JPS6248725B2 - - Google Patents

Info

Publication number
JPS6248725B2
JPS6248725B2 JP59053592A JP5359284A JPS6248725B2 JP S6248725 B2 JPS6248725 B2 JP S6248725B2 JP 59053592 A JP59053592 A JP 59053592A JP 5359284 A JP5359284 A JP 5359284A JP S6248725 B2 JPS6248725 B2 JP S6248725B2
Authority
JP
Japan
Prior art keywords
temperature
hot
finishing
sasmns
sascu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59053592A
Other languages
Japanese (ja)
Other versions
JPS60197819A (en
Inventor
Kishio Mochinaga
Kenichi Nishiwaki
Yasutaka Saruwatari
Yosuke Kurosaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5359284A priority Critical patent/JPS60197819A/en
Publication of JPS60197819A publication Critical patent/JPS60197819A/en
Publication of JPS6248725B2 publication Critical patent/JPS6248725B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は(110)〔001〕方位の結晶粒からなる
薄手高磁束密度一方向性電磁鋼板の製造方法に関
するものである。 (従来技術) 一方向性電磁鋼板は、主に変圧器や発電機の鉄
心材料に使用され、低鉄損高磁束密度という特徴
を有しているが、省エネルギーの観点から更に鉄
損の低いものが市場から要求されている。低鉄損
を得るためには、Siを極力高め素材の固有抵抗を
上げて渦電流損を下げる方法と、成品板厚を極力
薄くする事で渦電流損を下げる方法が一般的であ
る。ところが成品板厚を薄くする方法では、仕上
焼鈍での二次再結晶が不安定となり、従来法では
0.23mm厚以下の磁気特性の優れた成品を工業的に
安定して得る事は困難である。二次再結晶を安定
して行なわせるためには、仕上焼鈍を行なうまで
に鋼中に微細で均一な析出分散相を存在させ、更
には結晶粒界に粒界偏析元素を偏析させて、一次
再結晶を極力抑制し、続く仕上焼鈍で(110)
〔001〕方位の二次再結晶を選択的に成長させる事
が肝要である。一次再結晶を抑える手段として、
これまで析出分散相による粒界のピン止め効果
と、粒界偏析元素による粒界のドラツグ効果が考
えられており、析出分散相としては、MnS、
CuxS、MnSe及びAlNなどが考えられ、粒界偏析
元素としては、Sn、Sb、Bi、Te及びSe等が一般
的である。 (発明の目的) 本発明は、この様な観点から析出分散相として
MnS、CuxS及びAlNを使用し、粒界偏析元素と
してSnを使用し、かつ熱間圧延工程での新しい
圧延条件を付与する事により成品板厚0.30mm以
下、特に0.23mm以下の極薄手高級一方向性電磁鋼
板を工業的に安定して製造する事を可能としたも
のである。 (発明の構成) すなわち本発明の特徴とするところは、素材ス
ラブを1250℃以上の温度で加熱し析出分散相とな
るMnS、CuxS、及びAlNを完全に固溶せしめ、
その後の熱間圧延工程において、仕上前面温度を
1150〜1250℃の間に制御することにより、粗圧延
から仕上スタンドに入る間にSasMnS量で50〜
100ppmのMnSを均一微細に析出させ、その後、
仕上スタンド内で焼き入れ処理されたコイルは、
仕上後面温度を950〜1050℃の間に制御されるこ
とにより仕上スタンド中でのMnSの析出量を極
力抑えるとともに、SasCuxS量で35〜65ppmの
CuxSを均一微細に析出させ、SasMnS/SasCuxS
比で0.8〜2.9の範囲にコントロールする。仕上後
面を出たホツトコイル厚2.5mm以下のホツトコイ
ルは続く超焼入れ処理により500〜600℃の捲取温
度で捲取る事により仕上スタンドから捲取られる
間でのAlNの析出を制御するとともに、Snの粒界
への積極的な析出を行なわしめる事により、良質
なホツトコイルを得るところにある。 熱間圧延工程において、均一微細な析出分散相
を発現させる事は、特開昭48−69720号公報で
は、連続鋳造片を連続熱間圧延工程において1200
℃以下、950℃以上の温度範囲内において30〜200
