JPS5895667A - Silicon carbide ceramic body bonding method and device - Google Patents

Silicon carbide ceramic body bonding method and device

Info

Publication number
JPS5895667A
JPS5895667A JP19208681A JP19208681A JPS5895667A JP S5895667 A JPS5895667 A JP S5895667A JP 19208681 A JP19208681 A JP 19208681A JP 19208681 A JP19208681 A JP 19208681A JP S5895667 A JPS5895667 A JP S5895667A
Authority
JP
Japan
Prior art keywords
silicon
silicon carbide
carbide ceramic
powder
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19208681A
Other languages
Japanese (ja)
Other versions
JPH0362669B2 (en
Inventor
長谷 貞三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP19208681A priority Critical patent/JPS5895667A/en
Publication of JPS5895667A publication Critical patent/JPS5895667A/en
Publication of JPH0362669B2 publication Critical patent/JPH0362669B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発l81IFi炭化珪素セラミック体の接合方法およ
びそのji[に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of joining an I81IFi silicon carbide ceramic body and its ji[.

炭化珪素は自動車用jスタービンエンジンの燃焼筒、ス
クロール又はタービン冒−ター郁材等の材料として目下
開発が進められている材料であり41500℃の高温に
至るまで強旋が低下しないという長所を有している。か
\る材料を柳造材料あるいは一般の高温工業材料として
利用するには加工性の点で大形のものよシ小形のものが
製造し中すいので小形物を接合して大形物とする方法が
望ましい。
Silicon carbide is a material that is currently being developed as a material for combustion tubes, scrolls, and turbine exhaust materials for automobile turbine engines, and has the advantage of not decreasing its strong rotation even at temperatures as high as 41,500°C. are doing. In order to use such materials as willow construction materials or general high-temperature industrial materials, it is easier to manufacture small ones than large ones from the viewpoint of workability, so small pieces are joined to make large ones. method is preferred.

かような炭化珪素セラさツクス体を接合するには従来の
技術では上記のセラiyり体相互の間に炭化珪素と炭素
の均一混合粉末の属を挟み、該混合粉末中の炭素を炭化
珪素に変えるに十分な量の金属珪素粉末を接合層の周囲
に置いて加熱溶融し、溶融し九珪素を層内に浸入せしめ
て炭素を炭化珪素に変えるとともに、炭化珪素を焼結し
て接合を完成させていた。
In order to join such silicon carbide ceramic bodies, the conventional technique involves sandwiching a homogeneous mixed powder of silicon carbide and carbon between the ceramic bodies, and then transferring the carbon in the mixed powder to silicon carbide. A sufficient amount of metallic silicon powder is placed around the bonding layer and heated and melted to allow the melted silicon to infiltrate into the layer, converting the carbon into silicon carbide, and sintering the silicon carbide to form the bond. I had completed it.

しかるKこの方法は被接合材と、接合材を狭い接合部分
に配置するための治具を炉内に入れなければならず、炉
内加熱物の容積が大きく表って、操作し難いと同時に熱
経済的にも不利益であ5丸。
However, this method requires that the materials to be joined and a jig for placing the materials to be joined in the narrow joint area be placed in the furnace, which increases the volume of the heated material in the furnace and makes it difficult to operate. It's thermoeconomically disadvantageous, so it's 5 circles.

本発明は上記の問題を解決し、接合部にのみ溶融珪素を
流下させることにより複雑な構成物の接合ができ、支持
治具を簡略化し得る接合方法と、自由に移動できる溶融
珪素容器によって複雑な形状の接合層に%溶融珪素を供
給できるようにした接合装置を提供することを目的とす
る本のである。
The present invention solves the above problems and allows complex structures to be joined by allowing molten silicon to flow down only to the joint, and provides a joining method that can simplify the support jig and a freely movable molten silicon container. The purpose of this book is to provide a bonding device that can supply % molten silicon to a bonding layer having a specific shape.

