JPS5896841A - Multicomponent titanium alloy for occluding hydrogen - Google Patents

Multicomponent titanium alloy for occluding hydrogen

Info

Publication number
JPS5896841A
JPS5896841A JP56196008A JP19600881A JPS5896841A JP S5896841 A JPS5896841 A JP S5896841A JP 56196008 A JP56196008 A JP 56196008A JP 19600881 A JP19600881 A JP 19600881A JP S5896841 A JPS5896841 A JP S5896841A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
hydrogen storage
pressure
release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56196008A
Other languages
Japanese (ja)
Other versions
JPS597772B2 (en
Inventor
Yasuaki Osumi
大角 泰章
Hiroshi Suzuki
博 鈴木
Akihiko Kato
明彦 加藤
Keisuke Oguro
小黒 啓介
Haruhiro Tanaka
田中 治尋
Yoshio Imamura
今村 嘉男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Toyobo Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Toyobo Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP56196008A priority Critical patent/JPS597772B2/en
Publication of JPS5896841A publication Critical patent/JPS5896841A/en
Publication of JPS597772B2 publication Critical patent/JPS597772B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To obtain a hydrogen occluding alloy which occludes a large amount of hydrogen and releases it easily by blending Ti, Fe and Ni as basic components with adequate amounts of specified metallic elements. CONSTITUTION:This multicomponent Ti alloy for occluding hydrogen is represented by a formula TiFe1-xNiyAzBa [where A is Nb, V or Zr, B is Al, Nb, Cr, Co, Mn, Mo, V, Zr or a rare earth element, x=0.01-0.3, y=0.01-0.3, z= 0.01-0.2, a <=0.2 (anot equal to 0), 1.0 <=(1-x+Y+z+a) <=1.2, and A and B are different elements at all times]. Ti, Fe, Ni and the elements A, B are weighed, mixed and press-molded into an arbitrary shape, and the molded body is put in an arc melting furnace and melted by heating in an inert atmosphere. Thus, the desired alloy can be manufactured easily.

Description

【発明の詳細な説明】 本発明はチタン多元系の水素吸蔵用合金に関し、詳11
には水素による活性化が極めて容重で水素化物の形態で
多量の水素を@mlでき、しかも水素の吸蔵圧と放出圧
の差即ち把ステリVスが極めて小さく、わずかの加熱で
審晶且つすみやかに水素を放出するチタン多元系水素吸
蔵用合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a titanium multi-component hydrogen storage alloy.
Activation by hydrogen is extremely bulky, and a large amount of hydrogen can be produced in the form of hydride @ml, and the difference between the hydrogen storage pressure and release pressure, that is, the hydrogen gas, is extremely small, and it can be activated and quickly activated with a small amount of heating. This invention relates to a titanium multi-component hydrogen storage alloy that releases hydrogen.

水素は資源的な制限がなくクリーンであること、輸送及
び貯蔵が春品であゐこと等の環内から、化石燃料に代る
新しい工率ルギー源として注141れている。
Hydrogen is regarded as a new energy source to replace fossil fuels because it is clean, has no resource limitations, and can be transported and stored as a commodity.

しかし水素は常温で気体であシ、シかも液化温度が檀め
て低いから、その貯蔵技術の開発が重要となぁ、この貯
蔵法としては、水素を金属に吸蔵させ金属水素化物とし
て貯蔵する方法が最近注目を集めている。また金属によ
る水素の吸蔵・放出反応は可逆的であり、反応に伴って
相当量の反応熱が発生し或いは吸収されること、及び水
素の吸蔵・放出圧力が温度に依存すること、を利用して
、冷暖戻装置中熱工車ルイーー圧力(機械)エネルギー
変換装置等への応用研究も進められている。
However, since hydrogen is a gas at room temperature and its liquefaction temperature is very low, it is important to develop a storage technology for it.This storage method involves storing hydrogen in a metal and storing it as a metal hydride. has been attracting attention recently. In addition, the hydrogen absorption/release reaction by metals is reversible, and a considerable amount of reaction heat is generated or absorbed during the reaction, and the hydrogen absorption/release pressure depends on temperature. Research is also progressing on the application of this technology to cooling/heating return equipment, internal heat engineering vehicles, pressure (mechanical) energy conversion equipment, etc.

この様な水素吸蔵材料に要求される性質としては、■安
価で資源的に豊富であること、■活性化が容品で水素吸
蔵量が大きいこと、■室温付近でj@な水素吸蔵・放出
平衡圧を有し、@蔵・放出のヒステリレスが小さいこと
、■水素吸蔵・放出反応が可逆的であシその速度が大龜
いこと、等が挙げられる。
The properties required of such a hydrogen storage material are: ■ being inexpensive and abundant in terms of resources, ■ being able to be activated and having a large amount of hydrogen storage, and ■ being able to absorb and release hydrogen at around room temperature. It has an equilibrium pressure, has low hysteria during storage and release, and 2) hydrogen storage and release reactions are reversible and have a high speed.

