JPS5891121A - Production of high-tensile hot-rolled steel plate having high magnetic flux density - Google Patents

Production of high-tensile hot-rolled steel plate having high magnetic flux density

Info

Publication number
JPS5891121A
JPS5891121A JP18720181A JP18720181A JPS5891121A JP S5891121 A JPS5891121 A JP S5891121A JP 18720181 A JP18720181 A JP 18720181A JP 18720181 A JP18720181 A JP 18720181A JP S5891121 A JPS5891121 A JP S5891121A
Authority
JP
Japan
Prior art keywords
hot
flux density
magnetic flux
rolled
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18720181A
Other languages
Japanese (ja)
Inventor
Masayoshi Kuwagata
桑形 政良
Hirotake Sato
佐藤 広武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18720181A priority Critical patent/JPS5891121A/en
Publication of JPS5891121A publication Critical patent/JPS5891121A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling

Abstract

PURPOSE:To produce a high-tensile hot-rolled steel plate having high magnetic flux density and high strength by subjecting a steel slab contg. specific ranges of C, Mn, Si, Al, S, N, Ti to heating, hot rolling and coiling under respectively specific conditions. CONSTITUTION:A steel slab contg., by weight, 0.02-0.06%C, 0.3-1.2% Mn, <=0.10% Si, <=0.10% Al, <=0.02% S, <=0.01% N, and 0.05-0.30% Ti and consisting of the balance Fe with unavoidable impurities is heated to >=1,200 deg.C. Thereafter, the heated slab is hot-rolled at finish rolling temps. higher than the Ar3 transformation point and <=900 deg.C, and the hot-rolled steel plate is coiled at a 500-650 deg.C range. Thus, the steel plate for magnetic poles which has about >=50kg.f/mm.<2> tensile strength as hot-rolled and has magnetization characteristics of about >=1.5% at B25 magnetic flux density, about >=1.7T at B50 and about >=1.8T at B100 is produced inexpensively.

Description

【発明の詳細な説明】 本発明は高磁束密度を有する高張力熱延鋼板の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a high tensile strength hot rolled steel sheet having a high magnetic flux density.

一般に回転電気機械に使用される磁極用鋼板は高い磁束
密度と同時に高い強度が要求される。しかし、従来の磁
極用鋼板は強度を確保するためにC、Mn 、 Siを
比較的多く含ませたものが多く、例えばCjo、10%
以上、Mn : 1.3%以上、Si:0.2%以上が
通常であった。そのために強度が高くなるが、透磁率が
下がり、回転電気機械の性能向上が困難となる欠点があ
つな しかし、近年省エネルギーの要求が高まるにつれ、回転
電気機械の効率向上が望まれ、これに応するために回転
子材料の高強度化による回転子の小型化、軽量化および
回転数の高速化が強く要請されている。しかし、回転電
気機械の用途範囲が極めて広いので高価合金元素の使用
による材料の高強度化が特殊のものを除き不可能である
。従って高価合金元素を含まず、しかも高い磁束密度と
高強度を有する材料の開発が強く要請されて来た。
Generally, steel plates for magnetic poles used in rotating electric machines are required to have high magnetic flux density and high strength. However, conventional steel sheets for magnetic poles often contain relatively large amounts of C, Mn, and Si to ensure strength; for example, Cjo, 10%
As mentioned above, Mn: 1.3% or more and Si: 0.2% or more were normal. Although this increases the strength, it also has the disadvantage that magnetic permeability decreases, making it difficult to improve the performance of rotating electrical machines.However, as the demand for energy conservation has increased in recent years, improvements in the efficiency of rotating electrical machines have been desired, and in response to this demand, In order to achieve this, there is a strong demand for smaller and lighter rotors and faster rotation speeds by increasing the strength of rotor materials. However, since the range of applications of rotating electric machines is extremely wide, it is impossible to increase the strength of materials by using expensive alloying elements except in special cases. Therefore, there has been a strong demand for the development of materials that do not contain expensive alloying elements and have high magnetic flux density and high strength.