本発明の炭化珪素セラミックスの接合方法は炭化珪素と
炭素との均−混合物粉末を、接合後に生成する炭化珪素
接合層内の遊離珪素の含有量が5ないし15体積−とな
るような密度で、接合すべき炭化珪素セラミック体間に
はソ均一な厚さに挟み、該炭化珪素セラ電ツク体とは隔
離された容器中の溶融珪素を上記の均−混合粉末部に流
下させて該混合粉末層内に浸入させ炭化珪素を形成せし
めるととKよって接合を完了することを特徴とする◇ 又本発明の装置は加熱用発熱体と加圧又は、真空緋気用
配管を備え左右に移動できる相遇と、皺相遇の下部のα
05ないしα2■の口径を有するノズルの下で被接合材
を水平に支持し、水平方向の移動と回転が可能な支持具
とからな夛、且つ被接合材を真空下で加熱するための発
熱体と、真空排気管とを備えたことを特徴とする。
The method for bonding silicon carbide ceramics of the present invention is to prepare a homogeneous mixture powder of silicon carbide and carbon at a density such that the free silicon content in the silicon carbide bonding layer produced after bonding is 5 to 15 volumes. The mixed powder is sandwiched between the silicon carbide ceramic bodies to be joined to have a uniform thickness, and the molten silicon in a container separated from the silicon carbide ceramic bodies is poured into the uniformly mixed powder section. The device is characterized in that the bonding is completed by K infiltrating into the layer to form silicon carbide.◇ The device of the present invention is also equipped with a heating element and piping for pressure or vacuum, and can be moved from side to side. Mutual treatment and the lower α of wrinkled mutual treatment
The material to be welded is horizontally supported under a nozzle having a diameter of 0.5 to α2. The material to be welded is supported horizontally and is movable and rotated in the horizontal direction. It is characterized by having a body and a vacuum exhaust pipe.

本発明の方法により生成される接合材層は炭化珪素の焼
結体よりなシ、焼結前の均一混合粉末層中には溶融珪素
の浸入を容易にするため、焼結後5ないし15−の遊離
珪素が存在し得るような気孔を存在せしめることが好ま
しい。溶融珪素の流下に際しては該溶融珪素の浸入を容
易にするため1mHf以下の減圧下で実施することが好
ましい。金属珪素の融点は1410℃で、融点では直ち
に炭素と反応して発熱し、反応の最も盛な部分では約1
600℃に達する。
The bonding material layer produced by the method of the present invention is made of a sintered body of silicon carbide. It is preferable to provide pores such that free silicon can exist. When flowing down the molten silicon, it is preferable to carry out under reduced pressure of 1 mHf or less in order to facilitate the penetration of the molten silicon. The melting point of metallic silicon is 1410°C, and at the melting point it immediately reacts with carbon and generates heat, and at the most active part of the reaction, about 1
It reaches 600℃.

前記混合粉末よ塾々る接合材層の厚さはα05ないしC
LS諺が好ましい。
The thickness of the bonding material layer mixed with the mixed powder is α05 to C.
LS proverbs are preferred.

αSWt以上の厚さでは接合強度が低下し、105以下
にするのは操業上困難である。
If the thickness exceeds αSWt, the bonding strength decreases, and it is operationally difficult to reduce the thickness to 105 or less.

被接合材の炭化珪素セラミックスとしては炭化珪素粉末
と炭素粉末の均一混合物に溶融珪素を含浸して得られる
炭化珪素焼結体、あるいは炭化珪素粉末と有機バインダ
ーである熱可塑性樹脂との混合物を射出成形した粉末成
形体を脱脂、焼結して得られる炭化珪素焼結体などがあ
げられる0本発明装置の一例を図面に従って説明すると
、被接合材2を軸方向の両端で支持する構成体支持具1
.1と被接合材2の上方に坩シ!15が電気炉6内に設
けられておシ、電気炉6の被接合材2儒と相遇5内の溶
融珪素7とは接しないようになってお〉電気炉6内は真
空排気管13により減圧される一方、溶融珪素7はアル
ゴン抑圧管10から導入されるアルゴンガスによ〉加圧
されるようKなっている0 6bは電気炉カバーで相遇5と電気炉6とを隔離してい
る。
As the silicon carbide ceramic material to be joined, a silicon carbide sintered body obtained by impregnating molten silicon into a uniform mixture of silicon carbide powder and carbon powder, or a mixture of silicon carbide powder and a thermoplastic resin as an organic binder is injected. A silicon carbide sintered body obtained by degreasing and sintering a molded powder compact can be mentioned. An example of the apparatus of the present invention will be described with reference to the drawings. Ingredients 1
.. Crucible above 1 and workpiece 2! 15 is provided in the electric furnace 6 so that the material to be welded in the electric furnace 6 does not come into contact with the molten silicon 7 in the contact 5. While being depressurized, the molten silicon 7 is pressurized by argon gas introduced from the argon suppression pipe 10.06b is an electric furnace cover that isolates the exchange 5 and the electric furnace 6. .

