JPH02290921A - Production of electro plate for thick plate - Google Patents

Production of electro plate for thick plate

Info

Publication number
JPH02290921A
JPH02290921A JP11144189A JP11144189A JPH02290921A JP H02290921 A JPH02290921 A JP H02290921A JP 11144189 A JP11144189 A JP 11144189A JP 11144189 A JP11144189 A JP 11144189A JP H02290921 A JPH02290921 A JP H02290921A
Authority
JP
Japan
Prior art keywords
steel
plate
magnetic properties
soft iron
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11144189A
Other languages
Japanese (ja)
Other versions
JPH0753883B2 (en
Inventor
Ryuji Ogata
緒方 龍二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1111441A priority Critical patent/JPH0753883B2/en
Publication of JPH02290921A publication Critical patent/JPH02290921A/en
Publication of JPH0753883B2 publication Critical patent/JPH0753883B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To obtain an electro plate for thick plate having superior magnetic properties by subjecting an ingot of a steel having the prescribed steel composition to finish hot rolling and to heating in respectively specified temperature ranges and then subjecting the resulting hot rolled plate to holding for a specific length of time or more and to slow cooling. CONSTITUTION:An ingot of a steel having a composition containing, by weight, <=0.01% C, <=0.30% Si, <=0.50% Mn, <=0.01% P, <=0.01% S, 0.005 to 0.060% sol.Al, and 0.05 to 0.25% Cr is hot-worked at 650 to 900 deg.C as a finishing temp. at which the structure of the steel is formed into ferritic single phase. Subsequently, the hot-worked steel ingot is heated, for the purpose of relieving working strain and coarsening crystalline grains, up to a temp. between 750 deg.C and the Ar3 point, held for >=30min, and cooled slowly. As a result, the electro plate for thick plate having superior magnetic properties can be provided stably, that is, without causing deterioration in magnetic properties even if Cr is incorporated by the amount larger than that contained in the conventional electro plate for thick plate by using magnecia-chrome-type refractories in the refining stage.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば漏洩磁気を遮断するのに好適な、優れ
た磁気特性を有する厚板用電磁軟鉄の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing electromagnetic soft iron for thick plates, which has excellent magnetic properties and is suitable for blocking magnetic leakage, for example.

(従来の技術) 近年の著しい科学技術の進展に伴って、例えば医療機器
の分野においては、4gm気共鳴現象を利用した核磁気
共鳴断層撮影装置(MRI)が実用化され、MJ極的に
導入されている。
(Prior art) With the remarkable progress of science and technology in recent years, for example, in the field of medical equipment, nuclear magnetic resonance tomography (MRI) that utilizes the 4gm air resonance phenomenon has been put into practical use, and has been widely introduced in MJ. has been done.

しかし、この核磁気共鳴断層撮影装置の使用に際しては
、発生する多量の漏洩磁気を遮断する必要がある。した
がって、この核磁気共鳴断層撮影装置の構造部材として
用いられる鋼板には、磁気遮断特性が求められており、
その鋼板の板厚も装置としての強度を具備する必要性か
ら2Qmm以上であることが多い。
However, when using this nuclear magnetic resonance tomography apparatus, it is necessary to block a large amount of leakage magnetism that occurs. Therefore, the steel plates used as structural members of this nuclear magnetic resonance tomography apparatus are required to have magnetic blocking properties.
The thickness of the steel plate is often 2 Q mm or more because of the need to provide strength for the device.

一方、優れた磁気遮断特性すなわち高透磁率を有する厚
板用電磁軟鉄は、前述の核磁気共鳴断層撮影装置のみな
らず、サイクロトロン等の大型科学実験装置、核融合装
置あるいは医療機器等のカバー・構造部材として磁気シ
ールドを行うためにも使用される材料である。
On the other hand, electromagnetic soft iron for thick plates, which has excellent magnetic shielding properties, that is, high magnetic permeability, is used not only for the above-mentioned nuclear magnetic resonance tomography equipment, but also as a cover for large scientific experiment equipment such as cyclotrons, nuclear fusion equipment, medical equipment, etc. This material is also used as a structural member for magnetic shielding.