本発明の目的は、上記要請に応えるため熱延のままで引
張強さ50陣・f/−以上を有し、かつ磁化特性として
磁束密度B3.で1,5T以上、Bゎで1.7T以上%
B、。。で1.8T以上を有する磁極用鋼板を安価に提
供するにある。
In order to meet the above requirements, an object of the present invention is to have a tensile strength of 50 f/- or more as hot-rolled, and a magnetic flux density of B3. 1.5T or more in Bwa, 1.7T or more% in B
B. . The purpose of the present invention is to provide a steel plate for magnetic poles having a tensile strength of 1.8T or more at low cost.

本発明の要旨とするところは次のとおりである。The gist of the present invention is as follows.

すなわち、tf箪比にてCiO,02〜0.06%、胤
10°3〜1.2%、Si:0.10%以下、At :
 0.10%以下、S:0.02%以下、N+0.01
%以下、Ti : 0.05〜0.30%を含み、残部
はFeおよび不可避的不純物より成る鋼スラブを120
0℃以上の温度に加熱する工程と、前記加熱スラブをA
r。
That is, tf ratio: CiO: 02-0.06%, grain: 10°3-1.2%, Si: 0.10% or less, At:
0.10% or less, S: 0.02% or less, N+0.01
% or less, Ti: 0.05 to 0.30%, the remainder consisting of Fe and unavoidable impurities.
A step of heating the heated slab to a temperature of 0° C. or higher;
r.

変態点以上990℃以下の仕上圧延温度にて熱間圧延す
る工程と、前記熱延鋼板を500〜650℃ の温度範
囲で巻取る工程と、を有して成ることを特徴とする高磁
束密度を有する高張力熱延−板の製造方法、である。
A high magnetic flux density characterized by comprising the steps of: hot rolling at a finishing rolling temperature above the transformation point and below 990°C; and winding the hot rolled steel sheet at a temperature range of 500 to 650°C. A method for producing a high tensile strength hot-rolled sheet having the following steps.

本発明の詳細ならびに実施例を添付図面を参照して説明
する。
Details and embodiments of the invention will now be described with reference to the accompanying drawings.

本発明の目的である高磁束密度を得るためには鋼中の不
純物を減少して純鉄に近付けるのが効果的であることは
公知であるが、それでは高強度を確保し得ない。不純物
のうちで最も磁束密度に悪影譬を及ぼすのはC,N等の
侵入型原子である。
It is known that it is effective to reduce impurities in steel to make it closer to pure iron in order to obtain a high magnetic flux density, which is the object of the present invention, but this does not ensure high strength. Among the impurities, interstitial atoms such as C and N have the most negative effect on the magnetic flux density.

これらはFe  の結晶格子内に侵入して格子ひずみを
増大させ、磁区の移動を妨げる。SI%Mn等の置換型
原子も結晶格子をひずませるが、C,N等の侵入型原子
よりもその影響は少ない。
These penetrate into the crystal lattice of Fe, increase lattice strain, and impede movement of magnetic domains. Although substitutional atoms such as SI%Mn also distort the crystal lattice, the effect is less than that of interstitial atoms such as C and N.

一方、析出強化元素として知られるTi 、 Nb 。On the other hand, Ti and Nb are known as precipitation strengthening elements.

V 、 Zr  は微細炭化物もしくは窒化物として鋼
中に析出し転位の移動を妨げ−を強化するが、磁区の移
動は妨げないと考えられている。これらの元素はCを炭
化物として固定し−を強化するので本発明の目的に効果
的であg。特にTi  は安価であって、かつ少量で強
度を向上できるので本発明ではTI に着目したもので
ある。
It is believed that V and Zr precipitate in steel as fine carbides or nitrides and prevent the movement of dislocations and strengthen the steel, but do not hinder the movement of magnetic domains. These elements fix C as a carbide and strengthen -, so they are effective for the purpose of the present invention. In particular, the present invention focuses on Ti because it is inexpensive and can improve strength with a small amount.

本発明における上記鋼成分の限定理由は次の如くである
The reasons for limiting the above-mentioned steel components in the present invention are as follows.