とζろでこの種の水素吸蔵材料としては例えばL鳳Nl
、十F@Ti等が知られており、これらの合金は水素の
吸蔵・放出反応が可逆的であシ水嵩I!11iIIkも
大きいが、水素@蔵・放出反応の適度が遁〈且つ活性化
が容品とは言えず、しかもヒステ98/スが大きい等の
欠点が69、実用上の大きな問題とされてい友。
For example, as this type of hydrogen storage material, L-Nl is used.
, 10F@Ti, etc. are known, and these alloys have reversible hydrogen absorption and release reactions. Although 11iIIk is also large, it has drawbacks such as a moderate hydrogen storage and release reaction, a less than satisfactory activation, and a large hysteresis ratio69, which is considered a major practical problem.

本発明看等は上記の様な事情に着目し、従来の水素吸蔵
用合金の有する特長を保留しつつ前述の様な欠点を解消
すべく研究を進めてきた。その結果、TI 、IF−及
びNlをベース合金組成としこれに特定の金属元素を適
量配合すれば、上記の目的にかなう優れた水素吸蔵特性
の合金が得られることを知シ、蝕に本発明を完成した。
The inventors of the present invention have focused on the above-mentioned circumstances and have conducted research to eliminate the above-mentioned drawbacks while retaining the features of conventional hydrogen storage alloys. As a result, it was discovered that by using a base alloy composition of TI, IF-, and Nl and adding appropriate amounts of specific metal elements to it, an alloy with excellent hydrogen storage properties that meets the above objectives can be obtained, and the present invention was based on this knowledge. completed.

即ち本発明は、一般式がT I F @ 1− x N
 ’ yAzBaで示されるチタン多元系水素吸蔵用合
金に関するもので、式中AはNb、V及びzrから元素
を示し、xtxo、01NO,8* ymo、01 〜
0.81 geeo、01〜0.1! l l≦0.2
(但し0は除く)で且つ1.0≦t−x+y十露+1≦
1.!であや、しかもAとBとは常に異なる元素である
ことを満足する様に調整したところに要旨が存在する。
That is, in the present invention, the general formula is T IF @ 1- x N
' This relates to a titanium multi-component hydrogen storage alloy represented by yAzBa, where A represents an element from Nb, V and zr, xtxo, 01NO, 8*ymo, 01 ~
0.81 geeo, 01~0.1! l l≦0.2
(However, 0 is excluded) and 1.0≦t-x+y10 dew+1≦
1. ! Moreover, the gist lies in the fact that it is adjusted to satisfy the fact that A and B are always different elements.

一般1(TiFlF−又はN量とC,C4型の立方晶を
形成してT(F@ 、TlN1或いはTjF・トdNi
d等の金属間化合物となり、水素吸蔵材料を脅揮するこ
とが確gされている。しかしながらこれらの合金は、何
れも活性化の為K11m、高圧を要すると共に水素純度
の影響を受は易く、しかも水素吸蔵圧と水m*出圧の差
即ちヒステリレスが大きい1例えばT IF @ o、
 s N l o、 $!の合金では、水素吸蔵圧が1
60℃で約80気圧であるのに対し水素放出圧は約4気
圧であり、ヒステリレスは約26気圧もある。その為水
素の吸蔵・放出を行なうに当っては、水素吸蔵用合金又
はその金属水素化物を大きな温度差で加熱又は冷却する
か、或いは大きな圧力差で水素加圧又は減圧を行なわな
ければならず、せっかくの水素貯蔵能力や水素化反応熱
も有効に活用することができない。
General 1 (TiFlF- or by forming a C, C4 type cubic crystal with the amount of N)
It has been confirmed that it forms intermetallic compounds such as d, which threatens hydrogen storage materials. However, all of these alloys require K11m and high pressure for activation, are easily affected by hydrogen purity, and have a large difference between hydrogen storage pressure and water m*output pressure, that is, hysteresis.1For example, T IF @ o,
s N lo, $! In the alloy, the hydrogen storage pressure is 1
While it is about 80 atm at 60°C, the hydrogen release pressure is about 4 atm, and the hysteresis is about 26 atm. Therefore, when storing and releasing hydrogen, it is necessary to heat or cool the hydrogen storage alloy or its metal hydride with a large temperature difference, or to pressurize or depressurize hydrogen with a large pressure difference. , the precious hydrogen storage capacity and hydrogenation reaction heat cannot be used effectively.

ところが上記T i F @ 1 ++ a Nt d
の一部を前記金属A及びBで置換したり或いはA及びB
を追加すると、水素による活性化が極めて容易となり、
しかもヒステリVXt−大幅に減少させることが分かつ
九、即ち本発明の水素吸蔵用合金は、TI。
However, the above T i F @ 1 ++ a Nt d
or by replacing a part of the metals A and B with the metals A and B, or
By adding , activation by hydrogen becomes extremely easy,
Furthermore, it has been found that hysteria VXt can be significantly reduced, that is, the hydrogen storage alloy of the present invention is TI.

