JPS6317962A - Resin composition for semiconductor - Google Patents

Resin composition for semiconductor

Info

Publication number
JPS6317962A
JPS6317962A JP16073686A JP16073686A JPS6317962A JP S6317962 A JPS6317962 A JP S6317962A JP 16073686 A JP16073686 A JP 16073686A JP 16073686 A JP16073686 A JP 16073686A JP S6317962 A JPS6317962 A JP S6317962A
Authority
JP
Japan
Prior art keywords
particles
quartz glass
glass particles
composition
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16073686A
Other languages
Japanese (ja)
Inventor
Toshiyasu Kawaguchi
年安 河口
Junichi Iura
井浦 純一
Hiromi Hishikura
菱倉 裕美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP16073686A priority Critical patent/JPS6317962A/en
Publication of JPS6317962A publication Critical patent/JPS6317962A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a resin composition for semiconductor, containing quartz glass particles having specific shape, having excellent fluidity, enabling uniform sealing and giving a sealed product little causing the loss of air-tightness caused by cracking of the resin. CONSTITUTION:The quartz glass particles used in the present composition has a ratio of maximum diameter (hereinafter called as particle diameter) to the minimum diameter of 1-1.5, preferably 1-1.2, produced preferably by hydrolyzing a silicic acid ester or its polymer, drying the precipitated gel and calcining the product at 1,100 deg.C and containing particles of <50mum and 1-40mum in particle diameter accounting for >=98vol% of the whole particles. The objective resin composition for semiconductor can be produced by compounding the quartz glass particles to an epoxy resin, silicone resin, etc., to give a composition containing <=75wt% quartz glass particles.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体封止用樹脂組成物に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a resin composition for semiconductor encapsulation.

[従来の技術] 半導体素子の信頼性を確保する観点から、耐湿性、耐熱
性、耐ストレス性、素子特性の長期保証を目的として、
一般にはエポキシ樹脂に石英が粒子を混合した封止用樹
脂組成物が使われている。信頼性の高い封止を行なうた
め、低膨張フィラーを多量に含有(?OwH$程度)さ
せて、封止用樹脂組成物の性能は充填材として加えられ
るフィラーの特性に大きく影響される。
[Conventional technology] From the perspective of ensuring the reliability of semiconductor devices, for the purpose of long-term guarantee of moisture resistance, heat resistance, stress resistance, and device characteristics,
Generally, a sealing resin composition containing epoxy resin mixed with quartz particles is used. In order to perform highly reliable sealing, a large amount of low expansion filler (about ?OwH$) is contained, and the performance of the sealing resin composition is greatly influenced by the characteristics of the filler added as a filler.

従来、比較的良質のケイ石や天然水晶を粉砕したり、あ
るいは溶融化した石英ガラス粒子が、フィラーとして使
われていたが、かかる粒子は粉砕工程、熱処理工程から
の不純物の混入があるため、半導体封止剤用としては適
さない。
Conventionally, silica glass particles made by crushing or melting relatively high-quality silica stone or natural quartz have been used as fillers, but such particles are contaminated with impurities from the crushing and heat treatment processes. Not suitable for use as a semiconductor encapsulant.

また、粉砕された粒子は粒子内における最小直径と粒径
との比が、1.5を越える非球状の形状をしているため
、組成物の流動性が低く均一な特性の封止体を得ること
が難かしいという問照点があった。
In addition, since the pulverized particles have a non-spherical shape with a ratio of the minimum diameter within the particle to the particle size exceeding 1.5, the fluidity of the composition is low and a sealed body with uniform characteristics can be obtained. There was a question that it was difficult to obtain.

更に、粒子が鋭角形状をしているため半導体保護膜にク
ラックが入り易いという問題点があった。
Furthermore, since the particles have an acute-angled shape, there is a problem in that the semiconductor protective film is easily cracked.

[発明の解決しようとする問題点] 本発明は、従来の組成物が有していた上記問題点を解消
し、流動性に優れた均一な封止を行なえる半導体封止用
樹脂組成物の提供を目的とする。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned problems of conventional compositions, and provides a resin composition for semiconductor encapsulation that can perform uniform encapsulation with excellent fluidity. For the purpose of providing.