そこで、近年の科学技術の成果をさらに進展させるため
には、かかる厚板用電磁軟鉄について、本来相反する優
れた機械的特性と透磁率または磁東密度等に代表される
磁気的特性とをともに満足することが各分野から強く望
まれている.このような磁気遮断特性を有する鋼板とし
ては電磁軟質鋼板があり、一般的に変圧機に使用される
薄板が周知である.これは、従来から磁気特性の優れた
鋼材として、JIS C 2503またはJIS C 
2504に規定される電磁軟鉄棒、電磁軟鉄板である.
JTS C 2503に規定されるものは1.0〜16
m■の範囲の直径を有する棒材であり、またJIS C
 2504に規定されるものは0.6〜4.5fl厚の
薄板であり、いずれもリレー用または電磁石用として小
型部品への適用を対象としたものである. また、磁気用としては分類されていないJIS C40
51に規定される機械構造用炭素鋼材であるSIOCを
用い、250鶴幅に熱間加工し、磁性材料として使用し
ている例がある. さらに、特開昭60 − 96749号公報、特公昭6
3−45442号公報または特公昭63 − 4544
3号公報に開示されているように、301.八9の量を
o.oos〜1.00重量%と多く含有し、Siをある
程度低減したAQ脱酸型極低炭素鋼である直流磁化用厚
板が近年提案されている。
Therefore, in order to further advance the achievements of recent science and technology, it is necessary to improve both the excellent mechanical properties and magnetic properties represented by magnetic permeability and magnetic east density of electromagnetic soft iron for thick plates, which are originally contradictory. Satisfaction is strongly desired from all fields. Steel plates with such magnetic blocking properties include electromagnetic soft steel plates, and the thin plates commonly used in transformers are well known. This has been recognized as a steel material with excellent magnetic properties by JIS C 2503 or JIS C
These are electromagnetic soft iron bars and electromagnetic soft iron plates specified in 2504.
Those specified in JTS C 2503 are 1.0 to 16.
It is a bar material with a diameter in the range of m■, and also JIS C
What is specified in 2504 is a thin plate with a thickness of 0.6 to 4.5 fl, and all of them are intended for application to small parts such as relays or electromagnets. Also, JIS C40 is not classified as magnetic.
There is an example in which SIOC, which is a carbon steel material for mechanical structures specified in 51, is hot worked to a width of 250 mm and used as a magnetic material. Furthermore, Japanese Patent Application Laid-open No. 60-96749, Japanese Patent Publication No. 60-96749,
Publication No. 3-45442 or Special Publication No. 63-4544
As disclosed in Publication No. 3, 301. The amount of 89 o. In recent years, a thick plate for direct current magnetization has been proposed, which is an AQ deoxidized ultra-low carbon steel containing as much as oos to 1.00% by weight and with a certain reduction in Si.

(発明が解決しようとする課題) しかしこれらの公知手段では、たとえば核磁気共鳴断層
撮影装置(MRI)の使用の際の漏洩磁気を遮断するこ
とができるような、優れた磁気特性を有する厚板用電磁
軟鉄を安定的に提供することができない.すなわち、 ( i )JIS C 2503またはJIS C 2
504に示されている電磁軟鉄棒または電磁軟鉄板は前
述したように小型の部品を対象にしており、構造用部材
としての機械的特性がまったく考慮されていない。した
がって、前述の核磁気共鳴断層撮影装置にこの電磁軟鉄
板を適用する場合には、装置の強度を確保するためにこ
の電磁軟鉄板を数10枚程度積層する必要があり、製造
コスト、製品の品質の観点からは、現実には実施化を図
ることができない.また( ii )JIS C 40
51に示される機械構造用炭素鋼材を用いた例では、磁
気特性についての考慮が何らなされていないため、最大
透磁率μが1800 (B/H)以下と極めて低い値し
か得られていない.したがって、やはり所望の厚板用電
磁軟鉄を提供することはできない.さらに ( iii )特開昭60 − 96749号公軸、特
公昭63 − 45442号公報または同63 − 4
5443号公報により提案されている手段は、いずれも
得られる電磁軟鉄の磁気特性を向上させるために、Cr
等の鋼中の不純物を精練段階で著しく低減させておく必
要がある手段である.たとえば上述の特開昭60 − 
96749号公報により提案された手段においては、C
r含有量の上限を0.05重量%として制限している.
ところが、この炉壁等に用いられる耐火物として酸性耐
火物以外の耐火物、たとえばマグネシア・クロム系耐火
物を用いると、炉壁等に不可避的に混入されているCr
等の不純物が溶鋼中に混入してしまい、溶鋼中にCrが
0.05%以上含有されることになってしまう. したがって、特開昭60 − 96749号公報、特公
昭63 − 45442号公報または同63 − 45
443号公報により提案されている手段において、炉壁
等に用いられる耐火物は、xAQzos  ・ysi(
hまたはSin.を主成分とする酸性耐火物に限定され
ることとなっていた. 一方、マグネシア・クロム系耐火物は、前記の酸性耐火
物の使用可能温度の上限が約1650℃であるのに対し
、一般的には1870℃という高温での使用にも耐えら
れるとされており、耐火物としては極めて好通な特徴を
具備しているものであり、その用途も極めて広いもので
ある。
(Problem to be Solved by the Invention) However, with these known means, a thick plate having excellent magnetic properties can be used, for example, to block leakage magnetism when using a nuclear magnetic resonance tomography apparatus (MRI). It is not possible to stably provide electromagnetic soft iron for use. That is, (i) JIS C 2503 or JIS C 2
As mentioned above, the electromagnetic soft iron rod or the electromagnetic soft iron plate shown in 504 is intended for small parts, and its mechanical properties as a structural member are not considered at all. Therefore, when applying this electromagnetic soft iron plate to the above-mentioned nuclear magnetic resonance tomography apparatus, it is necessary to stack several dozen electromagnetic soft iron plates to ensure the strength of the apparatus, which increases manufacturing costs and product costs. From a quality perspective, this cannot be implemented in reality. (ii) JIS C 40
In the example shown in No. 51 using carbon steel for mechanical structures, no consideration was given to magnetic properties, so the maximum magnetic permeability μ was only an extremely low value of 1800 (B/H) or less. Therefore, it is still not possible to provide the desired electromagnetic soft iron for thick plates. Furthermore, (iii) JP-A-60-96749, JP-A-63-45442, or JP-A-63-4.
The means proposed in Publication No. 5443 all incorporate Cr in order to improve the magnetic properties of the obtained electromagnetic soft iron.
This means that it is necessary to significantly reduce impurities in the steel during the refining stage. For example, the above-mentioned JP-A-60-
In the means proposed by Publication No. 96749, C
The upper limit of the r content is set at 0.05% by weight.
However, if a refractory other than acidic refractories, such as magnesia-chromium refractories, is used for the furnace walls, etc., Cr, which is unavoidably mixed in the furnace walls, etc.
Impurities such as Cr are mixed into the molten steel, and the molten steel ends up containing 0.05% or more of Cr. Therefore, Japanese Patent Application Publication No. 60-96749, Japanese Patent Publication No. 63-45442, or Japanese Patent Publication No. 63-45
In the method proposed in Publication No. 443, the refractory used for the furnace wall etc. is xAQzos ysi(
h or Sin. It was to be limited to acidic refractories whose main components were On the other hand, magnesia-chromium refractories are generally said to be able to withstand use at temperatures as high as 1870°C, whereas the upper limit of the usable temperature for the acidic refractories mentioned above is approximately 1650°C. It has very good characteristics as a refractory, and its uses are extremely wide.

