JPH03218987A - Production of silicon carbide/metal composite pipe - Google Patents

Production of silicon carbide/metal composite pipe

Info

Publication number
JPH03218987A
JPH03218987A JP1176790A JP1176790A JPH03218987A JP H03218987 A JPH03218987 A JP H03218987A JP 1176790 A JP1176790 A JP 1176790A JP 1176790 A JP1176790 A JP 1176790A JP H03218987 A JPH03218987 A JP H03218987A
Authority
JP
Japan
Prior art keywords
layer
powder
silicon carbide
silicon
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1176790A
Other languages
Japanese (ja)
Inventor
Teizo Hase
長谷 貞三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1176790A priority Critical patent/JPH03218987A/en
Publication of JPH03218987A publication Critical patent/JPH03218987A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To enhance denseness, high toughness and impact resistance by laminating a layer formed of the mixed powder of SiO and C, an Si layer contg. Ti and the layer of the powdery mixture of Al and Fe3O4 and allowing these layers to react by the centrifugal force and sintering the layers. CONSTITUTION:A tubular material is obtained by forming a powdery molded body layer consisting of the uniform mixture of SiC powder and C powder on the inner face of a metallic pipe 1 and annularly arranging a mixture described hereunder on the surface thereof and laminating the layer of the powdery mixture of Al and Fe3O4 to the inside thereof. The mixture is obtained by adding 0.4-4.0 pts.wt. Ti to 100 pts.wt. Si excess for Si amount necessary to change C contained in the above-mentioned molded body layer into SiC. Then this tubular material is rotated by a centrifugal machine and thermit reaction is caused in the innermost layer by the sufficient centrifugal force. SiC is allowed to react and sintered by the heat of reaction. An Fe-Si alloy layer 2, an SiC layer 3, a metallic Si-Fe layer 4 and an Al2O3 layer 5 are formed on the inner face of the metallic pipe 1.

Description

【発明の詳細な説明】 こ産業上の利用分野〕 本発明は炭化珪素と金属の複自管の製造方法に係る、 〔従来の技術〕 金属管の内面をセラミ,・クスて覆った複合管はガスタ
ービンエンジンの燃焼管、熱気流輸送管、耐摩耗性シリ
ンダーライナー等l\応用される。
[Detailed description of the invention] This industrial field of application] The present invention relates to a method for manufacturing a double tube made of silicon carbide and metal. It is applied to combustion pipes of gas turbine engines, hot air flow transport pipes, wear-resistant cylinder liners, etc.

金属管にセラミックスを接合する方法として、遠心テル
ミット法がある。これは金属管の内面をアルミニウム粉
末と酸化鉄の粉末で覆った後、テルミット法で生成する
鉄を媒介として金属と反応生成物である^120,層と
の結合を得る方法である。
The centrifugal thermite method is a method for joining ceramics to metal tubes. This is a method in which the inner surface of a metal tube is coated with aluminum powder and iron oxide powder, and then the metal and the reaction product ^120 layer are bonded through iron produced by the thermite method.

この遠心テルミット法は金属とセラミックスの比較的強
固な結合を有する複合管を提供するが、高強度複会管と
しては未だ不十分である。そこで、本発明者は先にテル
ミット法で金属管と八1203層の中間に炭化珪素層を
介在させ、がっこれらの層の間を金属珪素、鉄又は珪素
一鉄合金て結合する方法を開示した(特開昭58−95
675号公報)。
Although this centrifugal thermite method provides a composite tube with a relatively strong bond between metal and ceramics, it is still insufficient as a high-strength composite tube. Therefore, the present inventor first disclosed a method in which a silicon carbide layer is interposed between the metal tube and the 81203 layer using the thermite method, and these layers are bonded using metal silicon, iron, or a silicon-iron alloy. (Unexamined Japanese Patent Publication No. 58-95
Publication No. 675).

二発明か解決しようとする課M〕 上記の方法により、緻密で強靭、かつ耐熱衝撃性に陵れ
た複計管か得られたか、表層のjM’,O,層が加熱一
冷却くり返りサイクル条件下で剥離する問題を生じた。
[Second invention or issue M to be solved] By the method described above, a double-gauge tube that is dense, strong, and has good thermal shock resistance was obtained. This caused the problem of peeling under certain conditions.

