JPS6271513A - Method of fixing end part of gas separation module - Google Patents

Method of fixing end part of gas separation module

Info

Publication number
JPS6271513A
JPS6271513A JP21054085A JP21054085A JPS6271513A JP S6271513 A JPS6271513 A JP S6271513A JP 21054085 A JP21054085 A JP 21054085A JP 21054085 A JP21054085 A JP 21054085A JP S6271513 A JPS6271513 A JP S6271513A
Authority
JP
Japan
Prior art keywords
sealing material
powder
porous
gas separation
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21054085A
Other languages
Japanese (ja)
Inventor
Eiji Taketomo
竹友 栄治
Masaru Saruwatari
猿渡 勝
Masaya Shirato
白土 昌冶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21054085A priority Critical patent/JPS6271513A/en
Publication of JPS6271513A publication Critical patent/JPS6271513A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily fix the end part of a gas separation module using porous material pipes by embedding the end part of the pipe in inorg. granular particles having <=35 deg. angle of repose and higher sp.gr. than a sealing material and then packing the sealing material. CONSTITUTION:Inorg. granular particles 5 having <=35 deg. angle of repose, a low thermal expansion coefficient and heat resistance are uniformly packed in many clearances at the end parts of many porous glass tubes 4. About 32-60-mesh granular particles 5 are used. The sp.gr of the granular particle 5 must be sufficiently higher than that of a sealing liq. After the granular particles 5 are densely packed, a liq. caking or curable sealing material is filled in the clearances in the granular particle-packed layer in a wet state. The sealing material need not be liq. at ordinary temp. and the materials which is liquefied by heating or whose viscosity is remarkably decreased on heating can be used.

Description

【発明の詳細な説明】 (産業上の利用分野) 近年、安価な省エネ的ガス分離技術として、膜によるガ
ス分離技術が注目され、工業的実用化のための研究がさ
かんに行われているう工業的実用化のためには高い分離
機能を有する分離膜素材の開発とともに、安価かつコン
パクトで信頼できるモジュールの開発が重要である。本
発明は多孔質材料管を利用したガス分離モジュールの製
作法に関するもので、さらに詳述するとガス分離モジュ
ールの端部固定法に関するものである。
[Detailed Description of the Invention] (Field of Industrial Application) In recent years, gas separation technology using membranes has attracted attention as an inexpensive and energy-saving gas separation technology, and research is being actively conducted for its industrial practical application. For industrial practical application, it is important to develop separation membrane materials with high separation performance as well as inexpensive, compact, and reliable modules. The present invention relates to a method for manufacturing a gas separation module using porous material tubes, and more specifically, to a method for fixing the ends of a gas separation module.

(従来技術] 安価かつ容易に外管に多数本の多孔質材料管全内蔵する
ガス分離モジュールを製作するに際してモジュールの端
部をシール材で固定する方法については、本発明者等は
すでに特開昭第60−19020号、第60−1220
08号および第’60−122027号公報に提案した
。これらの方法で製作されたガス分離モジュールは、低
温低圧たとえば50℃。
(Prior Art) The present inventors have already disclosed a method for fixing the ends of the module with a sealing material when manufacturing a gas separation module that has a large number of porous material tubes built into the outer tube at low cost and easily. Showa No. 60-19020, No. 60-1220
No. 08 and '60-122027. Gas separation modules manufactured by these methods are manufactured at low temperature and low pressure, for example, 50°C.

5気圧で操作される場合には特に問題はない。しかしな
がら、高温高圧たとえば200℃、20気圧で操作した
い場合には耐熱耐圧性に難点があり、このような操作条
件では使用することができない。
There are no particular problems when operating at 5 atmospheres. However, when it is desired to operate at high temperature and high pressure, such as 200° C. and 20 atm, there is a problem in heat and pressure resistance, and it cannot be used under such operating conditions.

C発明の目的) 本発明はかかる問題を克服し、安価かつ容易に多数本の
多孔質無機材料管を内蔵するガス分離モジュールを製作
することが可能なモジュール端部の固定法を提供するこ
とを目的とする。
(Objective of the Invention) The present invention aims to overcome such problems and provide a method for fixing the ends of a module that can inexpensively and easily manufacture a gas separation module incorporating a large number of porous inorganic material tubes. purpose.