したがって、電磁軟鉄用鋼の溶製に際しても、マグネシ
ア・クロム系耐火物を用いれば、溶製温度をさらに上げ
ることができるとともに耐火物の延命を図ることができ
るが、この場合には前述したように溶鋼中に混入される
Cr等の不純物量が増加してしまう.つまり厚板用電磁
軟鉄の熔製の際、マグネシア・クロム系耐火物を用いる
と、溶鋼中にCrが必然的に0.05%以上含有される
ことになるが、この場合にも厚板用電磁軟鉄の磁気特性
を十分に改善することができれば、従来のように、不純
物の混入量を厳密に制御する必要はなく、換言すれば不
純物の混入に対しても磁気特性を劣化させずに厚板用電
磁軟鉄を製造することができることとなる。
Therefore, when melting steel for electromagnetic soft iron, if magnesia-chromium-based refractories are used, the melting temperature can be further raised and the life of the refractories can be extended, but in this case, as mentioned above, The amount of impurities such as Cr mixed into the molten steel increases. In other words, when magnesia-chromium-based refractories are used when producing electromagnetic soft iron for thick plates, 0.05% or more of Cr will inevitably be contained in the molten steel. If the magnetic properties of electromagnetic soft iron could be sufficiently improved, there would be no need to strictly control the amount of impurities mixed in as in the past.In other words, it would not be necessary to strictly control the amount of impurities mixed in. This means that electromagnetic soft iron for plates can be manufactured.

ここに、本発明の目的は、たとえば核磁気共鳴断層撮影
装置(MRI)の使用の際の漏洩磁気を遮断することが
できるような、優れた磁気特性を有する厚板用電磁軟鉄
を、その溶製段階においてマグネシア・クロム系耐火物
を用いて安定的に、すなわち従来の厚板用電磁軟鉄より
も多くのCrの混入に対しても磁気特性を劣化させずに
提供することができる、厚板用電磁軟鉄の製造法を提供
することにある。
An object of the present invention is to develop electromagnetic soft iron for thick plates, which has excellent magnetic properties that can block leakage magnetism during the use of nuclear magnetic resonance tomography (MRI), for example, by melting the electromagnetic soft iron for thick plates. A thick plate that uses magnesia-chromium-based refractories during the production process and can be stably produced without deteriorating its magnetic properties even when mixed with more Cr than conventional electromagnetic soft iron for thick plates. The purpose of the present invention is to provide a method for manufacturing electromagnetic soft iron for use.

(課題を解決するための手段) 本発明者は上記の課題を解決するため、種々検討を重ね
た結果、 ■磁気特性を高め、かつ板厚方向について磁気特性の均
質性を高めるためには、減磁率を大きくする成分の含有
量を極力少なくすることが有効であること、 ■熱間加工後の熱処理において、結晶粒の成長を容易と
するために、熱間加工時に結晶粒に加工歪みを付加する
ことが有効であること、および■熱処理温度をオーステ
ナイト・フエライト変態温度直下として、変態を生じさ
せないことという、上記■ないし■に示す事項に着目し
た。
(Means for Solving the Problems) In order to solve the above problems, the inventors of the present invention have conducted various studies and found that: 1) In order to improve the magnetic properties and improve the homogeneity of the magnetic properties in the thickness direction, It is effective to reduce the content of components that increase the demagnetization rate as much as possible. ■ In order to facilitate the growth of crystal grains during heat treatment after hot working, processing strain is applied to crystal grains during hot working. We focused on the matters shown in (1) to (2) above, which are that addition is effective and (1) the heat treatment temperature is set just below the austenite-ferrite transformation temperature so that no transformation occurs.