1・及びMlよ抄なる三元系合金′に前記金11A及び
Bを置換的若しくは追加的に配合したもので、TiF・
1−xNl、A、B、の一般式で表わすことができる。
It is a ternary alloy consisting of TiF.
It can be represented by the general formula 1-xNl, A, B.

但し式中!は0.01〜0.8、yは0.01〜0.8
.1冨0゜01〜0.2、a≦0.2COを除く)であ
り、これらは1.0≦(1−x+Y+s+a  )≦1
.2の関係を満足するものとする。ζこで!又はyが0
.8を越えると吸蔵水素の放出が困難になシ、高温加熱
或いは真空加熱(又は若干の減圧加熱)の条件下でなけ
ればスムーズな放出が行なわれなくなる。i九2もしく
は楓が0.1を越えると合金の水素吸蔵量が減少し九如
水素吸蔵・放出圧曲線のプツト−域が2段状になる傾向
が現われる。i九冨もしくは烏はyより%小さいことが
好ましく、Xコ1であるときの舅もしくはaの好ましい
範囲はOJ以下(但しOは除く)の範囲である。
However, during the ceremony! is 0.01-0.8, y is 0.01-0.8
.. 1.0゜0.01~0.2, excluding a≦0.2CO), and these are 1.0≦(1-x+Y+s+a)≦1
.. It is assumed that relationship 2 is satisfied. ζ Here! or y is 0
.. If it exceeds 8, it will be difficult to release the occluded hydrogen, and smooth release will not be possible unless under high temperature heating or vacuum heating (or slightly reduced pressure heating) conditions. When i92 or Kaede exceeds 0.1, the hydrogen storage capacity of the alloy decreases, and the putative region of the hydrogen absorption/release pressure curve tends to become two-staged. It is preferable that iKutomi or Karasu is % smaller than y, and when X is 1, the preferable range of 腈 or a is below OJ (however, O is excluded).

上記” + F * ’l t aの好適範囲から、T
IF@1−4N這4合金の一部を金属ム及びBで置換す
る場合aTIF*1−xNl、A、B、において!ff
(F十冨十暑)、y≧冨十aの関係が成立し、(1−菫
+y+l+I )g+1となる。ま九T j F @ 
t −4N S a合金に金属人及びB¥を添加する場
合は、TIF・1−8Nl 、A、B、においてX冨Y
 e F≧冨+麿の関係が成立し、冨+易≦0.2(但
しOは除く)であり、を九X工y−4−g 、 x≧1
の関係も成立し、畠≦0.2(但しOは除く)であるか
ら、これらの関係は1.0<(1−x+y+富+m)≦
1.!となる。
From the preferred range of “+F*’l t a” above, T
When replacing part of the IF@1-4N alloy with metal and B, aTIF*1-xNl, A, B,! ff
(F1000 heat), the relationship y≧10a is established, and (1-violet+y+l+I)g+1. Maku T j F @
When adding metal and B to t-4N S a alloy, TIF・1-8Nl, A, B,
e The relationship of F≧Fuji + Maro is established, and Fuku + Eki≦0.2 (however, O is excluded), and 9X work y-4-g, x≧1
The relationship also holds true, and Hatake≦0.2 (excluding O), so these relationships are 1.0<(1-x+y+wealth+m)≦
1. ! becomes.

尚上記では全属人を置換的に加える場合と追加的に加え
る場合の典型的な例を示したが、これらの両者にまたが
る範囲で全属人を加えることも勿論可能である。
Although typical examples of cases in which all subordinates are added as replacements and additionally added are shown above, it is of course possible to add all subordinates in a range that spans both of these.

このようにT I F @ 1 + d ” d合金に
適量の金属A及びBを加えることによって合金の活性化
が極めて容易となる0例えば’r1y@、8Ni。、2
合金は水素圧20 Kv’am  、 28℃での水素
化反応時間がtooo分であるものが、TiF・0.1
1”0.1!ivO,05NbO,088合金は80分
となシ、水素化反応時間はペース合金の約〜。以下に短
縮され、活性化が極めて容易となる。しかも、r1ir
@o、gNjo、g合金では、水素吸蔵圧が150気圧
で約80気圧であるのに対し水素放出圧は約4気圧であ
シ、ヒステリシスは約26気圧もある。その為水素の吸
蔵、放出を行うに肖っては、水素吸蔵用合金又はその金
属水素化物を大きな温度差で加熱又は冷却するか、或い
は大きな圧力差で水素加圧又は減圧を行なわなければな
らず、せっかくの水素貯蔵能力中水素化反応熱も有効に
活用することができない、しかし、””0.8”0.1
6VO,05Nb0.066合金はヒステリシスが約1
0気圧とな9、ヒステリVスはベース合金の4以下に低
減する。
In this way, by adding appropriate amounts of metals A and B to the T I F @ 1 + d ” d alloy, activation of the alloy becomes extremely easy. For example, 'r1y@, 8Ni., 2
The alloy has a hydrogen pressure of 20 Kv'am and a hydrogenation reaction time of too many minutes at 28°C.
1" 0.1!ivO, 05NbO, 088 alloy is 80 minutes, and the hydrogenation reaction time is about 10 minutes for the pace alloy. It is shortened to less than 80 minutes, and activation is extremely easy. Moreover, r1ir
In the @o, gNjo, and g alloys, the hydrogen storage pressure is 150 atm and about 80 atm, whereas the hydrogen release pressure is about 4 atm, and the hysteresis is about 26 atm. Therefore, in order to store and release hydrogen, it is necessary to heat or cool the hydrogen storage alloy or its metal hydride with a large temperature difference, or to pressurize or depressurize hydrogen with a large pressure difference. However, the heat of hydrogenation reaction in the hydrogen storage capacity cannot be used effectively.
6VO,05Nb0.066 alloy has a hysteresis of approximately 1
When the pressure is 0 atm, the hysteresis V is reduced to 4 or less than that of the base alloy.