[問題点を解決するための手段] 本発明は石英ガラス粒子を含有する半導体対1F用樹脂
組成物において、該石英ガラス粒子は、粒子内の最大直
径(以下粒径という)が最小直径の1〜1.5倍の範囲
にある形状をしていることを特徴とする半導体封止用組
成物を提供するものである。
[Means for Solving the Problems] The present invention provides a resin composition for a semiconductor pair 1F containing quartz glass particles, in which the quartz glass particles have a maximum diameter within the particles (hereinafter referred to as particle size) equal to or smaller than the minimum diameter. The present invention provides a composition for semiconductor encapsulation characterized in that it has a shape in the range of 1.5 to 1.5 times.

本発明において、石英ガラス粒子は、粒径が粒子内にお
ける最小直径の1〜1.5倍の範囲にある形状をしてい
る。粒径が最小直径の1.5倍を越えると樹脂組成物の
流動性が低下する。そのため、封止部に石英ガラス粒子
が充分に充填されず目的とする熱膨張係数の封止部が充
填されず、気密性が損なわれたりするので好ましくない
。より好ましくは粒径が最小直径の1〜1.2倍の範囲
である。
In the present invention, the quartz glass particles have a shape in which the particle size is in the range of 1 to 1.5 times the smallest diameter within the particle. If the particle size exceeds 1.5 times the minimum diameter, the fluidity of the resin composition will decrease. Therefore, the sealing portion is not sufficiently filled with quartz glass particles, and the sealing portion having the desired coefficient of thermal expansion is not filled, which is not preferable because the airtightness is impaired. More preferably, the particle size is in the range of 1 to 1.2 times the minimum diameter.

かかる粒子は、粒径が大きくなり過ぎると粒子近傍の樹
脂に大きい応力が発生し、クラックが生じ気密性が損わ
れ易いので好ましくない。
Such particles are not preferable because if the particle size becomes too large, a large stress will be generated in the resin near the particles, causing cracks and easily impairing airtightness.

また、素子の高集積化に伴ない、大きな粒子周辺に発生
する機械的応力で素子の誤動作が生じることから、粒径
の小さいものが望ましい。
Furthermore, as devices become highly integrated, mechanical stress generated around large particles can cause device malfunctions, so particles with small particle sizes are desirable.

一方、粒径が小さくなり過ぎると次のような点で好まし
くない。
On the other hand, if the particle size becomes too small, it is unfavorable for the following reasons.

組成物の流動性が低下し、充分な量のフィラーを充填す
ることができなため、目的とする熱膨張係数の封止体が
得られない。また、成形時の流動性低下のために、気密
性が損なわれる。
Since the fluidity of the composition decreases and a sufficient amount of filler cannot be filled, a sealed body having the desired coefficient of thermal expansion cannot be obtained. Furthermore, airtightness is impaired due to decreased fluidity during molding.

粒子の粒径が50μm以下で、かつ1〜40μmの範囲
に入る粒径の粒子が98体積%以上を占めるものが特に
好ましい。
It is particularly preferable that the particles have a particle size of 50 μm or less and that particles having a particle size in the range of 1 to 40 μm account for 98% by volume or more.

また、放射線のノイズによる半導体のノイズを防ぐため
に、石英ガラス粒子中に含有されるU、Th等の不純物
をできる限り少なく(例えば0.5 PPb以下)する
ことが好ましい。
Further, in order to prevent semiconductor noise due to radiation noise, it is preferable to reduce the amount of impurities such as U and Th contained in the quartz glass particles as much as possible (eg, 0.5 PPb or less).

かかる、特に好ましい石英ガラスの粒子は次のようにし
て製造される。
Such particularly preferred quartz glass particles are produced as follows.

珪酸エステル又は該珪酸エステルの一部重合したものを
出発原料にし、これに水を添加して加水分解し、ゲル状
粒子を沈殿する。次いでこのゲル状粒子を乾燥し、11
00℃程度の温度で焼成することにより緻密な石英ガラ
ス粒子が得られる。なお、加水分解に当っては通常塩酸
等の酸、アンモニム等のアルカリを触媒として使用する
A silicate ester or a partially polymerized product of the silicate ester is used as a starting material, and water is added thereto to hydrolyze it to precipitate gel particles. Next, the gel particles were dried and 11
Dense silica glass particles can be obtained by firing at a temperature of about 00°C. In the hydrolysis, an acid such as hydrochloric acid or an alkali such as ammonium is usually used as a catalyst.

本発明における樹脂としては、特に限定されず例えばエ
ポキシ樹脂、シリコン樹脂、ポリフェニレンサルファイ
ド樹脂が使用される。
The resin in the present invention is not particularly limited, and for example, epoxy resin, silicone resin, and polyphenylene sulfide resin are used.