(発明の構成および作用) 本発明は前記従来の問題点を無機粉粒体と液状の固化性
もしくは硬化性シール材を用いてモジュールの端部を固
定することによシ解決したもので、その要旨は次のとお
シである。
(Structure and operation of the invention) The present invention solves the above-mentioned conventional problems by fixing the ends of the module using inorganic powder and granular material and a liquid solidifying or hardening sealant. The summary is as follows.

(1)  両端が開口した筒をほぼ直立状にして、その
下端部は液状の同化性若しくは硬化性シール材がもれな
い程度に閉鎖し、この筒の内部に少くとも端部が空隙を
有するように複数の多孔質無機材料管を挿入配置した状
態で端部を液状の固化性若しくは硬化性シール材で固定
する方法において、前記複数の多孔質無機材料管を挿入
配置した筒の中に安息角が35度以下で且つ前記のシー
ル材よりも比重の大きい無機粉粒体を装入して前記多孔
質無機材料管の端部が埋没するように充填させ、ついで
液状の固化性若しくは硬化性シール材を注入して無機粉
粒体層内部の空隙を混相充填し、しかるのち前記シール
材を固化若しくは硬化させることを特徴とするガス分離
モジュールの端部固定法。
(1) A cylinder that is open at both ends is made into a substantially upright shape, the lower end of which is closed to the extent that liquid assimilable or curable sealing material does not leak, and there is a void inside the cylinder at least at the ends. In a method in which a plurality of porous inorganic material tubes are inserted and arranged and their ends are fixed with a liquid solidifying or hardening sealant, the plurality of porous inorganic material tubes are inserted and arranged to rest in a tube. An inorganic powder having an angle of 35 degrees or less and a specific gravity higher than that of the sealing material is charged so that the end of the porous inorganic material tube is buried, and then a liquid solidifying or hardening material is charged. 1. A method for fixing an end of a gas separation module, which comprises injecting a sealing material to fill voids inside an inorganic powder layer with a mixed phase, and then solidifying or hardening the sealing material.

(2)無機粉粒体を装入しながら、あるいは装入後、振
動を与えて粉粒体を充填させる上記第1項記載の方法。
(2) The method according to item 1 above, wherein vibration is applied while or after charging the inorganic powder to fill the powder.

(3)無機粉粒体とシール材のいずれか一方、あるいは
双方を加熱して使用する上記第1項記載の方法。
(3) The method according to item 1 above, wherein either or both of the inorganic powder and the sealant are heated.

(4)  シール材として低粘度無溶剤型ポリイミドワ
ニスを用いる上記第1項記載の方法。
(4) The method according to item 1 above, in which a low-viscosity, solvent-free polyimide varnish is used as the sealing material.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

ガス分離モジュールの耐熱、耐圧性を改善するためには
使用される温度、圧力で十分な接着力と耐圧強度をもつ
シール材で多数本の多孔質無機材料管の端部を固定し、
気密にシールする必要がある。この場合、多数本の多孔
質無機材料管束の端部の間隙にシール材全均−に充填し
なければならないため、シール材は液状である必要があ
り、加熱溶融し次液状のシール材を注入したのち冷却固
化させたシ、あるいは、液状の熱硬化性シール材を注入
し゛たのち加熱硬化させる方法が考えられる。
In order to improve the heat and pressure resistance of the gas separation module, it is necessary to fix the ends of multiple porous inorganic material tubes with a sealing material that has sufficient adhesive strength and pressure resistance at the temperature and pressure used.
Must be sealed airtight. In this case, the sealing material must be evenly filled into the gaps at the ends of a bundle of multiple porous inorganic tubes, so the sealing material must be in liquid form, and the liquid sealing material must be melted by heating and then injected. Possible methods include cooling and solidifying the material, or injecting a liquid thermosetting sealant and then heating and hardening it.

しかしながら、一般に固化もしくは硬化したシール材と
多孔質材料管の熱膨張係数の差異が大きすぎるため、冷
却した場合に間亀を生・しる。
However, since the difference in coefficient of thermal expansion between the solidified or hardened sealing material and the porous material tube is generally too large, cracks occur when the sealing material is cooled.