本発明合金の製造法は何ら制限されず公知の方法をすべ
て適用できるが、最4好ましいのはアーク溶融法である
。即ちTI、F@、Nl、金属ム及びBの各元素を秤取
して混合した後任意の形状にプレス成形し、次いでこれ
をアーク溶融炉に装入して不活性雰囲気で加熱溶融する
ことによシ春易に製造することができる。この様にして
得九チタン多元系水素吸蔵用合金は、表面積を拡大し水
素吸蔵能力を高める為に粉末状にして使用するのがよい
The method for producing the alloy of the present invention is not limited in any way and all known methods can be applied, but the most preferred method is the arc melting method. That is, each element of TI, F@, Nl, metallic aluminum, and B is weighed and mixed, then press-formed into an arbitrary shape, and then charged into an arc melting furnace and heated and melted in an inert atmosphere. It can be easily manufactured. The thus obtained nine-titanium multi-component hydrogen storage alloy is preferably used in powder form in order to expand the surface area and increase the hydrogen storage capacity.

この様にして得九粉末状の水素吸蔵用合金は極めて@J
bFC活性化することができ、活性化後は大量の水素を
比較的低い温度及び圧力で急速に吸蔵し且つ放出する0
例えば上記合金粉末を適量な春tllK充填し、減圧下
200℃以下の温度で脱ガス処理して活性化を行なった
後、室温以上の温度で水素を対人し例えば80Kq/c
m以下の水素圧を印加することにより、数分以内でほぼ
飽和状lIまで水素を吸蔵させゐことができる。tたこ
の金属水素化物からの水素の放出は、該水素化物を室温
以上に加熱するかわずかに減圧し或いは双方を組み合わ
せて実施することにより、短時間で効率良く行なうこと
ができる。
In this way, the powdered hydrogen storage alloy obtained is extremely @J
bFC can be activated, and after activation, it rapidly stores and releases large amounts of hydrogen at relatively low temperature and pressure.
For example, fill an appropriate amount of the above-mentioned alloy powder, degas it under reduced pressure at a temperature of 200°C or less to activate it, and then apply hydrogen at a temperature of room temperature or higher to, for example, 80Kq/c.
By applying a hydrogen pressure of less than m, it is possible to store hydrogen up to approximately saturated II within a few minutes. Hydrogen can be efficiently released from the metal hydride in a short time by heating the hydride above room temperature, slightly reducing the pressure, or a combination of both.

本発明のチタン多元系水素吸蔵用合金は概略以上の様に
構成されてお夛、後述する実施例でも明らかにする如く
水素吸蔵材料として要求される諸性能を全て具備するも
のであや、特に合金の活性化が極めてWJ+であシ、水
素吸蔵・放出圧のヒステリシスは従来の水素吸蔵用合金
に比べて大幅に改螢されている。しかもこの合金は大量
の水素を密度高く吸蔵し得ると共に水素の吸蔵・放出反
応が完全に可逆的に行なわれ、吸蔵と放出を何回線り返
しても合金自体の劣化は東質的に認められず、艶には酸
素、iI素、アルゴン、脚酸ガスの様な不純ガスによる
影響が殆んどない等の諸特注を有しておシ、理想的な水
素吸蔵用材料と言うことができる。従って本来の水素貯
蔵材料としての用途はもとより、水素吸蔵・放出反応に
伴う反応熱を利用する他の用途に対しても卓越した効果
を発揮する。
The titanium multi-component hydrogen storage alloy of the present invention is roughly constructed as described above, and as will be made clear in the examples described later, it has all the performances required as a hydrogen storage material. The activation of WJ+ is extremely strong, and the hysteresis of hydrogen storage and release pressure has been significantly improved compared to conventional hydrogen storage alloys. Furthermore, this alloy can store a large amount of hydrogen at a high density, and the hydrogen storage and desorption reactions are completely reversible, so no matter how many times the hydrogen storage and desorption is repeated, no deterioration of the alloy itself is observed. It has various special features such as its luster being almost unaffected by impurity gases such as oxygen, II element, argon, and acid gas, making it an ideal hydrogen storage material. . Therefore, it exhibits excellent effects not only for its original use as a hydrogen storage material, but also for other uses that utilize the reaction heat associated with hydrogen storage and desorption reactions.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例1 市販の’l”i 、p@ 、Nl及び金属A成分及びB
成分を原子数比でTIF@:Ni:A:B=1:0.8
:0.15:0.0!!5:0.025となる様に分取
し、これを高真空アーク溶融炉の銅製るつぼ内に装入し
、炉内を高純度Ar雰囲気とした後、約gooo℃で加
熱溶解し放冷してTIF・0.8”0.16゜、。2.
。、。26よシなる組成の合金を製造した。
Example 1 Commercially available 'l''i, p@, Nl and metal A component and B
The atomic ratio of the components is TIF@:Ni:A:B=1:0.8
:0.15:0.0! ! 5:0.025, and charged it into a copper crucible of a high vacuum arc melting furnace.After creating a high-purity Ar atmosphere in the furnace, it was melted by heating at about 50°C and allowed to cool. TIF・0.8”0.16°,.2.
. ,. An alloy with a composition of 26 was prepared.