相遇5は例えば等方質高密度黒鉛製坩媒で下部には同質
か又は炭化珪素焼結体でつくられ九溶融珪素流下ノズル
4を備え、その外周には高周波誘導加熱コイル51など
の加熱手段が設けられている0ノズル4は接合材43の
厚さくα05〜15mm)K応じてそれとはy等しいが
や\小さい(LO5ないしくL2mの口径を有する。又
、相通5は高周波誘導加熱コイル5aKよシ、移動範囲
を制限されるが、移動装置8と移動用同期モーター9の
作動によって左右に移動できる。
The support 5 is, for example, an isotropic high-density graphite crucible medium, and the lower part thereof is made of a homogeneous or silicon carbide sintered body and is equipped with a molten silicon flow down nozzle 4, and around its outer periphery is a heating means such as a high-frequency induction heating coil 51. 0 nozzle 4 is provided with a diameter of LO5 or L2m (according to the thickness of the bonding material 43 α05 to 15 mm), which is equal to y but slightly smaller (having a diameter of LO5 to L2m). Although the movement range is limited, it can be moved left and right by the operation of the movement device 8 and the movement synchronous motor 9.

構成体支持具1は等方質高密度黒鉛郷の耐蝕耐熱性部材
で構成され、電気炉6の左右両壁部で金属材料によυ軸
支された形で設けられてお〉、電気炉6外の構成体回転
用同期モーター::t 2により、被接合材20円周方
向に回転されるとともに1軸方向く左右に移動できるよ
うになつている。なお図中、61は黒鉛発熱体等の被接
合材2用の加熱手段を示す◇ 電気炉6内の加熱部以外は断熱され、主要部には冷却設
備が施してあり、外気とは0リングやゴム又はバッキン
グで真空封じがしである。
The component support 1 is made of a corrosion-resistant and heat-resistant member made of isotropic high-density graphite material, and is provided in the form of being supported by a metal material on both the left and right walls of the electric furnace 6. A synchronous motor for rotating the components other than 6::t2 allows the workpiece 20 to be rotated in the circumferential direction and moved left and right in one axis direction. In the figure, 61 indicates a heating means for the material 2 to be joined, such as a graphite heating element. ◇ All parts other than the heating part in the electric furnace 6 are insulated, the main parts are equipped with cooling equipment, and there is an O-ring with the outside air. Vacuum sealed with rubber or backing.