C: Cは高い引張強さを得るために最も効果的な元素であっ
て、この目的のために少くとも0.02%を必要とする
。しかしCの増加と共に第1図にボす如く磁化特性が劣
化するので、そげ上限を0.06%とし、0.02〜0
.06%の範囲に限定した。−81: Sl  は強化元素として有用であるが、第2図に示す
如く磁化特性を劣化させるので少い方が望ましい。しか
し、強化元素として最少限の添加によって−を経済的に
製造するため0.10%を上限として添加することとし
た。
C: C is the most effective element for obtaining high tensile strength and requires at least 0.02% for this purpose. However, as C increases, the magnetization characteristics deteriorate as shown in Figure 1.
.. It was limited to a range of 0.06%. -81: Sl is useful as a reinforcing element, but as shown in FIG. 2, it deteriorates the magnetization characteristics, so it is desirable to have less. However, in order to economically produce - as a reinforcing element with the minimum addition, it was decided to add 0.10% as an upper limit.

Mn: Mn  も強度の向上には効果的な元素であるが、第3
図に示す如く磁化特性を劣化させる。しかしSl  に
比較すると劣化程度は小さい、そのため強化元素として
少くとも0.3%を必要とする。しかし1.2%を越す
と磁化特性の劣化が大となるので上限を1.2%とし、
0.3〜1.2%の範囲に限定した。
Mn: Mn is also an effective element for improving strength, but
As shown in the figure, the magnetization characteristics deteriorate. However, compared to Sl, the degree of deterioration is small, so at least 0.3% is required as a reinforcing element. However, if it exceeds 1.2%, the deterioration of the magnetization characteristics will be significant, so the upper limit is set at 1.2%.
It was limited to a range of 0.3 to 1.2%.

At : Atは脱酸ヒ必要な元素であるが、0.10%を越すと
結晶粒の粗大化を来たし強度を劣化させると共に磁化特
性の劣化も大となるので0.10%以下に限定した。
At: At is a necessary element for deoxidation, but if it exceeds 0.10%, it will cause coarsening of crystal grains and deteriorate the strength, as well as greatly deteriorating the magnetization characteristics, so it was limited to 0.10% or less. .

S: Sは0.02%を越すとMnS系の介在物が増加し磁化
特性を劣化させるので上限を0.02%とした。
S: If S exceeds 0.02%, MnS-based inclusions increase and the magnetization characteristics deteriorate, so the upper limit was set at 0.02%.

N : Nは侵入型原子として結晶格子を歪ませ磁化特性を劣化
させるほか、本発明において特に添加したTiと結合し
てTiN  を形成して強度に有効に作用するTi  
の効果を減少させるので上限を0.01%に限定した。
N: N acts as an interstitial atom, distorting the crystal lattice and deteriorating the magnetization properties, and also combines with Ti, which is especially added in the present invention, to form TiN, which effectively increases the strength.
The upper limit was limited to 0.01% because the effect of

Ti: Ti  は安価で、しかも少量の添加によってCと結合
してTiCを形成し鋼を強化するので少くとも0.05
%を必要とする。通常Cilに対し十分な強度を得るに
は重量%でC量の4倍以上のTi  を添加するが、T
I  が多くなると表面疵の原因となるほか、Cの上限
を0.06%としたのでその上限を0.30%とした。
Ti: Ti is inexpensive, and when added in small amounts, it combines with C to form TiC and strengthens steel, so it is at least 0.05
% is required. Normally, in order to obtain sufficient strength for Cil, Ti is added in an amount more than four times the amount of C in terms of weight percent, but T
An increase in I causes surface flaws, and since the upper limit of C was set at 0.06%, the upper limit was set at 0.30%.

本発明鋼は上記成分のほか残部はFe  および不可避
的不純物より成り、この成分鋼を溶製した後連続鋳造も
しくは造塊、分塊等の通常の製造工程を経てスラブ・と
される。
In addition to the above-mentioned components, the steel of the present invention consists of Fe and unavoidable impurities, and after melting this component steel, it is made into a slab through normal manufacturing processes such as continuous casting, ingot making, and blooming.

