JPS5895830A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5895830A
JPS5895830A JP56193086A JP19308681A JPS5895830A JP S5895830 A JPS5895830 A JP S5895830A JP 56193086 A JP56193086 A JP 56193086A JP 19308681 A JP19308681 A JP 19308681A JP S5895830 A JPS5895830 A JP S5895830A
Authority
JP
Japan
Prior art keywords
silicon
nitride film
laser
silicon nitride
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56193086A
Other languages
Japanese (ja)
Inventor
Yukinobu Murao
幸信 村尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56193086A priority Critical patent/JPS5895830A/en
Publication of JPS5895830A publication Critical patent/JPS5895830A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To obtain a silicon nitride film with sufficient film thickness at a low temperature without using heat treatment at a high temperature by irradiating a laser to silicon in ammonia (NH3) or nitrogen (N2). CONSTITUTION:A silicon substrate 1 is placed into ammonia (NH3) gas. A CW laser is used as the laser beams 2 at that time. The silicon nitride film 3 is grown onto the surface of the silicon substrate 1 through the irradiation of the laser. The figure shows the case when the laser is irradiated to the whole surface of the silicon substrate, but the surface of a region in which silicon is exposed in the manufacturing process of the semiconductor-integrated circuit device can also be changed into the silicon nitride film through the same method, and the method can be applied extending over an extremely wide range on the manufacture of the semiconductor-integrated circuit device.

Description

【発明の詳細な説明】 この発明は、シリコンを低温で直接窒化シリコン膜に変
換する半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device that directly converts silicon into a silicon nitride film at low temperatures.

従来、シリコンを直接窒化シリコン膜に変換するには、
アンモニア(Nus )あるいは窒素(N、)ガス中で
、高温の熱処理が行なわれてきた。しかしながら、従来
法では、窒化シリコン膜の成長速度が非常に小さく、半
導体・集積回路装置に用いるに必要な窒化シリコン膜を
得ることは困難であった。
Traditionally, to convert silicon directly into silicon nitride film,
High temperature heat treatment has been performed in ammonia (Nus) or nitrogen (N) gas. However, in the conventional method, the growth rate of the silicon nitride film is extremely slow, making it difficult to obtain a silicon nitride film necessary for use in semiconductor/integrated circuit devices.

この発明は、従来の高温の熱処理を用いず、しかも低温
で十分な膜厚をもつ窒化シリコン膜を得ることを目的と
している。
The object of the present invention is to obtain a silicon nitride film having a sufficient thickness at a low temperature without using conventional high-temperature heat treatment.

本発明の特徴は、アンモニア(NHs ’)あるいは窒
素(Nt)中でシリコンをレーザー・照射することによ
りこのシリコンの表面を直接窒化シリコン膜に変換する
半導体装置の製造方法にある。
A feature of the present invention is a method of manufacturing a semiconductor device in which the surface of silicon is directly converted into a silicon nitride film by irradiating silicon with a laser in ammonia (NHs') or nitrogen (Nt).

本発明によれば、従来不可能だったシリコン基板表面の
窒化が低温で容易に行なえる。
According to the present invention, the surface of a silicon substrate can be easily nitrided at a low temperature, which was previously impossible.

以下、図面を用いて本発明の実施例について説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図の曲線aは、従来のシリコンをNI(、ガス雰囲
気中で1100℃の熱処理をして得られる窒化シリコン
膜厚の熱処理時間依存性を示す。縦軸は窒化シリコン膜
厚tsllN+ であり、横軸は熱処理時間tである。
Curve a in Figure 1 shows the dependence of the silicon nitride film thickness on the heat treatment time obtained by heat-treating conventional silicon at 1100°C in a NI gas atmosphere.The vertical axis is the silicon nitride film thickness tsllN+. , the horizontal axis is the heat treatment time t.

従来法では、1100℃で長時間熱処理しても得られる
窒化シリコン膜厚は高々40X程度である。
In the conventional method, the silicon nitride film thickness obtained even after long-term heat treatment at 1100° C. is about 40× at most.

一方、曲線すは本発明法のNU、ガス中でシリコンをレ
ーザー照射した場合の、シリコン表面に成長する窒化シ
リコン膜厚のレーザー照射時間依存性である。図から分
るように、きわめて短時間で十分な膜厚を有する窒化シ
リコン膜を得ることができる。さらに、レーザーを用い
るので室温で窒化シリコン族を形成することができる。
On the other hand, the curved line shows the dependence of the thickness of the silicon nitride film grown on the silicon surface on the laser irradiation time when silicon is irradiated with laser in the NU gas according to the present invention. As can be seen from the figure, a silicon nitride film having a sufficient thickness can be obtained in a very short time. Furthermore, since a laser is used, the silicon nitride group can be formed at room temperature.