以下、実施例により本発明を更に詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 炭化珪素粉末(不二見研摩材工業製、GC#2000、
$4000および@s o o oを7:2:1の比で
混合した本の)とカーボンブラック(三菱化成工業蛛)
製ダイアブラック■)とを重量比でt8対1に均一混合
した粉末r:195fをフル7リールアルコールとフラ
ン樹脂の混合111に分散し接合材とし九〇 被接合材2の反応焼結炭化珪素管(外径88鳩内径52
W1長さ150m)の接合部に上記の接合材を塗布した
後、構成体支持具1.1で支持し、第1図のように接合
部を嵌合した。更に被接合材2,2の両端から圧力を加
えて接合材層の厚さ゛がα15■で嵩比重がおよそt5
7f/cdになるようにした。次に真空排気管9により
電気炉6内を1■H1以下の真空とし黒鉛発熱体6aに
より被接合材2を1450℃に加熱した0 別に接合材層3の上方に設置した坩堝5の中には真空排
気管10によシ排気した後高周波銹導−加熱コイル5a
によシ加熱溶融した珪素1tが入っておシ、内径α15
■のノズル4から接合材層3に流下せしめるとと4に、
被接合材2.2の両端から5ないし3004/−の圧力
を加える。構成体支持具1は坩1@sの移動と同期して
被接合材2を回転させることができる。予め接合材層3
の形状を規定して電気炉6内の所定位置で被接合材2を
保持し、プログラミングによるコンピー−ター制御で接
合材層3に沿りて溶融珪素7を流下する。溶融珪素7は
自重又は排気管を兼ねえアルゴン抑圧管10から導入さ
れるアルゴンガスで加圧することkよシノズル4から流
下させる。流下量はノズルの径にようてきまシ、この場
合社115mmの均一な厚さの接合材層が得られるよう
制御されている。
Example silicon carbide powder (manufactured by Fujimi Abrasive Industries, GC#2000,
$4000 and @s o o o mixed in a ratio of 7:2:1) and carbon black (Mitsubishi Kasei Corporation)
Powder r: 195f, which is a uniform mixture of Diablack manufactured by Diablack ■) at a weight ratio of t8 to 1, is dispersed in a mixture of full 7 reel alcohol and furan resin 111 and used as a bonding material. Pipe (outer diameter 88 pigeon inner diameter 52
After applying the above-mentioned bonding material to the joint with a length W1 of 150 m), the structure was supported by the structure support 1.1, and the joint was fitted as shown in FIG. Furthermore, pressure is applied from both ends of the materials to be joined 2, 2, so that the thickness of the joining material layer is α15 and the bulk specific gravity is approximately t5.
I set it to 7f/cd. Next, the inside of the electric furnace 6 was evacuated to 1 H1 or less using the vacuum exhaust pipe 9, and the materials 2 to be joined were heated to 1450°C using the graphite heating element 6a. After evacuating through the vacuum exhaust pipe 10, the high frequency induction heating coil 5a is
Contains 1 ton of heated and melted silicon, inner diameter α15
When the water is allowed to flow down from the nozzle 4 to the bonding material layer 3,
A pressure of 5 to 3004/- is applied from both ends of the material to be joined 2.2. The structure support 1 can rotate the workpiece 2 in synchronization with the movement of the crucible 1@s. Bonding material layer 3 in advance
The material to be joined 2 is held at a predetermined position in the electric furnace 6 by defining the shape, and the molten silicon 7 is flowed down along the joining material layer 3 under computer control using programming. The molten silicon 7 is made to flow down from the nozzle 4 by pressurizing it with its own weight or with argon gas introduced from the argon suppression pipe 10 which also serves as an exhaust pipe. The amount of flow is controlled according to the diameter of the nozzle, so that a bonding material layer with a uniform thickness of 115 mm in this case can be obtained.

反応焼結中、炉内の雰囲気は常K 1 wHf以下に保
持し、溶融珪素を全量流下して接合を完了する 実施例2 実施例1で試作した接合管内へプロパンガス/酸素炎を
吹き込んで10分間の加熱(管内壁の温度は約600℃
)を行った後、外部から圧縮空気を吹きつけて冷却した
。このような操作を1サイクルとして1000回繰返し
たが何ら欠陥を生じなかった。
Example 2 During reaction sintering, the atmosphere in the furnace was maintained at below K 1 wHf, and the entire amount of molten silicon was flowed down to complete the bonding.A propane gas/oxygen flame was blown into the bonding tube prototyped in Example 1. Heating for 10 minutes (the temperature of the inner wall of the tube is approximately 600℃)
), then it was cooled by blowing compressed air from outside. This operation was repeated 1000 times as one cycle, but no defects occurred.

従来の接合方法で社被接合材と接合材を配置する治具と
が隔てられてなかりた為、接合体が未反応珪素によりて
治具に固着し、接合体を攻出すには治具を切断破壊しな
ければならなかったが、本発明の方法および装置によシ
、接合部の形状が禎雑なもので4、壕械的に接合部分に
溶融珪素を流下でき、強固な接合体を得ることができる
ようになつた。
In conventional bonding methods, the bonded material and the jig for placing the bonded material were not separated, so the bonded object was stuck to the jig due to unreacted silicon, and the jig was required to attack the bonded object. However, with the method and apparatus of the present invention, molten silicon can be mechanically flowed down to the joints even if the joints have an irregular shape, and a strong joint can be created. Now you can get