例えば、硬化性シール材として特にすぐれた低粘度無溶
剤型ポリイミドワニス(商品名: IMID−ALLO
Y;東芝ケミカル(株)製)を用いて多孔質ガラス管の
端部を固定してモジュールを製作する場合、加熱硬化後
のポリイミド樹脂の熱膨張係数が多孔質ガラス管のそれ
の100倍大きいため、硬化温度から常温に冷却すると
残留応力によってガラス管に割−れを生じたりポリイミ
ド樹脂に割れを生じたシする。これをさけるためには常
温で硬化するシール材を用いるか、固化後あるいは硬化
後のシール材が比較的軟質で変形しやすいものでなくて
はならず、このようなシール材では高温もしくは高圧に
耐えることはできない。また、熱膨張係数の差異の問題
は裏作したモジュールを高温のガスの処理に使用する際
にも生ずる。
For example, low viscosity solvent-free polyimide varnish (trade name: IMID-ALLO), which is particularly excellent as a curable sealant,
Y: When manufacturing a module by fixing the end of a porous glass tube using Toshiba Chemical Co., Ltd., the coefficient of thermal expansion of the polyimide resin after heat curing is 100 times larger than that of the porous glass tube. Therefore, when the resin is cooled from the curing temperature to room temperature, residual stress may cause cracks in the glass tube or cracks in the polyimide resin. To avoid this, it is necessary to use a sealing material that hardens at room temperature, or the sealing material must be relatively soft and easily deformed after solidifying or hardening. I can't stand it. Further, the problem of differences in thermal expansion coefficients also occurs when a manufactured module is used for processing high-temperature gases.

本発明者等は、気密にシールしようとする間隙に、まず
、無機粉粒体を充填したのち、液状の固化性もしくは硬
化性シール材を無機粉粒体層内部の空隙に湿潤充填し、
しかるのち固化もしくは硬化させることにより、熱膨張
係数の差異にもとづく残留応力による割れの問題を解決
できることを見い出した。
The present inventors first filled the gap to be airtightly sealed with inorganic powder, and then wet-filled the gap inside the inorganic powder layer with a liquid solidifying or hardening sealing material.
It has been found that by subsequently solidifying or hardening, it is possible to solve the problem of cracking due to residual stress caused by differences in thermal expansion coefficients.

粉粒体は特に限定しないが、熱膨張係数が小さく、耐熱
性がありかつ安価な無機物が好ましく、例えばアルミナ
粉、シリカ粉、シャモット粉、ガラス粉、スラグ粉など
が利用できる。多数本の多孔質無機材料管の端部の多数
のせまい間隙に粉粒体を均一に充填するために粉粒体の
安息角はできるだけ小さいものが望ましく、35°以下
、好ましくは25°以下が良い。安息角が35°よりも
太きいと、多数本の多孔質材料管の端部の多数のせまい
る。
Although the powder or granular material is not particularly limited, an inorganic material having a small coefficient of thermal expansion, heat resistance, and low cost is preferable, such as alumina powder, silica powder, chamotte powder, glass powder, and slag powder. In order to uniformly fill the large number of narrow gaps at the ends of a large number of porous inorganic material tubes, it is desirable that the angle of repose of the powder and granular material be as small as possible, and the angle of repose of the granular material is preferably 35° or less, preferably 25° or less. good. If the angle of repose is greater than 35°, the ends of the multiple porous material tubes will be narrowed.

粉粒体の安息角は粉粒体の粒径9粒径の均一性、形状に
よって異なり、粒径が比較的大きく均一な球状の粉粒体
はきわめて小さい安息角を示す。
The angle of repose of a powder or granule differs depending on the uniformity of the particle size and shape of the powder or granule, and a spherical powder or granule with a relatively large and uniform particle size exhibits an extremely small angle of repose.

ただし、粒径が充填すべき間隙に比べて大きすぎると均
一に充填することが困難になるのでおのずから限度があ
る。充填すべき間隙の最小りIJアラ/スが1.5 m
程度の場合、32〜60メツシュ程度の粒径が好ましい
。32〜48メツシユの球状高炉スラグ粒の安息角は2
4°であり、好ましい粉粒体の1つである。
However, if the particle size is too large compared to the gap to be filled, it becomes difficult to fill uniformly, so there is a limit naturally. The minimum gap to be filled is 1.5 m.
In the case of a particle size of about 32 to 60 mesh, the particle size is preferably about 32 to 60 mesh. The angle of repose of spherical blast furnace slag grains of 32 to 48 mesh is 2.
4°, which is one of the preferred powders.