秒間保持することが提案され、特開昭58−42727
号公報では、熱間圧延工程における仕上出口温度
を熱延板の頭部で900〜1050℃、中央部及び尾部
で950〜1150℃に制御することが提案され、又特
公昭58−13606号公報では熱間圧延に際し、鋼板
温度が950〜1200℃の間を熱延圧下率10%以上で
連続して熱間圧延しつつ、3℃/sec以上の冷却
速度で冷却する事などが提案されている。しかし
ながらこれらの方法はAl、Snを含まない素材に
関するものであり、特開昭48−69720号公報記載
の方法はMnSのみのコントロールであり、特開
昭58−42727号公報記載の方法は主にCuxSのコン
トロールであり、特公昭58−13606号公報記載の
方法はMnSとMnSeのコントロールを考えてい
る。 これに対して本発明はMn、Cu、Al、Snを必須
成分として含有する素材を出発点に仕上前面、仕
上後面、捲取のすべての温度を非常に狭い領域に
コントロールする事により、MnS、CuxS、及び
AlNの微細析出量を最適な領域にコントロールし
ようとするところに特徴がある。 さて第1図、第2図は本発明者らが行なつた実
験結果の一例である。本発明に従つた成分範囲に
ある〔C〕0.070%、〔Si〕3.30%、〔Mn〕0.080
%、〔S〕0.025%、〔Sol.Al〕0.025%、〔N〕
0.0085%、〔Cu〕0.10%、〔Sn〕0.10%を含有スラ
ブを加熱炉で1350℃で5時間以上加熱し、充分に
MnS、CuxS及びAlNを固溶させた後、各々異な
る仕上前面温度、仕上後面温度、捲取温度で処理
した2.3mm厚のホツトコイルを32%の冷間圧延
後、熱延板焼鈍し、最終冷延率85%の冷間圧延に
よつて0.23mm厚に仕上げた後、脱炭焼鈍、仕上焼
鈍そして最終コーテイングを施す工程によつて成
品となし、それらの鉄損W〓と各温度との関係を
示すものである。これにより捲取温度が500〜600
℃の場合、仕上前面温度を1150〜1250℃の間でか
つ仕上後面温度を950〜1050℃の間にコントロー
ルすれば安定して良好な磁気特性が得られること
がわかる。一方、第2図に示すごとく捲取温度が
600℃を越えると、一部に良好な磁気特性が得ら
れるものの、その安定性は、捲取温度500〜600℃
と比べ大幅に劣るものである事がわかる。すなわ
ち仕上前面温度を1150〜1250℃の間に、仕上後面
温度を950〜1050℃の間にそして捲取温度を500〜
600℃の狭い領域にコントロールされたホツトコ
イルを出発点にプロセツシングしたコイルのみ良
好な磁気特性が得られることがわかる。 ところで第3図〜第5図は、第1図、第2図の
実験で得られたホツトコイルを成分分析し、ホツ
トコイルのSasMnS、SasCuxS及びNasAlNの分
析値と成品の磁気特性の関係を示すものである。
これより、本発明の温度領域で熱間圧延されたホ
ツトコイルの分析値はSasMnSで75±25ppm、
SasCuxSで50±15ppm及びNasAlNで40ppm以下
の領域にあり、かつその領域で安定した低鉄損値
が得られている事がわかる。また、SasMnS/
SasCuxS比と鉄損値の関係を示すと第6図のとお
りとなり0.8〜2.9の範囲で低鉄損値を得、1.5で最
低鉄損値を得ることがわかる。すなわち、仕上前
面、仕上後面及び捲取の各温度をコントロールさ
れた本発明コイルはSasMnSで75±25ppm、
SasCuxSで50±15ppmでかつSasMnS/SasCuxS
比で0.8〜2.9の範囲にあり、かつNasAlNで
40ppm以下のコイルである事がわかる。 一方、第7図は、本発明者らが行なつた小試料
実験結果の一例である。成分は第1図、第2図で
示したものと同様である。スラブより30×30×30
mmの小試料を切り出した供試材を出発点に、1350
℃で60分間均熱したのち、熱延工場での実際の熱
間圧延温度履歴、すなわち粗圧延、仕上圧延を経
て捲取るまでの温度履歴に近似させ各温度に達す
るや否や焼入れし、その後焼き入れた試料の
SasMnS、SasCuxS及びNasAlNを分析したもの
である。横軸には焼入れ温度、縦軸左側には
SasMnSとSasCuxSを足し合せた量をとつてお
り、縦軸右側にはNasAlNを取つている。これよ
り、1300℃からMnSは析出し始め、1200〜1250
℃でそのピークが現れ、その後1150℃以下では
CuxSが急激な析出を起こし950℃で飽和状態にな
る。すなわち本発明での仕上前面から仕上後面の
間の温度領域にあたる1250〜950℃の温度領域で
MnSとCuxSの析出量比が決定されるわけであ
り、この間の熱処理が重要であることがわかる。
一方、AlNは1100℃で析出開始し、900℃でほぼ
飽和する事がわかる。すなわち、仕上後面の温度
領域にあたる1050〜950℃の領域でAlNの急速な
析出が進行するわけであり、AlNの析出を抑える
ために仕上後面温度を950℃以上で圧延された2.5