スラブの加熱は一度冷片としたもの、もしくは熱片のま
まのものも1200℃以上に加熱する。通常1200〜
1400℃の温度範囲に加熱した後圧延する。加熱温度
を1200℃以上としたのはT1  の固溶を促進する
ためであって1200℃未満の加熱温度ではTi  が
十分固溶されないからである。上限は特に限定しないが
、スケールロスの防止、省エネルギーの観点から140
0℃を趣す加熱は不必要であり不経済である。
The slab is heated to 1,200°C or higher, either once it has been turned into a cold slab or as a hot slab. Usually 1200~
It is heated to a temperature range of 1400°C and then rolled. The reason why the heating temperature was set to 1200°C or higher was to promote the solid solution of T1, and this is because Ti is not sufficiently dissolved at a heating temperature of less than 1200°C. The upper limit is not particularly limited, but from the perspective of preventing scale loss and saving energy, it is 140
Heating to 0°C is unnecessary and uneconomical.

上記1200℃以上に加熱したスラブを熱間圧延し、そ
の仕上温度をAr、 変態点以上900℃以下とする。
The above-mentioned slab heated to 1200°C or higher is hot rolled, and the finishing temperature is Ar, and the transformation temperature is set to 900°C or lower.

仕上圧延温度をAr、変態点以上としたのは、 TiC
の析出による強度確保と残留歪による透磁率劣化を防止
するためであって、 Arl変態点未満の仕上圧延温度
ではこの目的が達成されないからである。
The finish rolling temperature was set to Ar and above the transformation point of TiC.
This is to ensure strength due to precipitation and to prevent deterioration of magnetic permeability due to residual strain, and this purpose cannot be achieved at a finish rolling temperature below the Arl transformation point.

また900℃を越す仕上圧延温度では高温に過ぎて鋼板
の結晶粒が粗大化し、必要な強度が得られないので仕上
圧延温度の上限を900℃とした。
Further, if the finish rolling temperature exceeds 900°C, the temperature is too high and the crystal grains of the steel sheet become coarse, making it impossible to obtain the necessary strength, so the upper limit of the finish rolling temperature was set at 900°C.

熱間圧延を終了した本発明による熱延−板は500〜6
50℃ の温度範囲でコイルに巻取る。巻取り温度を5
00〜650℃としたのは、500℃未満では鋼板の形
状が悪化し易(,650℃を越す温度では鋼板の結晶粒
の粗大化を来たし、またTiによる析出硬化が得られな
いからである。
The hot-rolled plate according to the present invention after hot rolling is 500 to 6
Wind it into a coil at a temperature range of 50°C. Winding temperature 5
The reason why the temperature was set at 00 to 650°C is that the shape of the steel sheet tends to deteriorate at temperatures below 500°C (temperatures exceeding 650°C cause coarsening of the crystal grains of the steel sheet, and precipitation hardening due to Ti cannot be obtained). .

かくの如き製造方法によって磁束密度の高い高張力熱延
鋼板を得ることができた。
A high tensile strength hot rolled steel sheet with a high magnetic flux density could be obtained by such a manufacturing method.

実施例 第1表に示す化学成分を有する本発明鋼ム1゜2.3,
4および比較鋼45,6,7,8,9.10をそれぞれ
転炉で溶製し、通常行われる工程を経てスラブとした。
Example Steel according to the present invention having the chemical composition shown in Table 1 1゜2.3,
4 and Comparative Steels 45, 6, 7, 8, and 9.10 were each melted in a converter and made into slabs through commonly performed steps.

該スラブをそれぞれ第1表に記載の如(1200℃以上
に加熱した後、それぞれのAr、変態点以上900℃以
下の仕上圧延温度にて熱間圧延し%500〜650℃の
温度範囲の第1表記載の温度にてコイルに巻取り板1!
L2.6〜4.0雪の熱延鋼板を製造した。
The slabs were heated as shown in Table 1 (after heating to 1200°C or higher, then hot rolled at a finish rolling temperature of 900°C or higher than the transformation point) and rolled in a temperature range of 500 to 650°C. 1 Winding plate 1 on the coil at the temperature listed in table 1!
Hot-rolled steel sheets of L2.6 to 4.0 were manufactured.