これは^l203がその下地のSiCの熱膨張係数と比
べて大きいためである。
This is because ^l203 has a larger coefficient of thermal expansion than the underlying SiC.

そこで、本発明は上記の本発明者が開示した方法を改良
し、熱サイクル下でも八1203層が剥離しないように
することを目的とする。
Therefore, the present invention aims to improve the method disclosed by the present inventors and to prevent the 81203 layer from peeling off even under thermal cycles.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的を、金属管の内面に炭化珪素粉末と
炭素粉末との均一混合物よりなる粉末成形体層を成層し
、該粉末成形体層の表面に該粉末成形体層中の炭素を炭
化珪素に変えるに要する珪素呈に対し過剰の珪素を環状
に配置し、更に最内層にアルミニウムと四三酸化鉄の混
合物粉末層を積層した管状物を遠心機で回転させ、十分
な遠心力下で最内層にテルミット反応を起こさせ、その
反応熱により炭化珪素f)反応焼結を行うに際し、該珪
素層中に重量で珪素100に対しチタンを0,4か,l
’, 4.0の範囲内で添加したことを特徴とする炭1
ヒエ↑素 ′金属複自管ごノ製造方法によって達成する
6珪素に対するチタンの添加量は、後記実施例に見られ
るように、重量で珪素100に対して0.4〜4,0の
範囲で効果があり、1.0〜2.5の範囲が好ましい。
The present invention achieves the above object by layering a powder compact layer made of a uniform mixture of silicon carbide powder and carbon powder on the inner surface of a metal tube, and coating carbon in the powder compact layer on the surface of the powder compact layer. A tubular material in which excess silicon is arranged in an annular shape relative to the amount of silicon required to convert it into silicon carbide, and a powder layer of a mixture of aluminum and triiron tetroxide is layered on the innermost layer is rotated in a centrifuge under sufficient centrifugal force. When a thermite reaction is caused in the innermost layer, and the reaction heat is used to produce silicon carbide.
Charcoal 1 characterized by being added within the range of ', 4.0
The amount of titanium added to 6 silicon achieved by the manufacturing method of metal double tubes is in the range of 0.4 to 4.0 per 100 silicon by weight, as shown in the examples below. It is effective, and the range of 1.0 to 2.5 is preferable.

〔作 用〕[For production]

チタンは^1 20 , ,− ’ S i C層面に
濃縮分布層を生成し、Aft.層からSiC層にかけて
よく濡れることによって、AN,0,層のSiC層に対
する結合を強固にする。
Titanium generates a concentrated distribution layer on the surface of the ^1 20 , , -' S i C layer, and Aft. Good wetting from layer to SiC layer strengthens the bond of the AN,0, layer to the SiC layer.

〔実施例〕〔Example〕

夫L鯉1 外層金属管として内径8 0 m lII、管長12 
0 16 rn、肉厚4111111の銚鉄<FC30
)管を用い、市販のa−SiC粉末(不二見研摩材工業
く株)製GC級、#2000 : #4000:#80
00= 7 : 2 : 1の混合物)とカーボンブラ
ック(三菱化成工業(株)ダイアブラックI)との重量
比1:0.8の均一混合物187εを銚鉄管の内壁に嵩
密度184ε CTn3になるようにほほ一様な厚さ 
く肉厚約6 m IL )に成層した。成層には適当な
径ご)中子を金属管内に挿入し、金属管と中子との間に
前記混合物を充填する方法によって行った9次に、この
混合物層上に同様にしてチタン粉末を含んた珪素粉末(
チタンの添加量は第1図に示した量である。主成分の珪
素は純度99.9%で、いろいろな粒度を配合して充填
性を高めた。またチタンはスポンジチタン微粉末を用い
た)213g(理論量の1.1倍)をほぼ一様な厚さ約
5+msに充填した。
Husband L carp 1 Inner diameter 80 ml as outer layer metal pipe, pipe length 12
0 16 rn, wall thickness 4111111 iron <FC30
) using a commercially available a-SiC powder (Fujimi Abrasive Industry Co., Ltd.) GC grade, #2000: #4000: #80
A homogeneous mixture of carbon black (Mitsubishi Chemical Industries, Ltd. Diablack I) with a weight ratio of 1:0.8 (187ε) was applied to the inner wall of the iron pipe so that the bulk density was 184ε CTn3. uniform thickness
It was layered to a thickness of approximately 6 m (IL). The layering was carried out by inserting a core (of an appropriate diameter) into a metal tube and filling the space between the metal tube and the core with the mixture.9 Next, titanium powder was similarly applied onto this mixture layer. Silicon powder containing (
The amount of titanium added is shown in FIG. The main component, silicon, has a purity of 99.9%, and various particle sizes are blended to improve filling properties. Further, 213 g (1.1 times the theoretical amount) of titanium (using sponge titanium fine powder) was filled to a substantially uniform thickness of about 5+ ms.