これらの事実を基に、本発明者は、さらに検討を重ねた
結果、ある特定した組成を有する鋼塊を、仕上げ温度を
鋼がフエライト単相になる温度となるようにして熱間加
工、たとえば圧延、鍛造または引き抜きを行い、所定の
寸法に加工した後に、結晶粒の加工歪みを除去し、また
結晶粒の粗大化を図るために、オーステナイト・フエラ
イト変態温度直下に加熱保持し、その後に徐冷すること
により、たとえば核磁気共鳴断層撮影装置(MRI)の
使用の際の漏洩磁気を遮断することができるような、優
れた磁気特性を有する厚板用電磁軟鉄を、その溶製段階
においてマグネシア・クロム系耐火物を用いて安定的に
、すなわち従来の厚板用電磁軟鉄よりも多くのCrの混
入に対しても磁気特性を劣化させずに提供することがで
きる、厚板用電磁軟鉄の製造法を提供することが出来る
ことを知見して、本発明を完成した。
Based on these facts, as a result of further studies, the inventor of the present invention hot-works a steel ingot having a specific composition at a finishing temperature at which the steel becomes a single phase of ferrite, for example. After rolling, forging, or drawing to obtain the desired dimensions, the crystal grains are heated and held at just below the austenite-ferrite transformation temperature in order to remove processing strain and coarsen the crystal grains, and then gradually heated. Magnesium is used during the melting process to produce electromagnetic soft iron for thick plates, which has excellent magnetic properties that can be cooled to block magnetic leakage during the use of nuclear magnetic resonance tomography (MRI), for example.・The electromagnetic soft iron for thick plates can be stably provided using chromium-based refractories, that is, it can be provided without deteriorating the magnetic properties even when mixed with more Cr than the conventional electromagnetic soft iron for thick plates. The present invention was completed by discovering that a manufacturing method can be provided.

ここに、本発明の要旨とするところは、重量%で、 C:0.01%以下、  Si:0.30%以下、Mn
:0.50%以下、   P:0.Ol%以下、s:o
.ox%以下、Sol AQ:0.005〜0.060
%、Cr:0.05 〜0.25%、 残部Feおよび不可避的不純物 からなる鋼組成を有する鋼塊を、仕上げ温度二650〜
900℃で熱間加工後、750℃〜Ar3点に加熱し、
30分以上保持後徐冷することを特徴とする、厚板用電
磁軟鉄の製造法である。
Here, the gist of the present invention is, in weight%, C: 0.01% or less, Si: 0.30% or less, Mn
: 0.50% or less, P: 0. Ol% or less, s:o
.. ox% or less, Sol AQ: 0.005-0.060
%, Cr: 0.05~0.25%, balance Fe and unavoidable impurities.
After hot working at 900℃, heating to 750℃~Ar3 point,
This is a method for manufacturing electromagnetic soft iron for thick plates, which is characterized by holding for 30 minutes or more and then slowly cooling.

本発明において、「熱間加工」とは、圧延、鍛造または
引き抜き等をいう。
In the present invention, "hot working" refers to rolling, forging, drawing, etc.

また、本発明において、「鋼塊」とは、上記熱間加工に
より得られる製品の母材であって、具体的にはスラブ、
ブルーム等の鋼塊をいう。
In addition, in the present invention, a "steel ingot" is a base material of a product obtained by the above hot working, and specifically, a slab,
Refers to steel ingots such as bloom.

(作用) 以下、本発明を作用効果とともに詳述する,なお、本明
細書においては、特にことわりがない限り「%」は「重
量%」を意味するものとする。
(Function) Hereinafter, the present invention will be explained in detail together with the function and effect. In this specification, unless otherwise specified, "%" means "% by weight".

まず、本発明において用いる鋼塊の組成を限定する理由
について説明する。
First, the reason for limiting the composition of the steel ingot used in the present invention will be explained.

Cは、磁気特性の減磁率が最も高い元素であり、磁気特
性を向上させるためには、極力低減することが望ましい
。しかし、その低下には相当のコストを要するため、含
有量を0.01%以下とする。
C is an element with the highest demagnetization rate of magnetic properties, and in order to improve magnetic properties, it is desirable to reduce it as much as possible. However, since reducing the amount requires considerable cost, the content is set to 0.01% or less.

S+は、本発明が対象とするAQ脱酸型の厚板用電磁軟
鉄にあっては、その整粒作用により熱処理時の結晶粒の
粗大化を阻害する。したがって含有量を0.30%以下
とする。
In the AQ deoxidizing type electromagnetic soft iron for plate use which is the object of the present invention, S+ inhibits coarsening of crystal grains during heat treatment due to its grain regulating action. Therefore, the content is set to 0.30% or less.

Innは、周知のように鋼材の強度確保に大きく寄与す
る元素であり、またCと同様に減磁率を高める元素であ
る。したがって、減磁率を低下させる観点からは低減す
ることが望ましいが、本発明により得られる鋼板が前述
のように大型機械の構造用部材として用いられることを
考慮し、その機械的強度を確保するために上限を0.5
0%と制限する.P−、Sは、ともに綱中にあって非金
属介在物を形成し、かつ偏析を生じるため、その含有量
は少ないほどよい。また、その含有量の増加に伴い、保
持力の増加がみられ磁気特性を低下させる元素である。
As is well known, Inn is an element that greatly contributes to ensuring the strength of steel materials, and like C, it is an element that increases the demagnetization rate. Therefore, it is desirable to reduce the demagnetization rate from the viewpoint of reducing the demagnetization rate, but considering that the steel plate obtained by the present invention will be used as a structural member of large machines as described above, in order to ensure its mechanical strength. upper limit to 0.5
Limit it to 0%. Since both P- and S are present in the steel and form non-metallic inclusions and cause segregation, the lower the content, the better. Moreover, as its content increases, its coercive force increases, and it is an element that deteriorates magnetic properties.