製造した熱廷鋼板各供試材の磁化特性と引張強さを測定
した結果を第1表に同時に示しJこ。またこれら灸供試
材の引張強さと磁束密度の関係を第4図に示した。
Table 1 also shows the results of measuring the magnetization properties and tensile strength of each test material of the manufactured hot-rolled steel sheets. Furthermore, the relationship between the tensile strength and magnetic flux density of these moxibustion test materials is shown in FIG.

第1表および第4図より明らかなとおり、本発明鋼はい
ずれも高い強度とすぐれた磁束密度を有するのに対し、
比較鋼はBlm w BSo 181(111および引
張強さのいずれかが本発明−に比しはるかに劣り本発明
の目的を達成できないものであった。
As is clear from Table 1 and Figure 4, the steels of the present invention all have high strength and excellent magnetic flux density;
The comparative steel was far inferior to the present invention in both Blm w BSo 181 (111 and tensile strength) and could not achieve the object of the present invention.

なお1本比較試験においては比較鋼も本発明による圧延
条件によったものであるので磁化特性および強度の影響
はもっばら銅成分に基因するものであって、比較鋼成分
において本発明の限定組成に外れた成分数値および試験
結果の磁束密度、強度の不足するものについてはいずれ
もアンダーラインを付した。すなわち、比較−供試材A
5はCが高いために強度が高いものの磁化特性が劣り、
供試材46はCが低きに過ぎるために磁化特性がすぐれ
ているものの強度が著しく低い。また供試材A7は84
′が高過ぎるためにB、の磁化特性が劣り、供試材A8
はMn が高過ぎるために強度は大であるもののBSo
、 B、。。の磁化特性が劣り、供試材A9はNの含有
量が高い・ために8116 + 8160  の磁化特
性および強度が劣り、供試材410はTi  ′を含ん
でいないために磁化特性がすぐれているものの強度が著
しく劣る結果となっている。それに対し、本発明鋼は5
0 ki−f/vxJ  以上の強度と、磁束密度が8
0で1.5T以上、 B、oで1.71JJ:、Blm
で1.8T以上のすぐれた磁化特性と高強度と同時に有
する熱延鋼板であることを示している。
In this comparative test, the comparative steel was also rolled under the rolling conditions according to the present invention, so the influence of magnetization properties and strength was mainly due to the copper component, and the limited composition of the present invention was not found in the comparative steel composition. Component values that are outside the range, as well as test results that are insufficient in magnetic flux density or strength, are underlined. That is, comparison-sample material A
5 has high strength due to high C content but poor magnetization properties,
The sample material 46 has an extremely low carbon content, so although it has excellent magnetization characteristics, its strength is extremely low. In addition, sample material A7 is 84
' is too high, the magnetization properties of B are inferior, and specimen material A8
Although the strength is high because Mn is too high, BSo
,B. . Sample material A9 has poor magnetization properties and strength of 8116 + 8160 due to its high N content, and sample material 410 has excellent magnetization properties because it does not contain Ti'. The result is that the strength of the material is significantly inferior. In contrast, the steel of the present invention has 5
Strength of 0 ki-f/vxJ or more and magnetic flux density of 8
1.5T or more at 0, 1.71JJ at B, o:, Blm
This indicates that the hot-rolled steel sheet has excellent magnetization characteristics of 1.8 T or more and high strength.

なお1本比較試験における磁束密勲測定4i、JISC
2550により行ったものである。
In addition, magnetic flux density measurement 4i in one comparison test, JISC
2550.