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による接合状況を示す説明図、第2図は
本発明の製造装置の模式断面図を表わすO 図中、 1・・・構成体支持具 2・・・被接合材3・・・接合
材層   4・−・ノズル5・・・坩>l      
s a ・=高周波誘導加熱コイル6・・・電気炉  
 61−・・黒鉛抵抗発熱体6b・・・電気炉カバン 
7・・・溶融珪素8・・・珪過移動装置 !・・・移動
用同期モーター10・・・アルゴン抑圧管(真空排気管
)11・−・珪素投入口 12・・・構成体回転用同期モーター 15・・・真空排気管 矛1 図    3
FIG. 1 is an explanatory diagram showing a welding situation according to the present invention, and FIG. 2 is a schematic cross-sectional view of a manufacturing apparatus according to the present invention.・・Binding material layer 4・−・Nozzle 5・・Crucible>l
s a = high frequency induction heating coil 6... electric furnace
61-...Graphite resistance heating element 6b...Electric furnace bag
7... Molten silicon 8... Silica transfer device! ... Synchronous motor for movement 10 ... Argon suppression tube (vacuum exhaust pipe) 11 ... Silicon inlet 12 ... Synchronous motor for rotating the component 15 ... Vacuum exhaust pipe spear 1 Figure 3

Claims (1)

【特許請求の範囲】 (13m化珪素と縦索との均−混食物粉末を、接金後に
生成する炭化珪素接合層内の遊離珪素の含有量がStい
しis体積−となるような豐駄て接合すべき炭化珪素セ
ランツク体間には!均一な厚さで挾与、該炭化珪素セラ
之ツク体とは隔離された容器中OSm珪素を上記の均−
温会看末部に流下させて炭化珪素を形成せしむることに
よって接合することを特徴とする炭化珪素−4!ツンツ
ク体の接合方法。 (2)炭化珪素セラ之ツク体が真空中、1420ないし
1・00℃に加熱され丸状1iKおかれ溶融珪素の流下
がS融珪素の自重あるいは不活性気体の圧力による特許
請求の範1i1)J記載の方法。 ―) 加熱用発熱体と加圧又は真空排気用配管を備え左
右移動できる坩堝と、該坩堝の下部の亀Os ないし1
2−0g径を有するノズルの下で被接合材を水平に支持
し、水平方向の移動と一転が可能な支持具とからなシ、
且つ被接合材を真空下で加熱するための発熱体と真空排
気管とを備えStとを特徴とする縦化珪素セラ建ツク体
の接金装置。
[Scope of Claims] (A homogeneous mixed powder of silicon 13m and longitudinal cables is made into a powder such that the content of free silicon in the silicon carbide bonding layer formed after welding is St isis volume - The silicon carbide ceramic bodies to be bonded are interposed with a uniform thickness, and the OSm silicon is placed in a container separated from the silicon carbide ceramic bodies with the above-mentioned uniform thickness.
Silicon carbide-4, which is characterized in that it is bonded by flowing down to the end of a warm temperature to form silicon carbide! How to join Tsuntsuku body. (2) A silicon carbide ceramic body is heated in a vacuum to 1420 to 1.00°C and placed in a round shape, and the molten silicon flows down due to the weight of the S-fused silicon or the pressure of an inert gas.Claim 1i1) The method described in J. -) A crucible that is equipped with a heating element and piping for pressurization or evacuation and can be moved from side to side, and a turtle Os to 1 at the bottom of the crucible.
A supporting tool that horizontally supports the material to be welded under a nozzle having a diameter of 2-0 g and is capable of horizontal movement and rotation,
A welding apparatus for a vertical silicon ceramic structure, further comprising a heating element for heating materials to be welded under vacuum and a vacuum exhaust pipe.
JP19208681A 1981-11-30 1981-11-30 Silicon carbide ceramic body bonding method and device Granted JPS5895667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19208681A JPS5895667A (en) 1981-11-30 1981-11-30 Silicon carbide ceramic body bonding method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19208681A JPS5895667A (en) 1981-11-30 1981-11-30 Silicon carbide ceramic body bonding method and device