B 尚Mmとは希土類元素混合物にF・+Mg+A#及び8
1等の不純物を少量含有する混合金属である。
B Note that Mm refers to F・+Mg+A# and 8 in the rare earth element mixture.
It is a mixed metal containing a small amount of impurities such as 1st grade.

得られた各合金t−120メツVユ全通に粉砕し、その
6.(lをステンレス製水素吸蔵・放出反応器に採取し
、反応器を排気装置に接続して減圧下の寵温にて脱ガス
を噌デなつ九0次いで器内に純度99.999%の水素
を導入し水素圧をg Q V3”以下に保持し、室温で
直ちに水素の吸蔵が起こった。水素の吸蔵が完了し九後
再び排気して水素の放出を行ない、活性化処理を完了し
た。その?Ik該反応器に純度99.999−の水素を
室温以上の温度、20 K9/a1以下の圧力で導入し
、水素の吸蔵を行なった0次いで行なわれる水素の放出
は、反応器の加熱或いは減圧又はこれらを組み合わせる
ことによって行なう。
6. Grind each of the obtained alloys into T-120 pieces. (Collect 1 liter of hydrogen into a stainless steel hydrogen storage/release reactor, connect the reactor to an exhaust system, and degas it at a temperature under reduced pressure.) Then, 99.999% pure hydrogen is added to the reactor. was introduced and the hydrogen pressure was maintained below gQV3'', and hydrogen absorption occurred immediately at room temperature.After 9 hours, the hydrogen absorption was completed and the vessel was evacuated again to release hydrogen, thereby completing the activation process. Hydrogen with a purity of 99.999 was introduced into the reactor at a temperature above room temperature and a pressure below 20 K9/a1 to absorb hydrogen. Alternatively, it may be carried out by reducing the pressure or a combination thereof.

上記の方法で夫々のチタン多元系水素吸蔵合金の水素化
反応時間と水素吸蔵濃度との関係を求め丸、その−例と
してT I F @ os N I o、ls V O
,026N bO,0215について活性化時の水素化
反応曲線を示したのが第1図であり、点線で示し九比較
例は、T I F @ 6. B Ni。、2の組成を
有する三元系水素吸蔵合金を用い九場合の活性化時の水
素化反応曲線である。
The relationship between the hydrogenation reaction time and the hydrogen storage concentration of each titanium multi-component hydrogen storage alloy was determined using the above method.
, 026N bO, 0215 is shown in FIG. 1, showing the hydrogenation reaction curve upon activation, and nine comparative examples are shown by dotted lines. B Ni. , 2 is a hydrogenation reaction curve upon activation in 9 cases using a ternary hydrogen storage alloy having a composition of 2.

第1図からも明らかな様に本発明の合金は、比較例に示
し九従来の水素吸蔵用合金に比べて活性化時の水素化反
応時間が大幅に短縮され、活性化が極めて容易となる。
As is clear from FIG. 1, the alloy of the present invention has a significantly shorter hydrogenation reaction time during activation than the nine conventional hydrogen storage alloys shown in the comparative example, and is extremely easy to activate. .

上記の方法で夫々のチタン多元系水素吸蔵合金の水素吸
蔵・放出に及ぼす圧力一温度の関係を求め九・その−例
として””0.8”0.15vO,026N b o、
。2B−’について圧力の対数−絶対温度の逆数で表わ
し九のが第2図であシ、上の[!Iが水素吸蔵圧、下の
直線が水素放出圧である。また点線で示した比較例は、
T I F m g、 g N I o、 2の組成を
有する三元系水素吸蔵合金を用いた場合の圧力一温度線
図である。
Using the above method, the relationship between pressure and temperature on hydrogen storage and release of each titanium multi-component hydrogen storage alloy was determined.
. 2B-' is expressed as the logarithm of the pressure - the reciprocal of the absolute temperature. I is the hydrogen absorption pressure, and the lower straight line is the hydrogen release pressure. In addition, the comparative example indicated by the dotted line is
FIG. 2 is a pressure-temperature diagram when a ternary hydrogen storage alloy having a composition of T IF m g, g N I o, 2 is used.