なお、組成物中における石英ガラス粒子は、75重量%
まで含有しても実質的に流動性を損なうことはない。
In addition, the quartz glass particles in the composition are 75% by weight.
Even if it is contained, the fluidity will not be substantially impaired.

実施例 エチルシリケートに1.5モル倍の水を添加し塩酸を触
媒として加水分解し、ゲル状粒子を沈殿した。次いでこ
れを乾燥し1100℃で焼成し、石英ガラスを得た。こ
の石英ガラス粒子について形状を測定した結果、粒径は
粒子内における最小直径の1〜1.3倍にあった。また
、1〜40μmの範囲にある粒径の粒子が98体積%以
上であった。この粉末の平均粒径は20μmであった。
Example 1.5 moles of water was added to ethyl silicate and hydrolyzed using hydrochloric acid as a catalyst to precipitate gel particles. Next, this was dried and fired at 1100°C to obtain quartz glass. As a result of measuring the shape of this quartz glass particle, the particle size was 1 to 1.3 times the minimum diameter within the particle. Further, particles having a particle size in the range of 1 to 40 μm accounted for 98% by volume or more. The average particle size of this powder was 20 μm.

次いでこの粒子が70重量%となるようにエポキシ樹脂
と混合し組成物を製造した。この組成物についてフロー
テスター(島津製作所輛製CFT−500)を使って1
70℃の場合の溶融粘度を算出して、流動性の評価を行
なった。この時の溶融粘度は150ポイズであった。
Next, the particles were mixed with an epoxy resin so that the amount was 70% by weight to produce a composition. This composition was tested using a flow tester (CFT-500 manufactured by Shimadzu Corporation).
The melt viscosity at 70°C was calculated to evaluate the fluidity. The melt viscosity at this time was 150 poise.

比較例として、現在使用されている不定形状の石英ガラ
ス粉末を70重量%同様にエポキシ樹脂に混合して組成
物を作り、同様に、フローテスターで溶融粘度を測定し
た。ここで用いた石英ガラス粉末は平均粒径20μ層で
あり、最大粒径が100μm、1〜40μmの範囲に入
る粒径の粒子が占める体積割合は75%であった。また
粒子は鋭角形状をしており、粒子内の最大直径が最小直
径の1.5〜5の範囲にある不定形状のものであった。
As a comparative example, a composition was prepared by mixing 70% by weight of currently used quartz glass powder with an irregular shape into an epoxy resin, and the melt viscosity was similarly measured using a flow tester. The quartz glass powder used here had an average particle size of 20 μm, the maximum particle size was 100 μm, and the volume ratio occupied by particles having a particle size in the range of 1 to 40 μm was 75%. Further, the particles had an acute angular shape and were irregularly shaped, with the maximum diameter within the particle being within a range of 1.5 to 5 times the minimum diameter.

この組成物の170℃の溶融粘度は250ポイズであっ
た。
The melt viscosity of this composition at 170°C was 250 poise.

[発明の効果] 本発明の組成物は極めて流動性が優れているので、目的
とする熱膨張係数の封止が行なえ、かつ気密封止が行な
える。また、粒径50μ層以下の粒子を使用すると樹脂
部の発生応力が減少するので、クラックを生じ気密性が
損われる恐れが少ないので特に好ましい。
[Effects of the Invention] Since the composition of the present invention has extremely excellent fluidity, it is possible to seal the desired coefficient of thermal expansion and to seal hermetically. Further, it is particularly preferable to use particles having a particle size of 50 μm or less since the stress generated in the resin portion is reduced and there is less risk of cracking and loss of airtightness.

Claims (1)

【特許請求の範囲】 1、石英ガラス粒子を含有する半導体封止用樹脂組成物
において、該石英ガラス粒子は、粒子内の最大直径(以
下粒径という)が最小直径の1〜1.5倍の範囲にある
形状をしていることを特徴とする半導体封止用組成物。 2、前記石英ガラス粒子の粒径が50μmより小さく、
かつ1〜40μmの範囲に入る粒径の粒子が98体積%
以上を占める特許請求の範囲第1項記載の半導体封止用
組成物。 3、前記石英ガラス粒子は、珪酸エステル又はその重合
体を加水分解し焼成することにより製造される特許請求
の範囲第1項又は第2項記載の半導体封止用組成物。
[Claims] 1. In a resin composition for semiconductor encapsulation containing quartz glass particles, the quartz glass particles have a maximum diameter within the particles (hereinafter referred to as particle size) that is 1 to 1.5 times the minimum diameter. A composition for semiconductor encapsulation, characterized in that it has a shape within the range of. 2. The particle size of the quartz glass particles is smaller than 50 μm,
and 98% by volume of particles with a particle size in the range of 1 to 40 μm
A composition for semiconductor encapsulation according to claim 1, which covers the above. 3. The composition for semiconductor encapsulation according to claim 1 or 2, wherein the quartz glass particles are produced by hydrolyzing and firing a silicate ester or a polymer thereof.
JP16073686A 1986-07-10 1986-07-10 Resin composition for semiconductor Pending JPS6317962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16073686A JPS6317962A (en) 1986-07-10 1986-07-10 Resin composition for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16073686A JPS6317962A (en) 1986-07-10 1986-07-10 Resin composition for semiconductor