Publications (2)

Publication Number Publication Date
JPS5895667A true JPS5895667A (en) 1983-06-07
JPH0362669B2 JPH0362669B2 (en) 1991-09-26

Family

ID=16285409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19208681A Granted JPS5895667A (en) 1981-11-30 1981-11-30 Silicon carbide ceramic body bonding method and device

Country Status (1)

Country Link
JP (1) JPS5895667A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213680A (en) * 1983-04-12 1984-12-03 テンマット リミテッド Method of bonding silicon carbide article
US4987103A (en) * 1986-04-09 1991-01-22 Nippon Pillar Packing Co., Ltd. Slider composed of a high-density silicon carbide sintered compact
JP2013203586A (en) * 2012-03-28 2013-10-07 Mitsui Mining & Smelting Co Ltd Apparatus for producing ceramic joint body
WO2014179203A1 (en) * 2013-04-30 2014-11-06 Corning Incorporated A sealing method for silicon carbide parts used at high temperatures

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54157946U (en) * 1978-04-26 1979-11-02
JPS553384A (en) * 1978-06-09 1980-01-11 Norton Co Method of adhering siliconndenatured silicon carbide element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54157946U (en) * 1978-04-26 1979-11-02
JPS553384A (en) * 1978-06-09 1980-01-11 Norton Co Method of adhering siliconndenatured silicon carbide element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213680A (en) * 1983-04-12 1984-12-03 テンマット リミテッド Method of bonding silicon carbide article
US4987103A (en) * 1986-04-09 1991-01-22 Nippon Pillar Packing Co., Ltd. Slider composed of a high-density silicon carbide sintered compact
JP2013203586A (en) * 2012-03-28 2013-10-07 Mitsui Mining & Smelting Co Ltd Apparatus for producing ceramic joint body
WO2014179203A1 (en) * 2013-04-30 2014-11-06 Corning Incorporated A sealing method for silicon carbide parts used at high temperatures

Also Published As

Publication number Publication date
JPH0362669B2 (en) 1991-09-26

Similar Documents

Publication Publication Date Title
US4420352A (en) Absorbable-susceptor joining of ceramic surfaces
KR100999216B1 (en) Method of heating casting mold
US3101403A (en) Method of joining carbon
JP3315414B2 (en) Method and apparatus for joining thick wall ceramic parts by microwave
CA1160579A (en) Binderless ceramic or ceramic oxide hollow body and method for its manufacture
CN111185686A (en) Method for in-situ connection of SiC/SiC core cladding tube by adopting Zr alloy end plug
JPS5895667A (en) Silicon carbide ceramic body bonding method and device
JP7516436B2 (en) Joining and sealing of pressed ceramic components
CN108555476B (en) Composite brazing filler metal for brazing quartz fiber reinforced composite ceramic and Invar alloy and preparation method and brazing method thereof
JP3573815B2 (en) Cooling device manufacturing method
CN104191099A (en) WC particle reinforced composite brazing filler metal used for brazing hard alloy and preparation method thereof
WO1992014686A1 (en) Method of bonding ceramics together and insert material for heat bonding
JPS59501592A (en) Method of manufacturing thermally insulated objects
JPS5835954B2 (en) Method for bonding metal-ceramic multilayer abradable composites to metallic substrates
US5071685A (en) Ceramic articles, methods and apparatus for their manufacture
JPH0852566A (en) Removal of wax from structure using powdery wick acting material
JP2003113565A (en) Formed glassfiber article and forming method therefor
US3286343A (en) Method of preparation of a composite guide tube for nuclear reactor, and devices for the practical application of same
JPS5841774A (en) Manufacture of ceramic-metal composite body
CN108927439B (en) A kind of material billow forming processing method based on chemical reaction
US3985989A (en) Method and apparatus for joining appendages to a zirconium alloy member
JPH0233676B2 (en) TANKAKEISO * KINZOKUFUKUGOKANOYOBISONOSEIZOHOHO
JPS6271513A (en) Method of fixing end part of gas separation module
JPS5884182A (en) Manufacture of silicon carbide sintered body and device therefor
JP2801973B2 (en) Ceramic joining method