mm厚以下のホツトコイルを即焼入れ処理する事が
重要であることがわかる。以上の2つの結果より
微細析出したMnS、CuxS及びAlN量を最適な範
囲にコントロールし、良品質のホツトコイルを得
るためには仕上前面温度を1150〜1250℃、仕上後
面温度を950〜1050℃及び捲取温度を500〜600℃
に各々コントロールする事が重要であり、この一
つの条件が欠けても良質なホツトコイルが得られ
ない事が理解できる。 さてSnについては、これまでの公知文献によ
り、Snが拡散し最も粒界に偏析しやすい温度領
域は500〜700℃であることが知られている。この
ため、仕上後面から捲取、そして捲取後におい
て、ホツトコイルの粒界に偏析し、磁気特性を改
善するものと推察される。 以下に本発明で限定した諸条件の限定理由につ
いて説明する。 先ず、仕上前面温度が250℃を超えるとMnSの
析出量が減少し、1150℃より低くなるとMnSの
析出量が多過ぎて磁気特性は良くない。次に仕上
後面温度が1050℃より高いとCuxSの析出量が不
足し、950℃より低くなると、CuxSの析出量が多
過ぎてSasMnS/SasCuxS比が0.8〜2.9の最適領
域から外れ磁気特性は劣化する。またCuxSの微
細析出を得るために採用した950℃以上に仕上後
面温度をコントロールされかつ2.5mm厚以下とな
つたコイルは、超焼入れ処理により極力AlNの析
出を防ぐことが望ましい。 次に、捲取温度が600℃を超えると、AlNの析
出量が多過ぎて磁気特性は良くなく、又、捲取温
度が500℃より下がると、ホツトコイルの捲取姿
が悪くなると同時にSnの粒界偏析量が減少し磁
気特性が劣化すると推定されるため、捲取温度は
500〜600℃と限定した。 次に成分組成について述べる。〔C〕は下限
0.025%未満であれば2次再結晶が不安定とな
り、上限の0.085%は、これより〔C〕が多くな
ると脱炭所要時間が長くなり経済的に不利となる
ために限定した。〔Si〕は、下限2.5%未満では良
好な鉄損が得られず、上限4.5%を超えると、冷
延性が著しく劣化する。〔Mn〕は、MnSを形成す
るために必要な元素で、下限0.01%未満であれば
MnSの絶対量が不足し、上限0.10%を超えると
MnSをすべて固溶させるためのスラブ加熱温度
が高くなりすぎるため、工業化が困難となる。
〔S〕はMnS、CuxSを形成するために必要な元素
で、下限0.01%未満ではMnS、CuxSの絶対量が
不足し、上限0.03%を超えると熱間割れを生じ、
又、仕上焼鈍で脱硫が困難となる。〔Sol.Al〕
は、AlNを形成するために必要な元素で、下限
0.010%未満では、AlNの絶対量が不足し、上限
0.065%を超えるとAlNの適当な分散状態が得ら
れない。〔N〕は、AlNを形成するために必要な
元素で、下限0.005%未満ではAlNの絶対量が不
足する。又上限0.0100%を超えると2次再結晶が
不安定となると共に、ブリスターが発生し易くな
る。〔Cu〕は、CuxSを形成するために必要な元
素で、下限0.03%未満ではCuxSの絶対量が不足
し、上限0.5%を超えると、酸洗性、脱炭性が悪
くなる。〔Sn〕は粒界に偏析させ、二次再結晶を
安定化させるが、下限0.03%未満では偏析量が不
足し、上限0.5%は経済的理由と脱炭性が悪くな
る。また最終冷延率は、83%未満であると高磁束
密度一方向性電磁鋼板を得る事ができないため下
限を83%とする。なお、成品板厚0.30mm以下に限
定したのは最近の需要ニーズに対応して超低鉄損
一方向性電磁鋼板を得るためである。 実施例 1 〔C〕0.075%、〔Si〕3.25%、〔Mn〕0.080%、
〔S〕0.025%、〔Sol.Al〕0.025%、〔N〕0.0075
%、〔Cu〕0.10%、〔Sn〕0.10%を含有する250mm
厚スラブを1350℃で2時間加熱した後、表1に示
す各熱延条件で熱間圧延し、2.3mm厚のホツトコ
イルを得た。このホツトコイルを33%の圧下率の
冷間圧延後、1120℃×4分の熱延板焼鈍をし、次
いで85%の冷延率で最終冷延し、0.23mm厚とし
た。その後、得られた冷延板に水素20%、窒素80
%、露点40℃の雰囲気中で840℃×3分の脱炭焼
鈍を施し、焼鈍分離材を塗布した後、水素気流中
で1200℃×20時間の仕上焼鈍を行ない次いで、コ
ーテイング液を塗布し成品とした。この様にして
得た成品の磁気特性は表1に示す通り、本発明材
は鉄損W〓で0.92W/Kgを安定して得る事がで
き、比較材と比べ良好な磁気特性が得られる事が
わかる。その中で特にSasMnS/SasCuxS比が略
21.5の例(No.7)が最も低い鉄損を示している事
がわかる。 実施例 2 〔C〕0.080%、〔Si〕3.30%、〔Mn〕0.080%、
〔S〕0.026%、〔Sol.Al〕0.026%、〔N〕0.0080
%、〔Cu〕0.09%、〔Sn〕0.11%を含有する250mm