上記実施例より明らかな如く、本発明は磁化特性に悪影
響を及ぼすC、Si 、 MnおよびNを低減すると共
にTi  l!−添加することによって引張強さの増加
を図り、更に適切な圧延条件と相俟って引張強さが50
 kg−f/d以上を有し、かつ磁化特性として磁束密
度式、で1.5T以上、 f3mで1.7T以上% B
+611で1.8T以上を有する高磁束密度の高張力熱
延鋼板をきわめて低コストで製造することができる大き
な効果を収めることができた。
As is clear from the above examples, the present invention reduces C, Si, Mn, and N, which have an adverse effect on magnetization characteristics, and also reduces Ti l! - The tensile strength is increased by adding the
kg-f/d or more, and the magnetization property is 1.5T or more using the magnetic flux density formula, and 1.7T or more at f3m%B
It was possible to produce a high tensile strength hot-rolled steel sheet with a high magnetic flux density of 1.8 T or more at +611 at an extremely low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁束密度に及ぼす本発明鋼および比較鋼のCの
影響を示す線図、第2図は磁束密度に及ぼす本発明鋼お
よび比較鋼のSi  の影響を示す線図、第3図は磁束
密度に及ぼす本発明鋼および比較鋼のMn  の影響を
示す線図、第4図は本発明鋼および比較鋼における磁束
密度と引張強さとの関係を示す線図である。 代理人中路武雄 第1図 C■ 第2図 第3図 Mn(す
Figure 1 is a diagram showing the effect of C on the magnetic flux density of the invention steel and comparative steel, Figure 2 is a diagram showing the influence of Si on the invention steel and comparative steel on magnetic flux density, and Figure 3 is a diagram showing the effect of Si on the invention steel and comparative steel on magnetic flux density. FIG. 4 is a diagram showing the influence of Mn in the present invention steel and comparative steel on magnetic flux density. FIG. 4 is a diagram showing the relationship between magnetic flux density and tensile strength in the present invention steel and comparative steel. Agent Takeo Nakaji Figure 1 C ■ Figure 2 Figure 3 Mn (S

Claims (1)

【特許請求の範囲】[Claims] (1)  重量比にてC+ 0.02〜0.06%、M
n:0.3〜1.2%、Si:0.10%以下、At:
0.10%以下、S:0.02%以下、N:0.01%
以下、Ti : 0.05〜0.30%を含み、残部は
Feおよび不可避的不純物より成る鋼スラブを1200
℃以上の温度に加熱する工程と、前記加熱スラブをAr
。 変態点以上900℃以下の仕上圧延層間にて熱間圧延す
る工程と、前記熱延鋼板を500〜650℃の温度範囲
で巻取る工程と、を有して成ることを特徴とする高磁束
密度を有する高張力熱延銅板の製造方法。
(1) C+ 0.02-0.06% by weight, M
n: 0.3 to 1.2%, Si: 0.10% or less, At:
0.10% or less, S: 0.02% or less, N: 0.01%
Hereinafter, a steel slab containing 0.05 to 0.30% of Ti and the remainder consisting of Fe and unavoidable impurities was heated to 1200%.
a step of heating the heated slab to a temperature of ℃ or higher;
. A high magnetic flux density characterized by comprising a step of hot rolling between finish rolling layers at a temperature above the transformation point and below 900°C, and a step of winding the hot rolled steel sheet in a temperature range of 500 to 650°C. A method for producing a high-tensile hot-rolled copper plate having the following steps.
JP18720181A 1981-11-21 1981-11-21 Production of high-tensile hot-rolled steel plate having high magnetic flux density Pending JPS5891121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18720181A JPS5891121A (en) 1981-11-21 1981-11-21 Production of high-tensile hot-rolled steel plate having high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18720181A JPS5891121A (en) 1981-11-21 1981-11-21 Production of high-tensile hot-rolled steel plate having high magnetic flux density

Publications (1)

Publication Number Publication Date
JPS5891121A true JPS5891121A (en) 1983-05-31

Family

ID=16201857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18720181A Pending JPS5891121A (en) 1981-11-21 1981-11-21 Production of high-tensile hot-rolled steel plate having high magnetic flux density

Country Status (1)

