JPH0233676B2 - TANKAKEISO * KINZOKUFUKUGOKANOYOBISONOSEIZOHOHO - Google Patents

TANKAKEISO * KINZOKUFUKUGOKANOYOBISONOSEIZOHOHO

Info

Publication number
JPH0233676B2
JPH0233676B2 JP19151881A JP19151881A JPH0233676B2 JP H0233676 B2 JPH0233676 B2 JP H0233676B2 JP 19151881 A JP19151881 A JP 19151881A JP 19151881 A JP19151881 A JP 19151881A JP H0233676 B2 JPH0233676 B2 JP H0233676B2
Authority
JP
Japan
Prior art keywords
layer
silicon carbide
silicon
powder
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19151881A
Other languages
Japanese (ja)
Other versions
JPS5895675A (en
Inventor
Teizo Hase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP19151881A priority Critical patent/JPH0233676B2/en
Publication of JPS5895675A publication Critical patent/JPS5895675A/en
Publication of JPH0233676B2 publication Critical patent/JPH0233676B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は炭化珪素と金属の複合管及びその製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a silicon carbide and metal composite pipe and a method for manufacturing the same.

金属管の内面をセラミツクで覆つた複合管はガ
スタービンエンジンの燃焼筒、熱気流輸送管、耐
摩耗性シリンダーライナー等への応用が考えられ
ているが従来、この分野の技術すなわちセラミツ
クに金属を接合する方法は目的により異なるが
おゝよそ下記の三種に大別される。
Composite tubes, in which the inner surface of a metal tube is covered with ceramic, are being considered for use in combustion tubes of gas turbine engines, hot air flow transport tubes, wear-resistant cylinder liners, etc., but conventional technology in this field, namely metal over ceramic, has been considered. The joining method differs depending on the purpose, but it can be roughly divided into the following three types.

すなわち、第一の方法としてセラミツク成形品
を金属で鋳包む(イグルミ)技術があるが金属と
セラミツクの接合が不十分である。第二の方法
は、ガラス又はセラミツク製品の表面に対する金
属の溶射又は蒸着、或いはその反対に金属製品の
表面に対してセラミツクを溶射する方法である
が、生成する被覆層の厚みに制限があり、しかも
使用中にしばしば剥離することがある。第三の方
法は、遠心テルミツト法で金属管の内面をアルミ
ニウム粉末と酸化鉄の粉末で覆つた後、テルミツ
ト反応で生成する鉄を媒介として金属と、反応生
成物であるAl2O3層との結合を強固にする方法
で、最近開発された方法であるが、高強度複合管
としては不十分である。
That is, the first method is a technique of casting a ceramic molded product with metal (Igurumi), but the bonding between the metal and ceramic is insufficient. The second method involves thermal spraying or vapor deposition of metal onto the surface of glass or ceramic products, or conversely, thermal spraying ceramic onto the surface of metal products, but there is a limit to the thickness of the resulting coating layer; Moreover, it often peels off during use. The third method is to coat the inner surface of a metal tube with aluminum powder and iron oxide powder using the centrifugal thermite method, and then coat the metal with the Al 2 O 3 layer, which is a reaction product, through the iron produced in the thermite reaction. This is a recently developed method to strengthen the bond between the two, but it is insufficient for making high-strength composite pipes.

本発明は高密度の炭化珪素セラミツクが耐熱
性、耐熱衝撃性、耐酸化性に優れていることに鑑
み、金属管との複合により緻密で強靭、偏肉なく
残留応力の少ない、耐熱衝撃抵抗性並びに高強度
を有する複合管を提供するものである。
In view of the fact that high-density silicon carbide ceramic has excellent heat resistance, thermal shock resistance, and oxidation resistance, the present invention has been developed by combining it with metal tubes to achieve dense and strong, no uneven thickness, low residual stress, and thermal shock resistance. The present invention also provides a composite pipe with high strength.