したがって含有量は少ないほど望ましいが、これらの元
素の低減には必ずコストの増加を伴うものであることか
ら、Pは0.01%以下、Sは0.Ol%以下とする。
Therefore, the lower the content is, the more desirable it is, but since reducing these elements always involves an increase in cost, P should be 0.01% or less, S should be 0.01% or less, and S should be 0.01% or less. It should be 01% or less.

Mは、鋼中にあって脱酸材として作用する元素であり、
かかる効果を奏するためには、0.005%以上含有さ
れることを要するが、多量に添加すると介在物を形成し
、鋼の性質を損なうものであるため、その上限を0. 
060%以下とする.したがってAI2の含有量は、0
.005〜0.060%とする。
M is an element that is present in steel and acts as a deoxidizing agent,
In order to produce such an effect, it is necessary to contain 0.005% or more, but if added in a large amount, inclusions will be formed and the properties of the steel will be impaired, so the upper limit should be set at 0.005% or more.
060% or less. Therefore, the content of AI2 is 0
.. 005 to 0.060%.

Crは、磁気特性を劣化させる元素であるため、従来か
ら少ないほど望ましいとされてきた元素である.しかし
Crは、炉壁等から不可避的に混入する元素であり、C
rを除去するには非常に多くのコストを要する.特に炉
壁にマグネシア・クロム系耐火物等を使用した場合には
、耐火物が溶鋼と反応し、鋼中にCr, XiSMo等
が混入することになる.しかし、本発明においては、後
述するように製造条件を適切に限定することにより、C
rの含有量を低減する必要はなくなる。したがってCr
の含有量の下限は、0.05%とする。またCrの含有
量の上限は、磁気特性向上の観点から0.25%とする
.従ってCr含有量の範囲は、0.05〜0.25%と
制限する。
Since Cr is an element that deteriorates magnetic properties, it has traditionally been considered desirable to have less Cr. However, Cr is an element that inevitably gets mixed in from the furnace walls, etc.
It costs a lot of money to remove r. In particular, when magnesia-chromium-based refractories are used for the furnace walls, the refractories react with the molten steel, resulting in Cr, XiSMo, etc. being mixed into the steel. However, in the present invention, by appropriately limiting the manufacturing conditions as described below, C
There is no longer a need to reduce the content of r. Therefore, Cr
The lower limit of the content is 0.05%. Further, the upper limit of the Cr content is set to 0.25% from the viewpoint of improving magnetic properties. Therefore, the range of Cr content is limited to 0.05 to 0.25%.

以上のような組成を有する鋼塊を、以下に示す条件で製
造する。これらの条件について詳述する。
A steel ingot having the above composition is manufactured under the conditions shown below. These conditions will be explained in detail.

まず、上記の組成を有する鋼塊を、鋼組織がフエライト
単相となる仕上げ温度で熱間加工を行う。
First, a steel ingot having the above composition is hot worked at a finishing temperature at which the steel structure becomes a single ferrite phase.

一般的に熱間加工時に結晶粒に加工歪みを付加すること
は、特公昭60−208417号公報等により提案され
ているように、熱処理を加えた後に結晶粒を成長させる
のに有効な手段である。結晶粒の粗大化は、鋼製品の磁
気特性を向上させる要因の1つであるため、これを本発
明においても利用し、得られる製品の磁気特性の向上を
図るのである。
Generally, applying processing strain to crystal grains during hot working is an effective means for growing crystal grains after heat treatment, as proposed in Japanese Patent Publication No. 60-208417. be. Since coarsening of crystal grains is one of the factors that improves the magnetic properties of steel products, this is also utilized in the present invention to improve the magnetic properties of the resulting product.

なお、熱間加工の例としては、圧延、鍛造または引き抜
き等のように、加工時に鋼塊に加工歪を付与できる加工
法であればよく、特に制限を要するものではない。また
、鋼組織がフエライト単相となる温度は、本発明におい
ては、Fe−C二元系状態図より900℃以下である. このように、熱間加工の仕上げ温度は、フェライトーオ
ーステナイト変態温度以下とする。つまり、フエライト
粒に加工歪を付与し、加工後に熱処理を行うことにより
、加工歪を解放させつつ、結晶粒を粗大化させるためで
ある。
Note that hot working is not particularly limited, as long as it is a working method that can impart working strain to the steel ingot during working, such as rolling, forging, or drawing. Further, in the present invention, the temperature at which the steel structure becomes a single ferrite phase is 900° C. or lower according to the Fe-C binary system phase diagram. In this way, the finishing temperature of hot working is set below the ferrite-austenite transformation temperature. That is, by imparting processing strain to ferrite grains and performing heat treatment after processing, the processing strain is released and the crystal grains are coarsened.