また、粒径範囲が広すぎ、粒径が不均一であると、安息
角が大きくなるのみならず、充填した粉粒体層内部の空
隙に液状の固化性もしくは硬化性シール材ti潤充填す
る場合、粉粒体層内部の空隙の空気全シール液で完全に
置換できないため、固化もしくは硬化させたとき多数の
ゼイド全生じたりふくれを生じたりして気密なシールが
不可能となる。
In addition, if the particle size range is too wide and the particle sizes are uneven, not only will the angle of repose become large, but also the liquid solidifying or hardening sealing material will fill the voids inside the filled powder layer. In this case, all the air in the voids inside the powder layer cannot be completely replaced by the sealing liquid, so when solidified or hardened, a large number of zeids or blisters occur, making it impossible to achieve an airtight seal.

気密にシールしようとする間隙に粉粒体層充填する場合
、ち密かつ均一に充填する必要がある。
When filling a powder layer into a gap to be airtightly sealed, it is necessary to fill the gap tightly and uniformly.

そのために粉粒#−全充填しながら、あるいは充填後振
動を与えて粉粒体層できるだけち密かつ均一に充填する
ことが望ましい。ち密に充填しなかった場合、湿潤充填
されるシール液の所要量が増し、固化もしくは硬化させ
て冷却した場合、熱膨張係数の差異によって生じる残留
応力が大きくなり、多孔質材料管の破損の原因となる。
For this purpose, it is desirable to fill the powder layer as tightly and uniformly as possible while completely filling the powder or by applying vibration after filling. If the sealing liquid is not filled tightly, the required amount of wet sealing liquid will increase, and if it is solidified or hardened and cooled, the residual stress caused by the difference in the coefficient of thermal expansion will increase, causing damage to the porous material pipe. becomes.

また、粉粒体の充填は均一でなくてはならない。f均一
の場合、湿潤充填されたシール液を同化もしくは硬化さ
せて冷却した場合、ち密に粉粒体が充填され念部分と粗
に充填された部分との熱膨張係数差によって生じる残留
応力によって多孔質材料管に割れを生じる。
Furthermore, the filling of the powder must be uniform. f In the case of uniform sealing liquid, when the sealing liquid filled wet is assimilated or hardened and cooled, porous formation occurs due to the residual stress caused by the difference in coefficient of thermal expansion between the densely filled part and the loosely filled part. Cracks occur in the quality material pipe.

また、粉粒体の比重は湿潤充填されるシール液の比重よ
りも十分に大きいことが必要である。粉粒体の比重が十
分に大きくない場合、シール液を湿潤充填するときに粉
粒体層の一部が浮き上がυ、ち密かつ均一充填状態を保
持できない。その結果、前記のように多孔質材料管に割
れを生じる。
In addition, the specific gravity of the granular material needs to be sufficiently larger than the specific gravity of the sealing liquid that is wet-filled. If the specific gravity of the granular material is not large enough, part of the granular material layer will float up υ when the sealing liquid is wet-filled, and a dense and uniform filling state cannot be maintained. As a result, cracks occur in the porous material tube as described above.

湿潤充填されるシール材はかならずしも常温で液状であ
る必要はない。加熱することによって液状になるもの、
あるいは粘度が著しく低下するものであれば、粉粒体と
固化もしくは硬化性シール材のいずれか一方、あるいは
双方を加熱して使用すればよい。
The sealing material that is wet-filled does not necessarily have to be liquid at room temperature. Something that becomes liquid when heated,
Alternatively, if the viscosity is significantly reduced, one or both of the powder and the solidified or curable sealing material may be heated before use.

本発明では耐熱、耐圧性の点から多孔質材料管として無
機質の材料管、例えば多孔質ガラス管等を用いるが、そ
の他、管材としてセラミック材料、焼結金属材料なども
使用できる。
In the present invention, an inorganic material tube, such as a porous glass tube, is used as the porous material tube from the viewpoint of heat resistance and pressure resistance, but ceramic materials, sintered metal materials, etc. can also be used as the tube material.