本発明者は厚肉高強度の炭化珪素セラミツク層
を金属管内側に接合させるに際し、遠心テルミツ
ト反応を利用して該セラミツク中に遊離の状態で
存在する金属珪素とテルミツト反応により生成す
る鉄との作用により該炭化珪素セラミツク層の強
度を一そう高め、更に金属管と炭化珪素セラミツ
ク層との間に強固な接合が生まれ、且つ炭化珪素
セラミツク層がテルミツト反応によつて副生され
るAl2O3で覆われることにより、耐酸化性を増大
し得ることを見出し本発明を完成した。
When bonding a thick, high-strength silicon carbide ceramic layer to the inside of a metal tube, the present inventor utilized a centrifugal thermite reaction to combine silicon metal present in the ceramic in a free state with iron produced by the thermite reaction. As a result of this action, the strength of the silicon carbide ceramic layer is further increased, and a strong bond is created between the metal tube and the silicon carbide ceramic layer, and the silicon carbide ceramic layer is made of Al 2 O, which is produced as a by-product by the thermite reaction. The present invention was completed by discovering that oxidation resistance can be increased by covering with 3 .

すなわち、本発明は金属管の内面に厚肉の炭化
珪素セラミツク層を形成し、更に該セラミツク層
の表面に酸化アルミニウム層を形成してなり、且
つ、金属管と炭化珪素セラミツク層及びAl2O3
が炭化珪素セラミツク層に存在する金属珪素、鉄
及び又はSi−Fe合金によつて結合されているこ
とを特徴とする炭化珪素/金属複合管に関するも
のである。
That is, in the present invention, a thick silicon carbide ceramic layer is formed on the inner surface of a metal tube, and an aluminum oxide layer is further formed on the surface of the ceramic layer, and the metal tube, the silicon carbide ceramic layer, and Al 2 O The present invention relates to a silicon carbide/metal composite tube characterized in that three layers are bonded by metal silicon, iron and/or a Si--Fe alloy present in the silicon carbide ceramic layer.

更に本発明は金属管の内面に炭化珪素粉末と炭
素粉末との均一混合物よりなる粉末成形体層を積
層し、該粉末成形体層の表面に該粉末成形体中の
炭素を炭化珪素に変えるに要する珪素量に対し過
剰の珪素を環状に配置し、更に最内層にアルミニ
ウムと四三酸化鉄(Fe3O4)の混合物粉末層を積
層した管状物を遠心機で回転させ、十分な遠心力
下で最内層の混合物にテルミツト反応を起こさ
せ、その反応熱により炭化珪素の反応焼結を行う
ことを特徴とする炭化珪素/金属複合管の製造方
法に関するものである。
Furthermore, the present invention laminates a powder compact layer made of a homogeneous mixture of silicon carbide powder and carbon powder on the inner surface of a metal tube, and provides a layer on the surface of the powder compact layer for converting carbon in the powder compact into silicon carbide. A tubular material in which excess silicon is arranged in an annular shape relative to the required amount of silicon, and a powder layer of a mixture of aluminum and triiron tetroxide (Fe 3 O 4 ) is layered on the innermost layer is rotated in a centrifuge to generate sufficient centrifugal force. The present invention relates to a method for producing a silicon carbide/metal composite tube, characterized in that a thermite reaction is caused in the mixture in the innermost layer below, and silicon carbide is reactively sintered using the reaction heat.

本発明の複合管の断面を図面によつて説明する
と、外側から1は基材として用いられた鋳鉄管で
あり、2は鉄に富んだFe−Si合金層でテルミツ
ト反応の反応熱により溶融した金属珪素が炭化珪
素の層を通つて鋳鉄管との間に生成した合金層で
ある。3は炭化珪素セラミツク層でテルミツト反
応熱により溶融した金属珪素が炭化珪素粉末と炭
素粉末とよりなる粉末成型体に溶浸し、該成形体
中の炭素と反応焼結して生成したものである。炭
化珪素セラミツク層の中には過剰の珪素の中の一
部が遊離金属珪素として存在し、他はSi−Fe合
金として網状に存在している。4は遊離金属珪素
と、珪素に富んだSi−Fe合金が連続した層でテ
ルミツト反応で生成した鉄が合金を生成させてい
る。5はテルミツト反応で生成したAl2O3の層で
ある。
To explain the cross section of the composite pipe of the present invention using a drawing, from the outside, 1 is a cast iron pipe used as a base material, and 2 is an iron-rich Fe-Si alloy layer that is melted by the reaction heat of the thermite reaction. This is an alloy layer formed between metallic silicon and the cast iron pipe through a layer of silicon carbide. No. 3 is a silicon carbide ceramic layer produced by infiltrating a powder compact made of silicon carbide powder and carbon powder with metallic silicon melted by the heat of thermite reaction, and reacting and sintering with the carbon in the compact. In the silicon carbide ceramic layer, some of the excess silicon exists as free metallic silicon, and the rest exists in the form of a network as a Si--Fe alloy. 4 is a continuous layer of free metallic silicon and a silicon-rich Si-Fe alloy, and the iron produced by thermite reaction forms the alloy. 5 is a layer of Al 2 O 3 produced by thermite reaction.