したがって、仕上げ温度は、上記の観点から650〜9
00℃であることが望まし《、さらに望ましくは、65
0〜800℃の範囲である。
Therefore, the finishing temperature is 650-9 from the above point of view.
It is desirable that the temperature is 00°C《, more preferably 65°C
It is in the range of 0 to 800°C.

次に、このようにして.熱間加工を行った鋼塊に、加工
歪の解放・結晶粒の粗大化を目的として熱処理を行う.
この熱処理の加熱温度は、フェライトオーステナイト変
態温度以下がよく、できるだけその直下がよい.つまり
変態温度以上まで加熱すると、&lI織が変態集合組織
となり、またAi2Nの存在のために結晶粒が微細化し
てしまうために、磁気特性が著しく劣化してしまう.そ
こで熱処理の加熱温度はAr3点以下とする。また75
0℃未満では、加工歪を除去することが出来ないため、
750℃以上とする.したがって、熱処理温度は、75
0℃以上Ar.点以下と制限する。なお、上限のAr3
点としては、900℃を例示することができる。
Then, like this. Heat treatment is applied to hot-worked steel ingots to release working strain and coarsen grains.
The heating temperature for this heat treatment is preferably below the ferrite-austenite transformation temperature, preferably just below it. In other words, when heated above the transformation temperature, the &lI weave becomes a transformed texture, and the presence of Ai2N causes the crystal grains to become finer, resulting in a significant deterioration of the magnetic properties. Therefore, the heating temperature of the heat treatment is set to 3 points or less in Ar. 75 again
At temperatures below 0°C, processing strain cannot be removed, so
The temperature shall be 750℃ or higher. Therefore, the heat treatment temperature is 75
0°C or higher Ar. Restricted to below points. In addition, the upper limit of Ar3
An example of the point is 900°C.

また加熱の保持時間は、30min以上である。歪を除
去するために必要な最小値である.そしてこの後に徐冷
、具体的にはカバー徐冷を行って脱水素処理を行う。徐
冷の冷却速度は、般的には30℃/hr程度である. このように、本発明によれば、適正な鋼塊の組成および
製造条件の組み合わせにより、マグネシア・クロム系耐
火物等を用いて厚板用電磁軟鉄を溶製し、鋼中にCrが
0.05%より多く混入している鋼塊を用いても、優れ
た磁気特性を有する厚板用電磁軟鉄を製造することがで
きる。
Further, the heating holding time is 30 min or more. This is the minimum value necessary to remove distortion. Then, slow cooling, specifically slow cooling with a cover, is performed to perform dehydrogenation treatment. The cooling rate of slow cooling is generally about 30°C/hr. As described above, according to the present invention, electromagnetic soft iron for thick plates is melted using a magnesia-chromium refractory, etc. by combining appropriate steel ingot composition and manufacturing conditions, and the steel contains 0.0% Cr. Even if a steel ingot containing more than 0.5% is used, it is possible to produce electromagnetic soft iron for thick plate having excellent magnetic properties.

さらに、本発明を実施例とともに詳述するが、これは本
発明の例示であり、これにより本発明が限定的に解釈さ
れるものではない。
Further, the present invention will be described in detail along with Examples, but these are merely illustrative of the present invention, and the present invention is not interpreted to be limited thereby.

実施例 第1表に示す組成を有する鋼塊(鋼塊患1ないし鋼塊N
l15)を、同しく第1表に示す条件で熱間加工(圧延
)を行って、その後に同じく第1表に示す熱処理条件で
熱処理を施こし、その後に徐冷することにより、厚板用
電磁軟鉄である試料(試料ll&L1ないし試料隘31
)を得た。
Examples Steel ingots having the compositions shown in Table 1 (steel ingots 1 to 2)
115) under the conditions shown in Table 1, followed by heat treatment under the heat treatment conditions also shown in Table 1, and then slowly cooled. Samples that are electromagnetic soft iron (sample 11 & L1 to sample 31
) was obtained.

(以下余白) ?れらの試料患1ないし試料Na31について、■磁気
特性 ・B,(iff場1  0eの際の磁束密度)・μ.■
 (最大透磁率) ■機械的特性 ・YP(降伏点) ・TS  (引張強さ) ・EN(伸び) ■低温靭性 ・vE.Av●(θ℃におけるVノッチシャルビー衝撃
吸収エネルギー値) を測定した.結果をまとめて、第2表に示す.また第1
図に、試料患1ないし試料Na8、試料隘24ないし試
料Na28について調査した、仕上げ温度と磁気特性と
の関係を示す.さらに第2図に、試料111ないし試料
−8、試料陽24ないし試料磁28について調査した、
熱処理温度と磁気特性との関係を示す.さらに第3図に
は、同様の試料について調査した、保持時間と磁気特性
との関係を示す.(次頁へつづく) (第2表つづき) なお、第1表において、試料NQlないし試料階l1、
1式料隘24なレ)し試料遅28は、それぞれsol.
AQ量を変化させた試料である。
(Left below) ? Regarding these samples No. 1 to Na31, ■Magnetic properties・B, (magnetic flux density at IF field 10e)・μ. ■
(Maximum magnetic permeability) ■Mechanical properties・YP (yield point)・TS (tensile strength)・EN (elongation) ■Low temperature toughness・vE. Av● (V-notch Charby impact absorption energy value at θ°C) was measured. The results are summarized in Table 2. Also the first
The figure shows the relationship between finishing temperature and magnetic properties investigated for Sample No. 1 to Sample Na8 and Sample No. 24 to Sample Na28. Furthermore, FIG. 2 shows that samples 111 to 8 and samples 24 to 28 were investigated.
The relationship between heat treatment temperature and magnetic properties is shown. Furthermore, Figure 3 shows the relationship between retention time and magnetic properties investigated for similar samples. (Continued on next page) (Continued from Table 2) In Table 1, sample NQl or sample floor l1,
1 type fee 24) and sample rate 28 are each sol.
These are samples with varying amounts of AQ.