第1図〜第3図は本発明の一実施例を説明する、図であ
る。鋼製の底盤1の上にシリコンパテ2を約1m層厚に
転圧し、外径79fl、厚さ2ws、長さ20J面をク
ロメート処理したアルミニウムの筒3を第2図のように
セットした。一方、第3図に示すような端部の外径を縮
小した多孔質ガラス管4(外径35鵡、縮小部の外径2
.8m1320本を最密充填状態に束ねて多孔質ガラス
管束をつくり、第1図のように底盤1に垂直にかつ多孔
質ガラス管4の先端部がシリコンパテ層2に埋没するよ
うにセットした。ついでアルミニウムの筒3と多孔質ガ
ラス管束の端部の間の間隙および多孔質ガラス管の端部
と多孔質ガラス管の端部の間の間隙に粒度32〜48メ
ツシユ、゛安息角24°、固め見掛比、i 1.75の
球状高炉スラグの粉粒体5を底盤1に振動を与えながら
、できるだけ均一かつち密に次項して、第1図のような
充填層を形成した。
1 to 3 are diagrams illustrating an embodiment of the present invention. Silicon putty 2 was rolled to a thickness of about 1 m on a steel bottom plate 1, and an aluminum cylinder 3 with an outer diameter of 79 fl, a thickness of 2 ws, and a length of 20 J, the surface of which was chromate-treated, was set as shown in FIG. On the other hand, a porous glass tube 4 with a reduced outer diameter at the end as shown in FIG.
.. A porous glass tube bundle was made by bundling 1,320 8 m long tubes in a close-packed state, and the porous glass tubes 4 were set perpendicularly to the bottom plate 1 so that the tips of the porous glass tubes 4 were buried in the silicon putty layer 2, as shown in FIG. Next, in the gap between the aluminum cylinder 3 and the end of the porous glass tube bundle, and in the gap between the end of the porous glass tube and the end of the porous glass tube, a particle size of 32 to 48 mesh, an angle of repose of 24°, A packed bed of spherical blast furnace slag 5 having a hardening apparent ratio of i 1.75 was made as uniformly and densely as possible while vibrating the bottom plate 1 to form a packed bed as shown in FIG.

この状態で充填した粉粒体を80℃に保持した。The powder and granular material filled in this state was maintained at 80°C.

−士−Q11T’V4!j−祷吠れ介(1)粘彦価耐作
1鈷ポリイミドワニスを多孔質ガラス管束とアルミニウ
ムの筒30間に少しづつ注入した。注入されたワニスが
粉粒体層5を湿潤し、粉粒体粒子間の空隙が完全にワニ
スで充填されるまでワニスの注入全行った。しかるのち
130℃に30分保持し、ついで160℃に24時間保
持してワニスを完全に硬化させた。同様な操作をもう一
方の端部にも行い、冷却後、底盤をはずしてシリコンノ
にテを除去し、両端を固定シールし素条孔質ガラス管束
を製作し友。
-Shi-Q11T'V4! (1) Polyimide varnish was injected little by little between the porous glass tube bundle and the aluminum cylinder 30. The varnish was completely injected until the injected varnish wetted the powder layer 5 and the voids between the powder particles were completely filled with the varnish. Thereafter, the varnish was held at 130°C for 30 minutes and then at 160°C for 24 hours to completely cure the varnish. The same operation was performed on the other end, and after cooling, the bottom plate was removed, the silicone was removed, and both ends were fixed and sealed to produce a raw porous glass tube bundle.

両端を固定シールした多孔質ガラス管束7は第4因のよ
うにモジュールシェル6の中に収納し、モジュールシェ
ル6の内壁とガラス管束7の端部を固定しているアルミ
ニウムの筒3の外周の間を0す/グ8で気密にシールし
てガス分離モジュールシェルした。このモジュールを用
いて混合ガスより特定成分のガス金分離濃縮した。混合
ガスは供給ガス人口9より供給し、多孔質ガラス管束7
の各ガラス管内を右端の非透過ガス出口(図面省略Jに
向って流した。この間に各ガラス管壁の細孔を透過した
ガスは透過ガス出口10よシ流出した。モジュールシェ
ル6の中央部には伸縮継手11が接合されており、サポ
ートロッド12によってサポートされている。
The porous glass tube bundle 7 with both ends fixed and sealed is housed in the module shell 6 as in the fourth factor, and the inner wall of the module shell 6 and the outer periphery of the aluminum cylinder 3 fixing the end of the glass tube bundle 7 are The gas separation module shell was airtightly sealed with a gap of 0 g/g. This module was used to separate and concentrate specific components of gaseous gold from a mixed gas. The mixed gas is supplied from the supply gas port 9, and the porous glass tube bundle 7
The gas flowed through each glass tube toward the non-permeable gas outlet (J, omitted in the drawing) at the right end. During this time, the gas that permeated through the pores in the wall of each glass tube flowed out through the permeated gas outlet 10.The central part of the module shell 6 An expansion joint 11 is connected to and supported by a support rod 12.