第2図に本発明の一実施例を示す。図においてシリコン
基板1はアンモニア(NHA) ガス中におかれている
。レーザー光線2はこの場合OWレーザーである。レー
ザー照射によりシリコン基板1表面上に窒化シリコン膜
3が成長する。
FIG. 2 shows an embodiment of the present invention. In the figure, a silicon substrate 1 is placed in ammonia (NHA) gas. The laser beam 2 is in this case an OW laser. A silicon nitride film 3 is grown on the surface of the silicon substrate 1 by laser irradiation.

この実施例では、シリコン基板表面全面にレーザ照射を
行なった場合を示したが、半導体・集積回路装置の製造
工程中シリコンの露出した領域表面を窒化シリコン膜に
かえることも同様の方法ででき、半導体・集積回路装置
製作上きわめて広い応用をこの発明は行なうことができ
る。
Although this example shows the case where the entire surface of the silicon substrate is irradiated with laser, it is also possible to use a similar method to replace the surface of the exposed area of silicon with a silicon nitride film during the manufacturing process of semiconductor/integrated circuit devices. This invention can be applied to a very wide range of applications in the production of semiconductor/integrated circuit devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法と本発明法による窒化シリコン膜厚と形
成に必要な時間との関係を示す図、第2図は本発明実施
例の部分断面図である。 なお図において、a・・・・・・従来法による窒化シリ
コン膜の成長曲線、b・・・・・・本発明による窒化シ
リコン膜の成長曲線、1・・・・・・シリコン基板、2
°・・・・・レーザ光線、3・・・°°・窒化シリコン
膜、である。 $f閉 第2凹
FIG. 1 is a diagram showing the relationship between the silicon nitride film thickness and the time required for formation by the conventional method and the method of the present invention, and FIG. 2 is a partial cross-sectional view of an example of the present invention. In the figures, a... growth curve of silicon nitride film by conventional method, b... growth curve of silicon nitride film according to the present invention, 1... silicon substrate, 2
°... Laser beam, 3...°° Silicon nitride film. $f Closed second recess

Claims (1)

【特許請求の範囲】[Claims] アンモニア(MHI)あるいは窒*(Nl)中でシリコ
ンをレーザー・照射することにより該シリコン表面を直
接窒化シリコン膜に変換することを特徴とする半導体装
置の製造方法。
A method for manufacturing a semiconductor device, characterized in that the surface of silicon is directly converted into a silicon nitride film by irradiating silicon with a laser in ammonia (MHI) or nitrogen* (Nl).
JP56193086A 1981-12-01 1981-12-01 Manufacture of semiconductor device Pending JPS5895830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56193086A JPS5895830A (en) 1981-12-01 1981-12-01 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56193086A JPS5895830A (en) 1981-12-01 1981-12-01 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5895830A true JPS5895830A (en) 1983-06-07