また、このうち試料隘1ないし試料患8、試料NQ24
ないし試料階28は、同一の鋼塊(鋼塊1ml)より得
た試料であって、それぞれ仕上げ温度のみを変えて得た
試料である。
In addition, among these, sample number 1 to sample number 8, sample NQ24
Samples 28 to 28 are samples obtained from the same steel ingot (1 ml of steel ingot), with only the finishing temperature being changed.

また、試料更3ないし試料患7、試料階24ないし試料
患27は、780℃で熱間圧延を終えて得た泪仮を用い
て、さらに熱処理条件を種々変更して得た試料である。
Further, Samples 3 to 7 and Samples 24 to 27 are samples obtained by using the slag obtained after hot rolling at 780° C. and further changing the heat treatment conditions in various ways.

また試料阻9、試料mlOおよび試料階29は、s01
.AQ量が0.037%の鋼塊より得た試料であって、
仕上げ温度を種々変更している。
In addition, the sample floor 9, the sample mlO, and the sample floor 29 are s01
.. A sample obtained from a steel ingot with an AQ content of 0.037%,
Various finishing temperatures were changed.

また試料階11は、sol.AQを0.052%含有し
た試料である。
Moreover, the sample floor 11 is sol. This is a sample containing 0.052% of AQ.

また試料階12、試料1!ll3および試料隘14は、
Siを略0. 15%と増加させて、sol.AQ, 
Mn含有量を変化させた試料である。
Also sample floor 12, sample 1! ll3 and sample chamber 14 are
Si is about 0. Increased to 15%, sol. AQ,
These are samples with varying Mn contents.

また試料隘15、試料患16、試料隘17おホび試料患
18は、Siを略0.27%とさらに増加させて、so
l.AQ,Mnを変化させた試料である。
In addition, sample number 15, sample number 16, sample number 17 and sample number 18 were further increased to approximately 0.27%, and the SO
l. These are samples with varying AQ and Mn.

さらに試料患19ないし試料隘23は、比較例の試料で
あり、試料隘19ではsolJQの含有量が、試料階2
0ではPの含有量が、試料隘21ではMnの含有量が、
試料隘22ではSiの含有量が、また試料隘23ではC
の含有量が、それぞれ本発明の範囲外の場合である。
Further, sample number 19 to sample number 23 are samples of comparative examples, and sample number 19 has a solJQ content of 2.
0, the content of P, sample number 21, the content of Mn,
The Si content in sample hole 22 and the C content in sample hole 23
This is a case where the content of each of these is outside the scope of the present invention.

第2表および第1図ないし第3図から明らかなように、
本発明にかかる試料は、優れた磁気特性、靭性および機
械特性を有することがわかる。
As is clear from Table 2 and Figures 1 to 3,
It can be seen that the samples according to the invention have excellent magnetic properties, toughness and mechanical properties.

(発明の効果) 以上詳述したように、本発明により、優れた磁気特性を
有する厚板用電磁軟鉄を、その溶製段階において、マグ
不シア・クロム系耐火物を用いて安定的に、すなわち従
来の厚板用電磁軟鉄よりも多くのCrを含有して提供す
ることができることとなった。
(Effects of the Invention) As described in detail above, according to the present invention, electromagnetic soft iron for thick plates having excellent magnetic properties can be stably produced using mag-free chromium-based refractories in the melting stage. In other words, it has become possible to provide a product containing more Cr than conventional electromagnetic soft iron for thick plates.

かかる効果を有する本発明の実用上の意義は著しい。The practical significance of the present invention having such effects is remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例における、仕上げ温度と磁気
特性との関係を表わすグラフ;第2図は、本発明の実施
例における、熱処理温度と磁気特性との関係を表わすグ
ラフ;および第3図は、本発明の実施例における、保持
時間と磁気特性との関係を表わすグラフである。
FIG. 1 is a graph showing the relationship between finishing temperature and magnetic properties in an example of the present invention; FIG. 2 is a graph showing a relationship between heat treatment temperature and magnetic properties in an example of the present invention; FIG. 3 is a graph showing the relationship between retention time and magnetic properties in Examples of the present invention.