厚スラブを1350℃で2時間加熱した後、表2に示
す熱延条件で熱間圧延し、2.0mm厚のホツトコイ
ルを得た。このホツトコイルに1120℃×4分の熱
延板焼鈍を施し、次いで88%の冷延率で最終冷延
し0.23mm厚とした。その後得られた冷延板に水素
20%、窒素80%、露点40℃の雰囲気中で840℃×
3分の脱炭焼鈍を施し、焼鈍分離材を塗布した
後、水素気流中で1200℃×20時間の仕上焼鈍を行
ない、次いでコーテイング液を塗布し成品とし
た。この様にして得た成品の磁気特性は表2に示
す通り、熱延板焼鈍の前に冷間圧延せずとも良好
な磁気特性が得られ、W〓で0.92W/Kgの鉄損が
安定して得られる事が分かる。
(Industrial Application Field) The present invention relates to a method for manufacturing a thin, high magnetic flux density unidirectional electrical steel sheet comprising crystal grains in the (110)[001] orientation. (Prior art) Unidirectional electrical steel sheets are mainly used as core materials for transformers and generators, and have the characteristics of low core loss and high magnetic flux density, but from the perspective of energy conservation, materials with even lower core loss can be used. is demanded by the market. In order to obtain low iron loss, two methods are generally used: one method is to increase Si as much as possible to increase the specific resistance of the material to reduce eddy current loss, and the other method is to reduce eddy current loss by reducing the thickness of the finished plate as much as possible. However, with the method of reducing the thickness of the finished product, secondary recrystallization during final annealing becomes unstable, and the conventional method
It is difficult to stably obtain products with excellent magnetic properties with a thickness of 0.23 mm or less on an industrial scale. In order to perform secondary recrystallization stably, it is necessary to create a fine and uniform precipitated dispersed phase in the steel before finishing annealing, and to segregate grain boundary elements at the grain boundaries. After suppressing recrystallization as much as possible, the subsequent final annealing (110)
It is important to selectively grow secondary recrystallization in the [001] orientation. As a means of suppressing primary recrystallization,
Until now, it has been thought that the pinning effect of the grain boundaries by the precipitated dispersed phase and the drag effect of the grain boundaries by the grain boundary segregated elements are considered.