第2図からも明らかな様に本発明の合金は、比較例に示
した従来の水素吸蔵用合金に比べてヒステリVスが大幅
に教養されている。また本発明の合金と比較例の合金と
を比較すると水素放出圧は殆んど差がなく水素吸蔵圧の
みが低下しており、従来の合金の圧力特性から大きくず
れることがないから、金属水素化物反応装置の設計も殆
んど変更する必要がない。
As is clear from FIG. 2, the alloy of the present invention has significantly improved hysteresis V as compared to the conventional hydrogen storage alloy shown in the comparative example. Furthermore, when comparing the alloy of the present invention and the alloy of the comparative example, there is almost no difference in the hydrogen release pressure and only the hydrogen storage pressure has decreased, and there is no significant deviation from the pressure characteristics of conventional alloys. There is also little need to change the design of the chemical reactor.

また第1表は上記で得た各合金の水素吸蔵量を示したも
ので、従来の合金(T i F @ o、 8 N i
 o、2:試料−26)に比べて水素吸蔵量も多い。
Table 1 shows the hydrogen storage capacity of each alloy obtained above.
o, 2: The amount of hydrogen storage is also large compared to sample-26).

実施例2 実施例1と同様の方法でTIF・。、8N1゜、1 B
A(106”0.06を製造して水素の吸蔵・放出実験
を行ない、各合金について水素化反応時間と水素吸蔵濃
度の関係を求め丸、その−例としてTIF・。、8r1
◎、1!Sv0.06NbO,06について活性化時の
水素化反応曲線を示し九のが第8図であシ、点線で示し
九比較例は、TIF・0.8”011の組成を有する三
元系水素吸蔵合金を用いた場合の活性化時の水素化反応
曲線である。
Example 2 TIF・ in the same manner as in Example 1. , 8N1°, 1B
A (106"0.06) was manufactured and hydrogen absorption/desorption experiments were conducted to determine the relationship between hydrogenation reaction time and hydrogen absorption concentration for each alloy. As an example, TIF., 8r1
◎、1! Figure 8 shows the hydrogenation reaction curve upon activation for Sv0.06NbO,06, and the dotted line shows the comparative example 9, which is a ternary hydrogen storage system having a composition of TIF・0.8''011. This is a hydrogenation reaction curve during activation when an alloy is used.

第8図からも明らかな様に本発明の合金は、比較例の従
来の水素吸蔵用合金に比べて活性化時の水素化反応が大
幅に短縮され、活性化が極めて容易となる。
As is clear from FIG. 8, the alloy of the present invention significantly shortens the hydrogenation reaction during activation and becomes extremely easy to activate, compared to the conventional hydrogen storage alloy of the comparative example.

又、TI”0.8”Q、15vO,05NbO,05”
−H系について圧力の対数−絶対温度の逆黴で表わした
のが第4図であシ、上の直線が水素吸蔵圧、下の直線が
水素放出圧である。11九点線で示した比較例は、Ti
F・o、s”。、2の組成を有する三元系水素吸蔵合金
を用いた場合の圧力一温度線図である。
Also, TI"0.8"Q, 15vO, 05NbO, 05"
Figure 4 shows the -H system expressed by the inverse relationship between the logarithm of pressure and the absolute temperature, where the upper straight line is the hydrogen storage pressure and the lower straight line is the hydrogen release pressure. The comparative example shown by the 119 dotted line is Ti
FIG. 2 is a pressure-temperature diagram when a ternary hydrogen storage alloy having a composition of F.o,s''., 2 is used.

第4図から4明らかな様に本発明の合金は、比較例の従
来合金に比べてヒステUFスが大幅に改譬されている。
As is clear from FIG. 4, the alloy of the present invention has significantly improved hysteresis UF compared to the conventional alloy of the comparative example.

また実施例1と同様本発明の合金は従来合金に比べて水
素放出圧の変化が少なく、水素吸蔵圧のみが低下してい
るので金属水素化物反応装置の設計が容易である。
Further, as in Example 1, the alloy of the present invention exhibits less change in hydrogen release pressure than conventional alloys, and only the hydrogen storage pressure is reduced, making it easy to design a metal hydride reactor.

また第[表は上記で得た各合金の水素吸蔵量を示したも
ので、従来の合金(’rip@、、Ni。、2:試料N
a26)に比べて水素吸蔵量も多い。
In addition, Table 1 shows the hydrogen storage capacity of each alloy obtained above.
It also has a large amount of hydrogen storage compared to a26).

実施例8 実施例1と同様の方法で丁IF・0.8”0.1!AO
,06”0.05を製造して水素の吸蔵・放出実験を行
ない。
Example 8 In the same manner as in Example 1, IF・0.8”0.1!AO
,06"0.05 was manufactured and hydrogen absorption/desorption experiments were conducted.