Claims (1)

【特許請求の範囲】 重量%で、 C:0.01%以下、Si:0.30%以下、Mn:0
.50%以下、P:0.01%以下、S:0.01%以
下、sol.Al:0.005〜0.060%、Cr:
0.05〜0.25%、 残部Feおよび不可避的不純物 からなる鋼組成を有する鋼塊を、仕上げ温度:650〜
900℃で熱間加工後、750℃〜Ar_3点に加熱し
、30分以上保持後徐冷することを特徴とする厚板用電
磁軟鉄の製造法。
[Claims] In weight %, C: 0.01% or less, Si: 0.30% or less, Mn: 0
.. 50% or less, P: 0.01% or less, S: 0.01% or less, sol. Al: 0.005-0.060%, Cr:
A steel ingot having a steel composition consisting of 0.05~0.25%, the balance Fe and unavoidable impurities is heated to a finishing temperature of 650~
A method for manufacturing electromagnetic soft iron for thick plates, which comprises hot working at 900°C, heating to 750°C to Ar_3 point, holding for 30 minutes or more, and then slowly cooling.
JP1111441A 1989-04-28 1989-04-28 Manufacturing method of electromagnetic soft iron for thick plate Expired - Lifetime JPH0753883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1111441A JPH0753883B2 (en) 1989-04-28 1989-04-28 Manufacturing method of electromagnetic soft iron for thick plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1111441A JPH0753883B2 (en) 1989-04-28 1989-04-28 Manufacturing method of electromagnetic soft iron for thick plate

Publications (2)

Publication Number Publication Date
JPH02290921A true JPH02290921A (en) 1990-11-30
JPH0753883B2 JPH0753883B2 (en) 1995-06-07

Family

ID=14561281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1111441A Expired - Lifetime JPH0753883B2 (en) 1989-04-28 1989-04-28 Manufacturing method of electromagnetic soft iron for thick plate

Country Status (1)

Country Link
JP (1) JPH0753883B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0681031A1 (en) * 1994-02-07 1995-11-08 RECHERCHE ET DEVELOPPEMENT DU GROUPE COCKERILL SAMBRE, en abrégé: RD-CS Process for manufacturing mild steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891121A (en) * 1981-11-21 1983-05-31 Kawasaki Steel Corp Production of high-tensile hot-rolled steel plate having high magnetic flux density
JPS6096749A (en) * 1983-11-01 1985-05-30 Nippon Steel Corp Thick plate for dc magnetization and preparation thereof
JPH01142028A (en) * 1987-11-30 1989-06-02 Kawasaki Steel Corp Manufacture of thick-walled steel plate excellent in magnetic property

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891121A (en) * 1981-11-21 1983-05-31 Kawasaki Steel Corp Production of high-tensile hot-rolled steel plate having high magnetic flux density
JPS6096749A (en) * 1983-11-01 1985-05-30 Nippon Steel Corp Thick plate for dc magnetization and preparation thereof
JPH01142028A (en) * 1987-11-30 1989-06-02 Kawasaki Steel Corp Manufacture of thick-walled steel plate excellent in magnetic property

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0681031A1 (en) * 1994-02-07 1995-11-08 RECHERCHE ET DEVELOPPEMENT DU GROUPE COCKERILL SAMBRE, en abrégé: RD-CS Process for manufacturing mild steel
BE1007927A3 (en) * 1994-02-07 1995-11-21 Cockerill Rech & Dev Method for producing mild steel.

Also Published As

Publication number Publication date
JPH0753883B2 (en) 1995-06-07

Similar Documents

Publication Publication Date Title
KR930002533B1 (en) Magnetic steel plate for use as a magnetic shielding member
JPH07252532A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic
JPH02290921A (en) Production of electro plate for thick plate
JPH0611903B2 (en) Magnetic steel sheet for magnetic shield and manufacturing method thereof
JPH09157743A (en) Silicon steel sheet for magnetic shield and its production
JP2650506B2 (en) Electromagnetic thick steel plate for DC magnetic shield and its manufacturing method
JPH0711026B2 (en) Manufacturing method of non-directional electromagnetic thick plate with high magnetic flux density
JPH04221019A (en) Manufacture of thick plate soft magnetic iron
JPH024920A (en) Manufacture of thick electrical plate for d.c. magnetization
JPH02145723A (en) Manufacture of thick steel material having excellent direct current magnetization characteristics
JPH0517823A (en) Production of electromagnetic soft iron for thick plate excellent in magnetic shielding property
JPH0613747B2 (en) Magnetic steel sheet for magnetic shield and manufacturing method thereof
JPH04268020A (en) Production of nonoriented electric steel plate having superior magnetic characteristic
JPH0745688B2 (en) Method for manufacturing high magnetic flux density electromagnetic thick plate
JPH0382715A (en) Manufacture of soft magnetic iron for thick plate
JPH04268021A (en) Production of nonoriented electric steel plate having superior magnetic characteristic
JPH028324A (en) Production of good magnetic steel plate
JPH028323A (en) Production of good magnetic steel plate
JPH028325A (en) Production of non-oriented good magnetic steel plate
JPH04268025A (en) Production of nonoriented electric steel plate
JPH04268024A (en) Production of satisfactory electric steel plate
JPH01127649A (en) High magnetic flux density alloy and its manufacture
JPH04293722A (en) Production of grain nonoriented electrical steel plate having superior machinability
JPH028326A (en) Production of non-oriented magnetic steel plate having high magnetic flux density
JPH04268022A (en) Production of satisfactory electric steel plate