(発明の効果] 本発明によって、数百本〜数千本の多孔質材料管を内蔵
しかつ耐圧性、耐熱性のすぐれたガス分離モジュールを
安価かつ容易に製作することが可能となった。
(Effects of the Invention) According to the present invention, it has become possible to inexpensively and easily manufacture a gas separation module that includes several hundred to several thousand porous material tubes and has excellent pressure resistance and heat resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図1〜@3図は本発明による方法の一実施列を説明
する図であって、 第1因はアルミニウム筒内に挿入された多孔質ガラス管
束が形成した空隙内に粉粒体全充填した状態を説明する
側断面図、 第2図は粉粒体およびシール材を充填するために設置さ
れた筒の状態を説明する側断面図、第3図は多孔質ガラ
ス管束を構成する多孔質ガラス管の端部の側面図、 第4図は本発明によって端部を固定した多孔質ガラス管
束を組込んだガス分離モジュールの側断面図である。 1・・・底盤、2・・・シリコンノぞテ層、3・・・7
 A/ ミニラムの筒、4・・・多孔質ガラス管、5・
・・球状高炉スラグの粉粒体、6・・・モジュールシェ
ル、7・・・多孔質ガラス管束、8・・・0りング、9
・・・供給ガス入口、10・・・透過ガス出口、11・
・・伸縮継手、12・・・サポートロッド。 代理人 弁理士  秋  沢  政  光信2名 片2図 =ユ===二二出
Figures 1 to 3 are diagrams illustrating one implementation of the method according to the present invention. Fig. 2 is a side sectional view illustrating the state of the tube installed to fill it with powder and granular material and sealing material; Fig. 3 is a side sectional view illustrating the state of the tube installed to fill it with powder and granular material and sealing material; FIG. 4 is a side cross-sectional view of a gas separation module incorporating a bundle of porous glass tubes with fixed ends in accordance with the present invention. 1...Bottom board, 2...Silicon top layer, 3...7
A/ Miniram cylinder, 4...Porous glass tube, 5.
...Spherical blast furnace slag powder, 6.Module shell, 7.Porous glass tube bundle, 8.0 ring, 9
... Supply gas inlet, 10... Permeate gas outlet, 11.
...Expansion joint, 12...Support rod. Agent Patent attorney Masaaki Akizawa Mitsunobu 2 pieces 2 illustrations=Yu===22 figures

Claims (4)

【特許請求の範囲】[Claims] (1)両端が開口した筒をほぼ直立状にして、その下端
部は液状の固化性若しくは硬化性シール材がもれない程
度に閉鎖し、この筒の内部に少くとも端部が空隙を有す
るように複数の多孔質無機材料管を挿入配置した状態で
端部を液状の固化性若しくは硬化性シール材で固定する
方法において、前記複数の多孔質無機材料管を挿入配置
した筒の中に安息角が35度以下で且つ前記のシール材
よりも比重の大きい無機粉粒体を装入して前記多孔質無
機材料管の端部が埋没するように充填させ、ついで液状
の固化性若しくは硬化性シール材を注入して無機粉粒体
層内部の空隙を湿潤充填し、しかるのち前記シール材を
固化若しくは硬化させることを特徴とするガス分離モジ
ュールの端部固定法。
(1) A cylinder with both ends open is made almost upright, and its lower end is closed to the extent that liquid solidifying or hardening sealing material does not leak, and the cylinder has a void inside at least at the ends. In a method in which a plurality of porous inorganic material tubes are inserted and arranged and their ends are fixed with a liquid solidifying or hardening sealant, the plurality of porous inorganic material tubes are inserted and arranged to rest in a tube. An inorganic powder having an angle of 35 degrees or less and a specific gravity higher than that of the sealing material is charged so that the end of the porous inorganic material tube is buried, and then a liquid solidifying or hardening material is charged. A method for fixing an end of a gas separation module, characterized in that a sealing material is injected to wet-fill voids inside an inorganic powder layer, and then the sealing material is solidified or hardened.
(2)無機粉粒体を装入しながら、あるいは装入後、振
動を与えて粉粒体を充填させる特許請求の範囲第1項記
載の方法。
(2) The method according to claim 1, wherein vibration is applied while or after charging the inorganic powder to fill the powder.
(3)無機粉粒体とシール材のいずれか一方、あるいは
双方を加熱して使用する特許請求の範囲第1項記載の方
法。
(3) The method according to claim 1, wherein either or both of the inorganic powder and the sealing material are heated.
(4)シール材として低粘度無溶剤型ポリイミドワニス
を用いる特許請求の範囲第1項記載の方法。
(4) The method according to claim 1, wherein a low viscosity solvent-free polyimide varnish is used as the sealing material.
JP21054085A 1985-09-24 1985-09-24 Method of fixing end part of gas separation module Pending JPS6271513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21054085A JPS6271513A (en) 1985-09-24 1985-09-24 Method of fixing end part of gas separation module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21054085A JPS6271513A (en) 1985-09-24 1985-09-24 Method of fixing end part of gas separation module