各合金について水素化反応時間と水素吸蔵濃度の関係を
求めた。その−例としてTiF・o、 s N t。、
2V(t。5NbO,。6について活性化時の水素化反
応曲線を示したのが第6図であり、点線で示し九比較例
は、TiF @ o、 8 N i o、 2の組成を
有する三元系水素@蔵合金を用いた場合の活性化時の水
素化反応曲線である。
The relationship between hydrogenation reaction time and hydrogen storage concentration was determined for each alloy. An example of this is TiF·o, s N t. ,
Figure 6 shows the hydrogenation reaction curve during activation for 2V (t. It is a hydrogenation reaction curve during activation when a ternary hydrogen @ storage alloy is used.

第6図からも明らかな様に本発明の合金は、比較例の従
来の水素吸蔵用合金に比べて活性化時の水素化反応が大
幅に短縮され、活性化が極めて容易となる。
As is clear from FIG. 6, the alloy of the present invention significantly shortens the hydrogenation reaction during activation compared to the conventional hydrogen storage alloy of the comparative example, making activation extremely easy.

T I F @ o、s N I o、g V O,O
F、N b o、o s−H系について圧力の対数−絶
対温度の逆数の関係を表わし九のが第6図である。
T I F @ o, s N I o, g V O, O
FIG. 6 shows the relationship between the logarithm of pressure and the reciprocal of absolute temperature for the F, Nbo, and o s-H systems.

第6因からも明らかな様に本発明の合金は、比較例の従
来合金(TIF@   Hi   )に比べ0.8  
0.2 てヒステリyスが大幅に改曽されている。を九突施例1
及び2と同様本発明の合金は従来合金に比べて水素放出
庄の貧化が少なく、水嵩q&蔵圧のみが低下しているの
で、金属水素化物反応装置の設計が智易である。
As is clear from the sixth factor, the alloy of the present invention is 0.8
0.2, the hysteresis has been significantly reduced. Kutu Example 1
Similar to 2 and 2, the alloy of the present invention has less deterioration of the hydrogen release region than the conventional alloy, and only the water volume q and storage pressure are reduced, so the design of the metal hydride reactor is easy.

崗これらの合金の水素吸蔵量は何れもり、S〜1.7饅
でjb9、従来合金(1,4%)に比べて高いことが硼
鑓された。
It has been found that the hydrogen storage capacity of these alloys is S~1.7 and jb9, which is higher than that of conventional alloys (1.4%).

【図面の簡単な説明】[Brief explanation of drawings]

@1,8.5図は本発明に係るチタン多aic系水素吸
蔵用合金と従来合金の活性化時の水素化反応時間と水素
吸蔵濃度の関係を示すグラフである。 また第2.4.6図は本発明に係るチタン多元糸水素吸
蔵用合金と従来合金の水素吸蔵・放出に及ぼす圧力一温
度の関係を示すグラフである。 出願人 工業技術院長 同   東洋紡績株式会社
@1, 8.5 is a graph showing the relationship between the hydrogenation reaction time and hydrogen storage concentration during activation of the titanium multi-AIC hydrogen storage alloy according to the present invention and the conventional alloy. FIG. 2.4.6 is a graph showing the relationship between pressure and temperature on hydrogen storage and release of the titanium multicomponent thread hydrogen storage alloy according to the present invention and the conventional alloy. Applicant: Director of the Agency of Industrial Science and Technology Toyobo Co., Ltd.

Claims (1)

【特許請求の範囲】 (υ一般式がT量ν・、、NI、A、ml、で示される
ことを特徴とするチタン多元系水素**用合金〔但シ1
式中ムはニオブ、バナVン及びv、4/コニウムからな
1瀞かも選ばれた元素、lはアA/lニウム。 ニオブ、り四ム、:!バルト、マンガン、峨すプデン、
パナVン、Iwコーウム及び希土類元素からtkhIl
lIから選ばれ九元素を示し、冨寓0.(11〜OS。 ym(LO1〜Q、8 t mm0.01〜G、! e
 a≦O9!(但しOは除く)で且つ1.0≦(1−冨
+7+M十1)≦1.1!であり、Aと3と拡常に異な
る元素である)。 (至)特許請求の範■第1項において、xmy4−g+
―のと自はy≧1+1であるチタン多元系水素吸蔵用合
金。 (8)特許請求のsin第1XJ[において、冨−yの
ときは冨+龜≦O6!(但しOは除く)であるチタン多
兄系水III啜蔵用合金。 (4)特許請求osisgt項において、X W j 
十1のと自は冨≧1で且つa≦(L!(但しOは論〈)
であるチタン多元系水素吸蔵用合金。
[Claims] (Titanium multi-component alloy for hydrogen**, characterized in that the general formula υ is represented by the amount of T ν・, NI, A, ml) [However,
In the formula, M is an element selected from niobium, vana, and v,4/conium, and l is a/l. Niobium, Rishimu, :! Baltic, manganese, sulfate,
PanaVn, Iw coum and tkhIl from rare earth elements
It shows nine elements selected from lI, and has a total of 0. (11~OS. ym(LO1~Q, 8t mm0.01~G,! e
a≦O9! (However, O is excluded) and 1.0≦(1-Ten+7+M11)≦1.1! and is an element that is radically different from A and 3). (To) Claims ■In paragraph 1, xmy4-g+
-Noto is a titanium multi-component hydrogen storage alloy where y≧1+1. (8) In the patent claim sin No. 1 (However, O is excluded) A titanium-based water III sake brewing alloy. (4) In patent claim osisgt, X W j
The number 11 is 1 and a is 1 and a is 1, and a is 1 and a is 1.
A titanium multi-component hydrogen storage alloy.
JP56196008A 1981-12-04 1981-12-04 Titanium multi-component hydrogen storage alloy Expired JPS597772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56196008A JPS597772B2 (en) 1981-12-04 1981-12-04 Titanium multi-component hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56196008A JPS597772B2 (en) 1981-12-04 1981-12-04 Titanium multi-component hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JPS5896841A true JPS5896841A (en) 1983-06-09
JPS597772B2 JPS597772B2 (en) 1984-02-21