更に内測にアルミニウム粉末(純度78%約200メッ
シュ)とFeJ−粉末(試薬特級、約200メッシュ)
のモル比8二3の均一混合物77gを約3IIl―の厚
さて一様に積層した。
Furthermore, for internal measurement, aluminum powder (purity 78%, approximately 200 mesh) and FeJ powder (reagent special grade, approximately 200 mesh) were used.
77 g of a homogeneous mixture having a molar ratio of 823 was uniformly layered to a thickness of about 3 IIl.

上記のように調整した試験片を遠心鋳造実験に用いる片
持横型遠心機の金型中央部に挿入固定した。金型は固定
のみでなく冷却の役割をも果せるようにしてある。遠心
機回転部に取付けた試験片を偏心させずに回転させ、お
よそ200Gに達したときアセチレン炎でアルミニウム
とFesO.混合物に着火し子ルミソト反応を起させた
。テルミ・ソ}ヘ反応による発熱で誘起された炭化珪素
の反応焼結も発熱反応であるので全ての反応か瞬特に完
結した。
The test piece prepared as described above was inserted and fixed into the center of the mold of a cantilever horizontal centrifuge used for centrifugal casting experiments. The mold is designed not only for fixing, but also for cooling. The test piece attached to the rotating part of the centrifuge was rotated without eccentricity, and when it reached approximately 200G, aluminum and FesO. The mixture was ignited to cause a lumisoto reaction. The reaction sintering of silicon carbide induced by the heat generated by the Terumi-Sohe reaction was also an exothermic reaction, so all the reactions were completed instantly.

冷却後、回転を止め、金型から取出した試験片は内層に
肉厚約6WIIIlの炭化珪素セラミック層か生成され
ており、更にその表面は厚さ約0.4W+w+の^12
0,層て覆われていた。第1図にこの断面を模式的に示
す。同図中、1は鋳鉄管、3はSiC層、5は八l20
,層て゛ある。
After cooling, the rotation was stopped and the specimen taken out from the mold had a silicon carbide ceramic layer formed on the inner layer with a thickness of about 6WIII, and the surface had a thickness of about 0.4W+w+^12.
0.It was covered in layers. FIG. 1 schematically shows this cross section. In the figure, 1 is a cast iron pipe, 3 is a SiC layer, and 5 is 8 l20
There are many layers.

次にニクノ試験片の断面を鏡面研摩し、エレクトロンプ
ローブマイクロアナライザー(EPM^)で分析した。
Next, the cross section of the Nikuno test piece was mirror polished and analyzed using an electron probe microanalyzer (EPM^).

最内層の八l203層5は約0.4mmの厚さて、八l
,0:1層5と炭化珪素層3との間で一部化学結合して
いるようであるが主としてSi−Fe1金層4が介在し
ていた。少量であったが、^f20,層5と炭化珪素層
3Qノ間にチタンの濃縮分布が検出され、これがAf.
0,’炭化珪素間に位置する結合力を微視的領域てある
が一層高めているように考えられた。
The innermost layer 5 has a thickness of about 0.4 mm.
, 0:1 layer 5 and silicon carbide layer 3, although there seemed to be some chemical bonding, mainly Si--Fe1 gold layer 4 was present. Although it was a small amount, a concentrated distribution of titanium was detected between layer 5 and silicon carbide layer 3Q, and this was found in Af.
0,' It was thought that the bonding force between silicon carbide was further enhanced in the microscopic region.