以上の如く本発明の複合管は、遠心力下でのテ
ルミツト反応熱を利用して得られたもので溶融金
属珪素の拡散により炭化珪素セラミツク層の内外
面にSi−Fe合金が生成し、炭化珪素セラミツク
層中にも網状に分布して該セラミツク層を強化し
たうえ、金属管及びAl2O3層との間の接合力を高
めている。又、Al2O3/炭化珪素/金属管の各層
の熱膨張差に起因する応力を介在する金属層が吸
収し、冷却後もこれらの間に内部歪が残らない。
なお、炭化珪素セラミツクは酸素、特に水分を含
んだ酸素中では1200℃以上でかなり酸化され、
SiO2を析出するようになるが、本発明の複合管
では内面のAl2O3層が酸素の遮断に役立ち炭化珪
素の酸化を防止できる。
As described above, the composite tube of the present invention is obtained by utilizing the heat of thermite reaction under centrifugal force, and Si-Fe alloy is formed on the inner and outer surfaces of the silicon carbide ceramic layer by diffusion of molten silicon metal, resulting in carbonization. It is also distributed in a network shape in the silicon ceramic layer, strengthening the ceramic layer and increasing the bonding strength between the metal tube and the Al 2 O 3 layer. Moreover, the intervening metal layer absorbs the stress caused by the difference in thermal expansion between the layers of Al 2 O 3 /silicon carbide/metal tube, and no internal strain remains between them even after cooling.
Furthermore, silicon carbide ceramics are significantly oxidized in oxygen, especially in oxygen containing moisture, at temperatures above 1200°C.
However, in the composite tube of the present invention, the Al 2 O 3 layer on the inner surface serves to block oxygen and prevent oxidation of silicon carbide.

以上の如き構造により本発明の複合管は緻密で
強靭、しかも残留応力が少いので耐熱衝撃性に優
れ、本明細書の詳細な説明の始めに述べた各種の
用途に適するものである。又、本発明の方法は反
応が瞬時に終り、反応熱がそのまゝ利用できるの
で経済的効果も大きい。
Due to the structure described above, the composite pipe of the present invention is dense and strong, and has little residual stress, so it has excellent thermal shock resistance, and is suitable for the various uses mentioned at the beginning of the detailed description of this specification. Furthermore, the method of the present invention has great economic effects because the reaction ends instantly and the heat of reaction can be used as is.

以下、実施例により説明する。 Examples will be explained below.