Country Link
JP (1) JPS5891121A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197819A (en) * 1984-03-22 1985-10-07 Nippon Steel Corp Production of thin grain-oriented electrical steel sheet having high magnetic flux density
JPS6283421A (en) * 1985-10-04 1987-04-16 Sumitomo Metal Ind Ltd Production of grain oriented electrical steel sheet
JPH02290921A (en) * 1989-04-28 1990-11-30 Sumitomo Metal Ind Ltd Production of electro plate for thick plate
US6632295B2 (en) 1999-09-28 2003-10-14 Nkk Corporation High tensile strength hot-rolled steel sheet and method for manufacturing the same
WO2013115205A1 (en) 2012-01-31 2013-08-08 Jfeスチール株式会社 Hot-rolled steel for power generator rim and method for manufacturing same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197819A (en) * 1984-03-22 1985-10-07 Nippon Steel Corp Production of thin grain-oriented electrical steel sheet having high magnetic flux density
JPS6248725B2 (en) * 1984-03-22 1987-10-15 Nippon Steel Corp
JPS6283421A (en) * 1985-10-04 1987-04-16 Sumitomo Metal Ind Ltd Production of grain oriented electrical steel sheet
JPH0121851B2 (en) * 1985-10-04 1989-04-24 Sumitomo Metal Ind
JPH02290921A (en) * 1989-04-28 1990-11-30 Sumitomo Metal Ind Ltd Production of electro plate for thick plate
US6632295B2 (en) 1999-09-28 2003-10-14 Nkk Corporation High tensile strength hot-rolled steel sheet and method for manufacturing the same
WO2013115205A1 (en) 2012-01-31 2013-08-08 Jfeスチール株式会社 Hot-rolled steel for power generator rim and method for manufacturing same
KR20140108713A (en) 2012-01-31 2014-09-12 제이에프이 스틸 가부시키가이샤 Hot-rolled steel for power generator rim and method for manufacturing same
US10301698B2 (en) 2012-01-31 2019-05-28 Jfe Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5116435A (en) Method for producing non-oriented steel sheets
JPS61270356A (en) Austenitic stainless steels plate having high strength and high toughness at very low temperature
JPH0536481B2 (en)
JP3885432B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPS5891121A (en) Production of high-tensile hot-rolled steel plate having high magnetic flux density
JP2987815B2 (en) Method for producing high-tensile cold-rolled steel sheet excellent in press formability and secondary work cracking resistance
JPH06322440A (en) Method for rolling high manganese nonmagnetic steel slab
US5186763A (en) Process for production of non-oriented electrical steel sheet having excellent magnetic properties
JPS63166931A (en) Manufacture of high tension hot rolled steel sheet having high magnetic flux density
JPH0832927B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JP3968883B2 (en) Soft magnetic stainless steel sheet and manufacturing method thereof
US5013372A (en) Semi-process non-oriented electromagnetic steel strip having low core loss and high magnetic permeability, and method of making
CN111663081A (en) Niobium-containing oriented silicon steel adopting low-temperature heating plate blank and production method
JP3533655B2 (en) Method for producing low-grade electrical steel sheet with small magnetic anisotropy and low-grade electrical steel sheet with small magnetic anisotropy
JP2003105508A (en) Nonoriented silicon steel sheet having excellent workability, and production method therefor
JPH08283853A (en) Production of nonoriented cilicon steel sheet excellent in magnetic property
JPS5832214B2 (en) Method for manufacturing unidirectional silicon steel sheet with extremely high magnetic flux density and low iron loss
JPS6086210A (en) Manufacture of high-tension electromagnetic hot-rolled steel plate
JPH0860247A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JPS5855209B2 (en) Method for manufacturing non-oriented silicon steel sheet with little aging deterioration and good surface quality
JPH07268561A (en) High strength stainless steel excellent in hot workability and free from welding softening
JPH0569909B2 (en)
JPH02104619A (en) Production of non-oriented magnetic steel sheet having excellent iron loss characteristic
JPS6054373B2 (en) Manufacturing method using continuous annealing for low yield ratio, high strength cold rolled steel sheets with excellent workability
JPH1072643A (en) High damping alloy and its production