Publications (1)

Publication Number Publication Date
JPS6317962A true JPS6317962A (en) 1988-01-25

Family

ID=15721343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16073686A Pending JPS6317962A (en) 1986-07-10 1986-07-10 Resin composition for semiconductor

Country Status (1)

Country Link
JP (1) JPS6317962A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996001868A1 (en) * 1994-07-07 1996-01-25 Imperial Chemical Industries Plc Polymeric film
JP2008153553A (en) * 2006-12-19 2008-07-03 Nichia Chem Ind Ltd Light-emitting device and method of manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185945A (en) * 1981-05-07 1982-11-16 Agency Of Ind Science & Technol Titanium alloy for occlusion of hydrogen
JPS5896841A (en) * 1981-12-04 1983-06-09 Agency Of Ind Science & Technol Multicomponent titanium alloy for occluding hydrogen
JPS60251238A (en) * 1984-05-26 1985-12-11 Nippon Yakin Kogyo Co Ltd Hydrogen occluding titanium alloy
JPS619544A (en) * 1984-06-26 1986-01-17 Nippon Yakin Kogyo Co Ltd Titanium alloy for occluding hydrogen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185945A (en) * 1981-05-07 1982-11-16 Agency Of Ind Science & Technol Titanium alloy for occlusion of hydrogen
JPS5896841A (en) * 1981-12-04 1983-06-09 Agency Of Ind Science & Technol Multicomponent titanium alloy for occluding hydrogen
JPS60251238A (en) * 1984-05-26 1985-12-11 Nippon Yakin Kogyo Co Ltd Hydrogen occluding titanium alloy
JPS619544A (en) * 1984-06-26 1986-01-17 Nippon Yakin Kogyo Co Ltd Titanium alloy for occluding hydrogen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996001868A1 (en) * 1994-07-07 1996-01-25 Imperial Chemical Industries Plc Polymeric film
JP2008153553A (en) * 2006-12-19 2008-07-03 Nichia Chem Ind Ltd Light-emitting device and method of manufacturing same

Similar Documents

Publication Publication Date Title
JPS6157347B2 (en)
JP5840476B2 (en) Silica particles, method for producing the same, and paste for semiconductor mounting
JPS6274924A (en) Epoxy resin composition for sealing semiconductor device
JP2767276B2 (en) Sealing material
JPS6317962A (en) Resin composition for semiconductor
JPH0374483A (en) Inorganic adhesive having high strength
JPS60204637A (en) Low-melting sealing composition
JPH0369939B2 (en)
JPS58127354A (en) Semiconductor element sealing resin composition material
JP3589694B2 (en) Resin encapsulated semiconductor device and epoxy resin encapsulant used therefor
JPH022804B2 (en)
JPS62236821A (en) Epoxy resin composition
JPH0680863A (en) Epoxy resin composition
JPS61190556A (en) Resin composition for sealing of electronic part
JPH0375240A (en) Sealing material
JP2955672B2 (en) Silica filler for semiconductor resin encapsulation and method for producing the same
JP2002037621A (en) Internal silanol group-including silica and method of preparing it
JPS63108021A (en) Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith
JPS5939379B2 (en) Composite material for hermetic sealing
JP5975589B2 (en) Paste for mounting semiconductor devices
JPH0641347A (en) Filler for electronic part sealer
JPS58140142A (en) Composition of covering material for electronic parts
JP2958402B2 (en) Silica filler for semiconductor resin encapsulation and method for producing the same
JP5989209B2 (en) Silica particles, method for producing the same, and paste for semiconductor mounting
JPS5923403A (en) Synthetic silica and electronic part sealing resin composition containing same