実施例 1 外層金属管として内径80mm、管長120mm、肉厚
4mmの鋳鉄(FC30)管を用い、市販のα−SiC粉
末(不二見研摩材工業(株)製GC級、#2000:
#4000:#8000=7:2:1の混合物)とカーボ
ンブラツク(三菱化成工業(株)ダイアブラツク)
との重量比1:0.8の均一混合物187gを鋳鉄管の
内壁に嵩密度1.34g/cm3になるようにほぼ一様な
厚さ(肉厚約6mm)に積層した。積層には適当な
径の中子を金属管内に挿入し、金属管と中子との
間に前記混合物を充填する方法によつて行う。次
に、この混合物層上に同様にして珪素粉末(純度
99.9%、いろいろな粒度を配合して充填性を高め
てある)213g(理論量の1.1倍)をほゞ一様な厚
さ約5mmに充填した。更に内側にアルミニウム粉
末(純度78%約200メツシユ)とFe3O4粉末(試
薬特級、約200メツシユ)のモル比8:3の均一
混合物77gを約3mmの厚さで一様に積層した。上
記のように調整した試験片を遠心鋳造実験に用い
る片持横型遠心機の金型中央部に挿入固定した。
金型は固定のみでなく冷却の役割をも果せるよう
にしてある。遠心機回転部に取付けた試験片を偏
心させずに回転させ、およそ200Gに達したとき
アセチレン炎でアルミニウムとFe3O4混合物に着
火しテルミツト反応を起させた。テルミツト反応
による発熱で誘起された炭化珪素の反応焼結も発
熱反応であるので全ての反応が瞬時に完結した。
冷却後、回転を止め、金型から取出した試験片は
内層に肉厚約6mmの炭化珪素セラミツク層が生成
されており、更にその表面は厚さ約0.4mmのAl2O3
層で覆われていた。
Example 1 A cast iron (FC 30 ) pipe with an inner diameter of 80 mm, a pipe length of 120 mm, and a wall thickness of 4 mm was used as the outer layer metal pipe, and a commercially available α-SiC powder (GC grade, #2000 manufactured by Fujimi Abrasives Industry Co., Ltd.) was used.
#4000:#8000=7:2:1 mixture) and carbon black (Mitsubishi Chemical Industries, Ltd. Diablack)
187 g of a homogeneous mixture with a weight ratio of 1:0.8 was laminated on the inner wall of a cast iron pipe to a substantially uniform thickness (wall thickness of approximately 6 mm) so that the bulk density was 1.34 g/cm 3 . Lamination is carried out by inserting a core of an appropriate diameter into a metal tube and filling the space between the metal tube and the core with the mixture. Next, silicon powder (purity
213 g (1.1 times the theoretical amount) (99.9%, which has been blended with various particle sizes to improve filling properties) was filled to a substantially uniform thickness of about 5 mm. Furthermore, 77 g of a homogeneous mixture of aluminum powder (purity 78%, about 200 mesh) and Fe 3 O 4 powder (reagent grade, about 200 mesh) in a molar ratio of 8:3 was layered uniformly on the inside to a thickness of about 3 mm. The test piece prepared as described above was inserted and fixed into the center of the mold of a cantilever horizontal centrifuge used for centrifugal casting experiments.
The mold is designed not only for fixing, but also for cooling. The test piece attached to the rotating part of the centrifuge was rotated without eccentricity, and when the force reached approximately 200 G, the acetylene flame ignited the aluminum and Fe 3 O 4 mixture, causing a thermite reaction. The reaction sintering of silicon carbide induced by the heat generated by the thermite reaction was also an exothermic reaction, so all reactions were completed instantaneously.
After cooling, the rotation was stopped and the specimen taken out from the mold had a silicon carbide ceramic layer with a thickness of about 6 mm on the inner layer, and an Al 2 O 3 layer with a thickness of about 0.4 mm on the surface.
It was covered with layers.

次にこの試験片の断面を鏡面研摩し、エレクト
ロンプローブマイクロアナライザー(EPMA)
で分析した。最内層のAl2O3層5は約0.4mmの厚さ
で、Al2O3層5と炭化珪素層3との間で一部化学
結合しているようであるが主としてSi−Fe合金
層4が介在していた。炭化珪素層3中には、鉄を
僅かに含んだ遊離金属珪素が約15%の量で網状に
分布していた。炭化珪素セラミツク層と鋳鉄管と
の間には炭化珪素セラミツク中の遊離金属珪素と
連続し、鉄に富んだFe−Si合金層2が存在して
拡散接合を生じていた。又、この反応は瞬間的に
行われるので組成中に、空気中であつても炭素の
燃焼反応の跡をとゞめず、気泡の存在も認めなか
つた。
Next, the cross section of this test piece was polished to a mirror surface, and an electron probe microanalyzer (EPMA) was used.
It was analyzed in The innermost Al 2 O 3 layer 5 has a thickness of about 0.4 mm, and although there seems to be some chemical bonding between the Al 2 O 3 layer 5 and the silicon carbide layer 3, it is mainly a Si-Fe alloy layer. 4 was involved. In the silicon carbide layer 3, about 15% of free metallic silicon containing a small amount of iron was distributed in a network shape. Between the silicon carbide ceramic layer and the cast iron pipe, there existed an iron-rich Fe--Si alloy layer 2 which was continuous with the free metallic silicon in the silicon carbide ceramic and caused diffusion bonding. Furthermore, since this reaction takes place instantaneously, no trace of the carbon combustion reaction was observed during the composition, even in air, and no air bubbles were observed.

実施例 2 実施例1で調整した複合管内に発熱体を入れ空
気中で内面を1400℃、外面を600℃に加熱し100時
間保持したが殆んど変化を認めなかつた。
Example 2 A heating element was placed in the composite tube prepared in Example 1, and the inner surface was heated to 1400°C and the outer surface to 600°C in air and maintained for 100 hours, but almost no change was observed.