炭化珪素層3中には、鉄を僅かに含んだtL耐金属珪素
が約15°Jの量で網状に分布していた3炭(ヒ珪素セ
ラミック層と鋳鉄管との間には炭化珪素セラミック中の
遊離金属珪素と連続し、鉄に富んだFe−Si合金層2
が存在して拡散接合を生じていた。又、この反応は瞬間
的に行われるのて組成中に、空気中であっても炭素の燃
焼反応の跡をとどめず、気泡の存在も認めなかった3 U匠1 実施例1と同方法で、チタンを含まず珪素粉末のみを配
置して同様に複合管を製造した。
In the silicon carbide layer 3, tL metal-resistant silicon containing a small amount of iron was distributed in a net shape in an amount of about 15°J. Iron-rich Fe-Si alloy layer 2 continuous with free metallic silicon inside
was present, causing diffusion bonding. In addition, since this reaction took place instantaneously, there was no trace of the combustion reaction of carbon in the composition, even in the air, and no air bubbles were observed.3 U Takumi 1 Using the same method as in Example 1. A composite tube was similarly manufactured using only silicon powder without titanium.

L1鯉 比較例1と実施例1て製造した管長120mmの複合管
からそれぞれ管長45+nmに切断して熱衝撃試験片と
した。本試験は^1203層の剥離破損を評価するもの
である。
L1 carp Composite tubes with a tube length of 120 mm manufactured in Comparative Example 1 and Example 1 were each cut into tube lengths of 45+ nm to prepare thermal shock test pieces. This test evaluates peeling damage of the ^1203 layer.

上記試験片を縦型電気炉の上側に加熱室、下側にArガ
ス吹き付け冷却室を設けたエレベータ式台座上に置き、
加熱1分、冷却1分30秒で約850℃→約120℃間
の急熱急冷に曝した。冷却中は加熱室と冷却室間は自動
的に遮蔽板が入り、仕切る。
Place the above test piece on an elevator type pedestal with a heating chamber on the upper side of a vertical electric furnace and an Ar gas blowing cooling chamber on the lower side,
It was exposed to rapid heating and cooling from about 850° C. to about 120° C. with heating for 1 minute and cooling for 1 minute and 30 seconds. During cooling, a shield plate is automatically inserted between the heating and cooling chambers to separate them.

試験中サイクル自動運転のくり返し回数と八l20,層
の剥離発生の関係を第2図に結果としてまとめて示す。
The relationship between the number of repetitions of cycle automatic operation during the test and the occurrence of layer peeling is summarized in Figure 2 as a result.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、金属管の内側にSiC層を介して^l
203層を形成し、かつ金属管とSiC層と、及びSi
C層と八〇.0.層とを金属珪素、鉄又はSFeき金に
より結合した炭化珪素,′金属複合管において、最内層
の八l20,層とSiC層の界面にチタンの濃縮層を生
成せしめることによって八1203層の熱サイクルによ
る剥離を防止することができる。
According to the present invention, the inner side of the metal tube is
203 layers are formed, and the metal tube, the SiC layer, and the Si
C layer and 80. 0. In a silicon carbide metal composite tube in which layers are bonded with metal silicon, iron, or SFe gold, the heat of the 81203 layer is generated by generating a concentrated layer of titanium at the interface between the innermost 8120 layer and the SiC layer. Peeling due to cycles can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は炭化珪素,′金属複合管の横断面図、第2図は
複合管の熱サイクル耐久試験の結果を示す図である。 1−・鋳鉄管、    2・・・Fe−Si台金層、3
・・SiC層、 4・・・金属Si,′Si  Fe会金連続層、5−・
・^f,04層。
FIG. 1 is a cross-sectional view of a silicon carbide/metal composite tube, and FIG. 2 is a diagram showing the results of a thermal cycle durability test of the composite tube. 1- Cast iron pipe, 2... Fe-Si base metal layer, 3
...SiC layer, 4...Metal Si, 'Si Fe metal continuous layer, 5--
・^f, 04th layer.