Possible elements include Cu x S, MnSe, and AlN, and common grain boundary segregation elements include Sn, Sb, Bi, Te, and Se. (Object of the invention) From this point of view, the present invention is directed to
By using MnS, Cu x S and AlN, using Sn as a grain boundary segregation element, and applying new rolling conditions in the hot rolling process, we have created ultra-thin products with a thickness of 0.30 mm or less, especially 0.23 mm or less. This makes it possible to industrially and stably manufacture high-grade unidirectional electrical steel sheets. (Structure of the Invention) In other words, the present invention is characterized by heating a material slab at a temperature of 1250°C or higher to completely dissolve MnS, Cu x S, and AlN, which become precipitated dispersed phases, as a solid solution.
In the subsequent hot rolling process, the finishing front temperature is
By controlling between 1150~1250℃, the amount of SasMnS from rough rolling to finishing stand is 50 ~
100ppm MnS is precipitated uniformly and finely, and then
The coils are hardened in the finishing stand.
By controlling the surface temperature after finishing between 950 and 1050℃, the amount of MnS precipitated in the finishing stand can be suppressed as much as possible, and the amount of SasCu x S can be reduced to 35 to 65 ppm.
Cu x S is precipitated uniformly and finely, and SasMnS/SasCu x S
The ratio is controlled within the range of 0.8 to 2.9. The hot coil with a thickness of 2.5 mm or less that has exited the finished surface is subsequently superquenched and rolled at a winding temperature of 500 to 600°C to control the precipitation of AlN during winding from the finishing stand, and to prevent the formation of Sn. The purpose of this method is to obtain high-quality hot coils by actively precipitating grain boundaries. JP-A-48-69720 describes how to develop a uniform and fine precipitated dispersed phase in the hot rolling process.
30 to 200 within the temperature range below ℃ and above 950℃
It was proposed to hold for seconds
In the publication, it was proposed to control the finishing outlet temperature in the hot rolling process to 900-1050℃ at the head of the hot-rolled sheet and 950-1150℃ at the center and tail, and Japanese Patent Publication No. 13606/1983 proposed During hot rolling, it has been proposed that the steel sheet temperature be continuously hot rolled at a hot rolling reduction rate of 10% or more between 950 and 1200°C, and cooled at a cooling rate of 3°C/sec or more. There is. However, these methods relate to materials that do not contain Al or Sn, the method described in JP-A-48-69720 only controls MnS, and the method described in JP-A-58-42727 mainly controls MnS. This is a control of Cu x S, and the method described in Japanese Patent Publication No. 58-13606 considers the control of MnS and MnSe. On the other hand, the present invention starts with a material containing Mn, Cu, Al, and Sn as essential components and controls all the temperatures at the front surface of finishing, after finishing, and winding within a very narrow range. Cu x S, and
The feature is that it attempts to control the amount of fine AlN precipitation within an optimal range. Now, FIGS. 1 and 2 are examples of experimental results conducted by the present inventors. [C] 0.070%, [Si] 3.30%, [Mn] 0.080, which are in the component range according to the present invention
%, [S] 0.025%, [Sol.Al] 0.025%, [N]
A slab containing 0.0085%, [Cu] 0.10%, and [Sn] 0.10% was heated in a heating furnace at 1350℃ for more than 5 hours to fully
After solid solution of MnS, Cu x S and AlN, 2.3 mm thick hot coils were treated at different finishing front temperature, finishing finishing temperature, and winding temperature respectively, and after cold rolling to 32%, hot rolled sheet annealing was carried out. After finishing it to a thickness of 0.23 mm by cold rolling with a final cold rolling rate of 85%, it is made into a finished product through the steps of decarburization annealing, finish annealing, and final coating. This shows the relationship between This allows the winding temperature to reach 500 to 600.