Family

ID=16301988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56193086A Pending JPS5895830A (en) 1981-12-01 1981-12-01 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5895830A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231822A (en) * 1983-06-14 1984-12-26 Toshiba Corp Formation of nitride film
EP0766294A2 (en) * 1995-09-29 1997-04-02 Canon Kabushiki Kaisha Thin film semiconducteur devices and methods of manufacturing the same
US7618880B1 (en) * 2004-02-19 2009-11-17 Quick Nathaniel R Apparatus and method for transformation of substrate
US7811914B1 (en) 2006-04-20 2010-10-12 Quick Nathaniel R Apparatus and method for increasing thermal conductivity of a substrate
US8067303B1 (en) 2006-09-12 2011-11-29 Partial Assignment University of Central Florida Solid state energy conversion device
US8080836B2 (en) 2004-06-01 2011-12-20 University Of Central Florida Embedded semiconductor component
US8114693B1 (en) 2007-09-18 2012-02-14 Partial Assignment University of Central Florida Method of fabricating solid state gas dissociating device by laser doping
US8393289B2 (en) 2004-07-26 2013-03-12 University Of Central Florida Laser assisted nano deposition
US8617965B1 (en) 2004-02-19 2013-12-31 Partial Assignment to University of Central Florida Apparatus and method of forming high crystalline quality layer
US8828769B2 (en) 2008-12-02 2014-09-09 University Of Central Florida Energy conversion device
US8912549B2 (en) 2005-01-26 2014-12-16 University Of Central Florida Optical device and method of making
WO2022052334A1 (en) * 2020-09-11 2022-03-17 江苏大学 Room-temperature nitriding process based on thermal-mechanical effects of laser, and processing device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231822A (en) * 1983-06-14 1984-12-26 Toshiba Corp Formation of nitride film
JPH0429222B2 (en) * 1983-06-14 1992-05-18
EP0766294A2 (en) * 1995-09-29 1997-04-02 Canon Kabushiki Kaisha Thin film semiconducteur devices and methods of manufacturing the same
EP0766294A3 (en) * 1995-09-29 1998-03-04 Canon Kabushiki Kaisha Thin film semiconducteur devices and methods of manufacturing the same
US6214684B1 (en) 1995-09-29 2001-04-10 Canon Kabushiki Kaisha Method of forming a semiconductor device using an excimer laser to selectively form the gate insulator
US7618880B1 (en) * 2004-02-19 2009-11-17 Quick Nathaniel R Apparatus and method for transformation of substrate
US8617965B1 (en) 2004-02-19 2013-12-31 Partial Assignment to University of Central Florida Apparatus and method of forming high crystalline quality layer
US7897492B2 (en) * 2004-02-19 2011-03-01 Quick Nathaniel R Apparatus and method for transformation of substrate
US8080836B2 (en) 2004-06-01 2011-12-20 University Of Central Florida Embedded semiconductor component
US8393289B2 (en) 2004-07-26 2013-03-12 University Of Central Florida Laser assisted nano deposition
US8912549B2 (en) 2005-01-26 2014-12-16 University Of Central Florida Optical device and method of making
US7811914B1 (en) 2006-04-20 2010-10-12 Quick Nathaniel R Apparatus and method for increasing thermal conductivity of a substrate
US8722451B2 (en) 2006-09-12 2014-05-13 University Of Central Florida Solid state energy photovoltaic device
US8067303B1 (en) 2006-09-12 2011-11-29 Partial Assignment University of Central Florida Solid state energy conversion device
US8114693B1 (en) 2007-09-18 2012-02-14 Partial Assignment University of Central Florida Method of fabricating solid state gas dissociating device by laser doping
US8674373B2 (en) 2007-09-18 2014-03-18 University Of Central Florida Solid state gas dissociating device, solid state sensor, and solid state transformer
US8828769B2 (en) 2008-12-02 2014-09-09 University Of Central Florida Energy conversion device
WO2022052334A1 (en) * 2020-09-11 2022-03-17 江苏大学 Room-temperature nitriding process based on thermal-mechanical effects of laser, and processing device
GB2614984A (en) * 2020-09-11 2023-07-26 Univ Jiangsu Room-temperature nitriding process based on thermal-mechanical effects of laser, and processing device
GB2614984B (en) * 2020-09-11 2024-02-14 Univ Jiangsu Room-temperature nitriding process based on thermal-mechanical effects of laser, and processing device

Similar Documents

Publication Publication Date Title
JPS5895830A (en) Manufacture of semiconductor device
JPS56135969A (en) Manufacture of semiconductor device
EP0248445A3 (en) Semiconductor device having a diffusion barrier and process for its production
JPS56142630A (en) Manufacture of semiconductor device
JPH0231493B2 (en)
US2898247A (en) Fabrication of diffused junction semi-conductor devices
KR920003414A (en) High melting point metal growth method
JPS637624A (en) Method of diffusing material providing conductivity type into compound semiconductor material of group iii-v
FR2371777A1 (en) METHOD OF MANUFACTURING A SILICON NITRIDE DIFFUSION BARRIER ON A SEMICONDUCTOR SUBSTRATE, IN PARTICULAR OF THE III-V TYPE
JPS5737830A (en) Manufacture of semiconductor device
JPS5615070A (en) Semiconductor device
KR950001931A (en) Heat treatment method of semiconductor substrate
JPS6223453B2 (en)
JPS59103375A (en) Manufacture for semiconductor device with shottky junction
JPH0212010B2 (en)
JPS5918635A (en) Mask for x-ray lithography
JPS61191016A (en) Manufacture of semiconductor substrate
JPS6116530A (en) Manufacture of semiconductor device
EP0023925A4 (en) Method of producing insulating film for semiconductor surfaces and semiconductor device with such film.
JPS57104230A (en) Semiconductor device and its manufacture
JP2711959B2 (en) Method of forming nitride film of group III element
JPH01235333A (en) Heat treatment of iii-v compound semiconductor
SU563704A1 (en) Method of manufacturing the semi-conductors
JPS62141727A (en) Manufacture of semiconductor device
JPS566434A (en) Manufacture of semiconductor device