Claims (1)

【特許請求の範囲】[Claims] 1.金属管の内面に炭化珪素粉末と炭素粉末との均一混
合物よりなる粉末成形体層を成層し、該粉末成形体層の
表面に該粉末成形体層中の炭素を炭化珪素に変えるに要
する珪素量に対し過剰の珪素を環状に配置し、更に最内
層にアルミニウムと四三酸化鉄の混合物粉末層を積層し
た管状物を遠心機で回転させ、十分な遠心力下で最内層
にテルミット反応を起こさせ、その反応熱により炭化珪
素の反応焼結を行うに際し、該珪素層中に重量で珪素1
00に対しチタンを0.4から4.0の範囲内で添加し
たことを特徴とする炭化珪素/金属複合管の製造方法。
1. A powder compact layer made of a uniform mixture of silicon carbide powder and carbon powder is layered on the inner surface of a metal tube, and the amount of silicon required to convert carbon in the powder compact layer to silicon carbide is deposited on the surface of the powder compact layer. A tubular material in which excess silicon is arranged in a ring shape, and a powder layer of a mixture of aluminum and triiron tetroxide is layered on the innermost layer is rotated in a centrifuge to cause a thermite reaction in the innermost layer under sufficient centrifugal force. When performing reaction sintering of silicon carbide using the reaction heat, 1 silicon by weight is added to the silicon layer.
A method for manufacturing a silicon carbide/metal composite tube, characterized in that titanium is added in a range of 0.4 to 4.0.
JP1176790A 1990-01-23 1990-01-23 Production of silicon carbide/metal composite pipe Pending JPH03218987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1176790A JPH03218987A (en) 1990-01-23 1990-01-23 Production of silicon carbide/metal composite pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1176790A JPH03218987A (en) 1990-01-23 1990-01-23 Production of silicon carbide/metal composite pipe

Publications (1)

Publication Number Publication Date
JPH03218987A true JPH03218987A (en) 1991-09-26

Family

ID=11787128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1176790A Pending JPH03218987A (en) 1990-01-23 1990-01-23 Production of silicon carbide/metal composite pipe

Country Status (1)

Country Link
JP (1) JPH03218987A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996016918A1 (en) * 1994-11-28 1996-06-06 Glaverbel Process and apparatus for making ceramic articles
US8403365B2 (en) 2009-03-04 2013-03-26 Ashimori Industry Co., Ltd. Seatbelt retractor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996016918A1 (en) * 1994-11-28 1996-06-06 Glaverbel Process and apparatus for making ceramic articles
US5853654A (en) * 1994-11-28 1998-12-29 Glaverbel Process and apparatus for making ceramic articles
US8403365B2 (en) 2009-03-04 2013-03-26 Ashimori Industry Co., Ltd. Seatbelt retractor

Similar Documents

Publication Publication Date Title
JPH01119641A (en) Alloy for composite pipes in fluidized bed coal combustion device
JPS60168959A (en) Reinforced piston, its production and reinforcement material for piston
US8349468B2 (en) Metal material for parts of casting machine, molten aluminum alloy-contact member
US20010001048A1 (en) Thermal spraying composite material containing molybdenum boride and a coat formed by thermal spraying
US5350609A (en) Insulating monolithic refractory material, manufacturing process and article according to the process
CA1225881A (en) Joining silicon nitride to metals
JPH03218987A (en) Production of silicon carbide/metal composite pipe
Taguchi et al. Near-net shape processing of TiAl intermetallic compounds via pseudoHIP-SHS route
JPH0233676B2 (en) TANKAKEISO * KINZOKUFUKUGOKANOYOBISONOSEIZOHOHO
Odawara Long ceramic-lined pipes with high resistance against corrosion, abrasion and thermal shock
US3588028A (en) Coated metal mold
JPH06304740A (en) Cast-in method
JPS6021306A (en) Manufacture of composite reinforced member
JPS63303673A (en) Wall structure for internal combustion engine and manufacture
JPH0114997B2 (en)
CN116162931B (en) Bottom blowing spray gun composite coating, preparation method thereof and bottom blowing spray gun
JP2613599B2 (en) Piston and method of manufacturing the same
JPS6380918A (en) Lining method for pipe inner face
JPS61252855A (en) Piston and manufacture thereof
SU1583446A1 (en) Method of manufacturing charging arrangement for blast furnace
JPS61186190A (en) Composite filter rod for building up by welding
SU1320003A1 (en) Composition for alloying surface of casting in mould
JPH0114996B2 (en)
JPS59120356A (en) Composite casting and its production
JPH0243316A (en) Skid button for walking beam type heating furnace and production thereof