Publications (1)

Publication Number Publication Date
JPS6271513A true JPS6271513A (en) 1987-04-02

Family

ID=16591037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21054085A Pending JPS6271513A (en) 1985-09-24 1985-09-24 Method of fixing end part of gas separation module

Country Status (1)

Country Link
JP (1) JPS6271513A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241504A (en) * 1986-04-11 1987-10-22 Shinko Fuaudoraa Kk Method for bundling inorganic tubular separation membrane
JPH03262522A (en) * 1990-03-13 1991-11-22 Terumo Corp Fluid treatment apparatus and manufacture thereof and potting material
JPH0481636U (en) * 1990-11-29 1992-07-16
JP2001353426A (en) * 2000-06-12 2001-12-25 Nok Corp Method for manufacturing hollow fiber membrane module
EP1591157A1 (en) * 2004-04-30 2005-11-02 Mann+Hummel Gmbh Hollow fibre module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241504A (en) * 1986-04-11 1987-10-22 Shinko Fuaudoraa Kk Method for bundling inorganic tubular separation membrane
JPH0561968B2 (en) * 1986-04-11 1993-09-07 Shinko Pantec Co Ltd
JPH03262522A (en) * 1990-03-13 1991-11-22 Terumo Corp Fluid treatment apparatus and manufacture thereof and potting material
JPH0481636U (en) * 1990-11-29 1992-07-16
JP2001353426A (en) * 2000-06-12 2001-12-25 Nok Corp Method for manufacturing hollow fiber membrane module
EP1591157A1 (en) * 2004-04-30 2005-11-02 Mann+Hummel Gmbh Hollow fibre module

Similar Documents

Publication Publication Date Title
US5687787A (en) Fiber reinforced ceramic matrix composite internal combustion engine exhaust manifold
CA1058814A (en) Method for producing a tubular multi-layered porous barrier
US5571848A (en) Method for producing a microcellular foam
US6174490B1 (en) Method for producing an exchanger
WO2009096044A1 (en) Method for silica monolith cladding and separation medium
JPS6271513A (en) Method of fixing end part of gas separation module
US7935167B2 (en) Composite ceramic body, method of manufacturing the same and ceramic filter assembly
JP2022078029A (en) Joining and sealing of pressurised ceramic components
EP0332092A2 (en) Method for applying a refractory layer on a surface and the layer produced thereby
US4554041A (en) Method of producing a thermally insulated body
US3463702A (en) Nuclear reactor fuel elements
JPS614509A (en) Bundle fixing plate of porous glass membrane thin tube
US6712131B1 (en) Method for producing an exchanger and exchanger
JPS6371321A (en) Solid granular polymer capable of being fluidized
JP2023540313A (en) Thermal energy storage and recovery system
JPS59107988A (en) Manufacture of porous diaphragm
Hatcher et al. Development and testing of an intermediate temperature glass sealant for use in mixed ionic and electronic conducting membrane reactors
McVay et al. Flow of nitrogen and superheated steam through cement mortar
US10480084B1 (en) Modular cooling chamber for manifold of gaseous electrolysis apparatus with helium permeable element therefor
JPH10180060A (en) Composition for sealing inorganic separating membrane
JP3279141B2 (en) Inorganic sound absorbing material and method for producing the same
JPH0642693A (en) Hydrate curing composition and ceramic lining pipe using the same
JPS643996Y2 (en)
JPS6141883A (en) Hot repairing method of device for pig iron manufacture and steel manufacture
JP2801973B2 (en) Ceramic joining method