Family

ID=16350688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56196008A Expired JPS597772B2 (en) 1981-12-04 1981-12-04 Titanium multi-component hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPS597772B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317962A (en) * 1986-07-10 1988-01-25 Asahi Glass Co Ltd Resin composition for semiconductor
CN107523735A (en) * 2017-07-07 2017-12-29 上海大学 Add Co and Y TiFe hydrogen bearing alloys and preparation method thereof
CN115896581A (en) * 2022-11-07 2023-04-04 中国科学院金属研究所 Directional solidification TiNiFeCoNb light high-entropy alloy with high strength and high elasticity and preparation thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3822131B1 (en) 2018-07-10 2023-04-26 Global Mobility Service Inc. Vehicle remote control system, communication module, vehicle, server, vehicle remote control method, vehicle remote control program, and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569240A (en) * 1978-11-14 1980-05-24 Battelle Memorial Institute Hydrogen storing composition and method
JPS56116848A (en) * 1980-02-15 1981-09-12 Matsushita Electric Ind Co Ltd Alloy for storing hydrogen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569240A (en) * 1978-11-14 1980-05-24 Battelle Memorial Institute Hydrogen storing composition and method
JPS56116848A (en) * 1980-02-15 1981-09-12 Matsushita Electric Ind Co Ltd Alloy for storing hydrogen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317962A (en) * 1986-07-10 1988-01-25 Asahi Glass Co Ltd Resin composition for semiconductor
CN107523735A (en) * 2017-07-07 2017-12-29 上海大学 Add Co and Y TiFe hydrogen bearing alloys and preparation method thereof
CN107523735B (en) * 2017-07-07 2020-06-26 上海大学 TiFe hydrogen storage alloy added with Co and Y and preparation method thereof
CN115896581A (en) * 2022-11-07 2023-04-04 中国科学院金属研究所 Directional solidification TiNiFeCoNb light high-entropy alloy with high strength and high elasticity and preparation thereof

Also Published As

Publication number Publication date
JPS597772B2 (en) 1984-02-21

Similar Documents

Publication Publication Date Title
JP3528599B2 (en) Hydrogen storage alloy
Chuprina et al. Reactions of TiNi with oxygen
EP0079487B1 (en) Hydriding body-centered cubic phase alloys at room temperature
JPH101731A (en) Hydrogen storage alloy and its production
JPS5896841A (en) Multicomponent titanium alloy for occluding hydrogen
JPH11106859A (en) Hydrogen storage alloy excellent in plateau flatness
JPS58217654A (en) Titanium-chromium-vanadium alloy for occluding hydrogen
JPS59143036A (en) Ternary alloy of rare earth element for occluding hydrogen
JP2002180174A (en) Mg-TYPE HYDROGEN STORAGE ALLOY HAVING HIGH STORAGE CAPACITY
JPS61199045A (en) Hydrogen occluding alloy
JPS5947022B2 (en) Alloy for hydrogen storage
JPS5839218B2 (en) Rare earth metal quaternary hydrogen storage alloy
US4576639A (en) Hydrogen storage metal material
JPH039175B2 (en)
JPS5939493B2 (en) Titanium-cobalt multi-component hydrogen storage alloy
JPS58217655A (en) Hydrogen occluding multi-component alloy
JP2006256888A (en) Hydrogen storage material and its manufacturing method
JPS5837373B2 (en) Titanium-based hydrogen storage alloy
JPS5950742B2 (en) Titanium quaternary hydrogen storage alloy
JPH10121180A (en) Hydrogen storage alloy and its production
JP4417805B2 (en) Hydrogen storage alloy and hydrogen storage container
JPS6141975B2 (en)
JPS63282226A (en) Hydrogen occlusion alloy
JPS604256B2 (en) Alloy for hydrogen storage
JPS5947019B2 (en) Rare earth metal hydrogen storage alloy