実施例 3 管内部をアルゴンガスで置換した以外は実施例
1と同様にして得た試験片についても、実施例1
と同様の組織断面及び実施例2と同様の試験結果
が得られた。
Example 3 A test piece obtained in the same manner as in Example 1 except that the inside of the tube was replaced with argon gas was also used in Example 1.
A similar tissue cross section and test results as in Example 2 were obtained.

実施例 4 実施例1の鋳鉄管を内径80mmの炭素鋼、オース
テナイト系ステンレス鋼及び内径30mmのニモニツ
ク(Nimonic)90とインコネル(Inconel)Xに
代えて実施例1と同様にして試験した結果、熱衝
撃抵抗性は十分であつた。
Example 4 The cast iron pipe of Example 1 was tested in the same manner as in Example 1 except that carbon steel with an inner diameter of 80 mm, austenitic stainless steel, and Nimonic 90 and Inconel X with an inner diameter of 30 mm were used. Impact resistance was sufficient.

実施例 5 実施例1及び実施例3における遠心力が170な
いし230Gのときは試験片中に気泡を認めなかつ
たが、170G以下では炭化珪素セラミツク層3と
Al2O3層6との界面に気泡の残留する傾向がみら
れた。230G以上では装置の振動が激しくなり、
炭化珪素層3の肉厚が不均一になつた。
Example 5 In Examples 1 and 3, when the centrifugal force was 170 to 230G, no air bubbles were observed in the test piece, but below 170G, the silicon carbide ceramic layer 3
A tendency for bubbles to remain at the interface with the Al 2 O 3 layer 6 was observed. Above 230G, the device will vibrate violently.
The thickness of silicon carbide layer 3 became non-uniform.

実施例 6 実施例1及び実施例3で調整した炭化珪素/鋳
鉄複合管からそれぞれ管長約8mmの試験片を約10
個切出し耐熱衝撃試験用の試験片とした。1000℃
から常温の流水中へ投下する急冷試験を同一試験
片について20回繰返したがAl2O3又は炭化珪素が
剥離する現象はみられなかつた。炭化珪素セラミ
ツクと金属管間に介在する珪素、鉄、および又は
Si−Fe合金が緩衝材となつて熱衝撃の影響を緩
和しているものと思われる。
Example 6 Approximately 10 test pieces each having a pipe length of approximately 8 mm were prepared from the silicon carbide/cast iron composite pipes prepared in Example 1 and Example 3.
This was used as a test piece for individual cutting and thermal shock resistance tests. 1000℃
A rapid cooling test was repeated 20 times on the same test piece by dropping it into running water at room temperature, but no phenomenon of peeling of Al 2 O 3 or silicon carbide was observed. Silicon, iron, and or
It is thought that the Si-Fe alloy acts as a buffer material and alleviates the effects of thermal shock.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の炭化珪素/鋳鉄複合管の断面模
式図を示す。 図中、1……鋳鉄、2……鉄に富んだFe−Si
合金層、3……炭化珪素セラミツク層、4……金
属珪素/Si−Fe合金連続層、5……Al2O3層。
The drawing shows a schematic cross-sectional view of the silicon carbide/cast iron composite pipe of the present invention. In the figure, 1...cast iron, 2...iron-rich Fe-Si
Alloy layer, 3...Silicon carbide ceramic layer, 4...Metal silicon/Si-Fe alloy continuous layer, 5... Al2O 3 layer.

Claims (1)

