler and its production
JPH0350241B2 (en)
JPS5897005A (en) Production of optical waveguide
JPH0210783B2 (en)
CN212846018U (en) Ion exchange glass-based buried sectional type spot size converter
JPH02262110A (en) Production of flush type optical waveguide
JPS6152605A (en) Optical demultiplexer and its manufacture