【特許請求の範囲】 1 金属管の内面に厚肉の炭化珪素セラミツク層
を形成し、更に該セラミツク層の表面に酸化アル
ミニウム層を形成してなり、且つ、金属管と炭化
珪素セラミツク層及びAl2O3層が炭化珪素セラミ
ツク層に存在する金属珪素、鉄及び又はSi−Fe
合金によつて結合されていることを特徴とする炭
化珪素/金属複合管。 2 金属管の内面に炭化珪素粉末と炭素粉末との
均一混合物よりなる粉末成形体層を積層し、該粉
末成形体層の表面に該粉末成形体層中の炭素を炭
化珪素に変えるに要する珪素量に対し過剰の珪素
を環状に配置し、更に最内層にアルミニウムと四
三酸化鉄(Fe3O4)の混合物粉末層を積層した管
状物を遠心機で回転させ、十分な遠心力下で最内
層にテルミツト反応を起こさせ、その反応熱によ
り炭化珪素の反応焼結を行うことを特徴とする炭
化珪素/金属複合管の製造方法。
[Scope of Claims] 1 A thick silicon carbide ceramic layer is formed on the inner surface of a metal tube, and an aluminum oxide layer is further formed on the surface of the ceramic layer, and the metal tube, the silicon carbide ceramic layer, and the Al 2 O 3 layers present in the silicon carbide ceramic layer of metallic silicon, iron and or Si-Fe
A silicon carbide/metal composite tube, characterized in that it is bonded by an alloy. 2. A powder compact layer made of a homogeneous mixture of silicon carbide powder and carbon powder is laminated on the inner surface of a metal tube, and silicon necessary to convert carbon in the powder compact layer into silicon carbide is deposited on the surface of the powder compact layer. A tubular material in which silicon in excess of the amount of silicon is arranged in a ring shape, and a powder layer of a mixture of aluminum and triiron tetroxide (Fe 3 O 4 ) is layered on the innermost layer is rotated in a centrifuge under sufficient centrifugal force. A method for manufacturing a silicon carbide/metal composite tube, characterized by causing a thermite reaction in the innermost layer, and performing reactive sintering of silicon carbide using the reaction heat.
JP19151881A 1981-11-28 1981-11-28 TANKAKEISO * KINZOKUFUKUGOKANOYOBISONOSEIZOHOHO Expired - Lifetime JPH0233676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19151881A JPH0233676B2 (en) 1981-11-28 1981-11-28 TANKAKEISO * KINZOKUFUKUGOKANOYOBISONOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19151881A JPH0233676B2 (en) 1981-11-28 1981-11-28 TANKAKEISO * KINZOKUFUKUGOKANOYOBISONOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS5895675A JPS5895675A (en) 1983-06-07
JPH0233676B2 true JPH0233676B2 (en) 1990-07-30

Family

ID=16275983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19151881A Expired - Lifetime JPH0233676B2 (en) 1981-11-28 1981-11-28 TANKAKEISO * KINZOKUFUKUGOKANOYOBISONOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0233676B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60217140A (en) * 1984-04-11 1985-10-30 工業技術院長 Manufacture of ceramic composite structure pipe
JPS60246277A (en) * 1984-05-18 1985-12-05 宮本 欽生 Manufacture of composite body of metal and ceramic
JPH0791567B2 (en) * 1985-02-15 1995-10-04 株式会社小松製作所 Sintering method
JP2600085B2 (en) * 1989-12-08 1997-04-16 工業技術院長 Manufacturing method of oxide superconductor
CN1051752C (en) * 1996-01-05 2000-04-26 北京有色金属研究总院 Material formulation of ceramic lining pipe produced with centrifugal self-combustion process

Also Published As

Publication number Publication date
JPS5895675A (en) 1983-06-07

Similar Documents

Publication Publication Date Title
US5975407A (en) Method using a thick joint for joining parts in SiC-based materials by refractory brazing and refractory thick joint thus obtained
JPS6342859A (en) Manufacture of tilt function material
KR19990063744A (en) Ultra abrasive grain-containing composite and its manufacturing method
JPH0421748B2 (en)
EP0109814B1 (en) Joining silicon nitride to metals
JPH0233676B2 (en) TANKAKEISO * KINZOKUFUKUGOKANOYOBISONOSEIZOHOHO
US5989489A (en) Method for manufacturing a composite material
JPS60200868A (en) Method of bonding silicon carbide or silicon nitride sintered body
JP3081764B2 (en) Carbon member having composite coating and method of manufacturing the same
JPH0250994B2 (en)
JPH03218987A (en) Production of silicon carbide/metal composite pipe
JPS5851913B2 (en) Manufacturing method for fiber-reinforced ceramics
JPS63303673A (en) Wall structure for internal combustion engine and manufacture
JPH0114997B2 (en)
JPS60155677A (en) High-temperature heat insulating structural body
JPS626798A (en) Composite welding material for build-up welding
JPH0452208B2 (en)
JPS59156976A (en) Metal member-ceramic member bonded body and method therefor
JPS646274B2 (en)
JP3039269B2 (en) Method of forming thermal insulation film
JP3651285B2 (en) Cubic boron nitride-containing brazing composite material and method for producing the same
JPS6380916A (en) Ceramic lining method for pipe inner face
JPS626794A (en) Composite filler rod for build-up welding
Sump Stainless steel metal fiber reinforcement of refractories
JPH021890B2 (en)