℃, it can be seen that stable and good magnetic properties can be obtained by controlling the finishing front temperature between 1150 and 1250°C and the finishing finishing temperature between 950 and 1050°C. On the other hand, as shown in Figure 2, the winding temperature is
Although good magnetic properties can be obtained in some areas when the temperature exceeds 600℃, its stability is limited by the winding temperature of 500 to 600℃.
It can be seen that it is significantly inferior to the In other words, the finishing front temperature should be between 1150 and 1250°C, the finishing back temperature should be between 950 and 1050°C, and the winding temperature should be between 500 and 1250°C.
It can be seen that only the coil processed starting from a hot coil controlled in a narrow range of 600°C can obtain good magnetic properties. By the way, Figures 3 to 5 show the relationship between the analysis values of SasMnS, SasCu x S, and NasAlN of the hot coil and the magnetic properties of the finished product by analyzing the components of the hot coil obtained in the experiments shown in Figures 1 and 2. It is something.
From this, the analysis value of the hot coil hot rolled in the temperature range of the present invention is 75 ± 25 ppm for SasMnS,
It can be seen that the values are in the region of 50±15ppm for SasCu x S and 40ppm or less for NasAlN, and stable low iron loss values are obtained in that region. Also, SasMnS/
The relationship between the SasCu x S ratio and the iron loss value is shown in Figure 6, and it can be seen that a low iron loss value is obtained in the range of 0.8 to 2.9, and the lowest iron loss value is obtained at 1.5. In other words, the coil of the present invention, whose temperatures are controlled at the front surface, rear surface, and winding, has a SasMnS content of 75 ± 25 ppm.
50±15ppm in SasCu x S and SasMnS/SasCu x S
ranges from 0.8 to 2.9 in terms of ratio, and in NasAlN
It can be seen that the coil has less than 40ppm. On the other hand, FIG. 7 shows an example of the results of a small sample experiment conducted by the present inventors. The components are the same as those shown in FIGS. 1 and 2. 30×30×30 from slab
Starting from a sample material cut out from a small sample of 1350 mm
After soaking for 60 minutes at of the sample put in
SasMnS, SasCu x S and NasAlN were analyzed. The horizontal axis shows the quenching temperature, and the left side of the vertical axis shows the quenching temperature.
The sum of SasMnS and SasCu x S is taken, and NasAlN is taken on the right side of the vertical axis. From this, MnS begins to precipitate from 1300℃, and from 1200 to 1250℃
The peak appears at ℃, and then below 1150℃
Cu x S rapidly precipitates and reaches saturation at 950℃. In other words, in the temperature range of 1250 to 950°C, which corresponds to the temperature range between the finished front surface and the finished rear surface in the present invention.
This determines the precipitation amount ratio of MnS and Cu x S, and it can be seen that the heat treatment during this time is important.
On the other hand, it can be seen that AlN starts to precipitate at 1100°C and is almost saturated at 900°C. In other words, rapid precipitation of AlN progresses in the temperature range of 1050 to 950°C, which corresponds to the temperature range of the finished surface.
It can be seen that it is important to immediately harden hot coils with a thickness of mm or less. Based on the above two results, in order to control the amount of finely precipitated MnS, Cu x S and AlN within the optimal range and obtain a high quality hot coil, the finishing front temperature should be 1150 to 1250℃, and the finishing rear temperature should be 950 to 1050℃. ℃ and winding temperature 500~600℃
It is important to control each of these conditions, and it can be understood that even if this one condition is missing, a high-quality hot coil cannot be obtained. Regarding Sn, it is known from known literature that the temperature range in which Sn diffuses and is most likely to segregate at grain boundaries is 500 to 700°C. For this reason, it is presumed that after winding from the finished surface and after winding, it segregates at the grain boundaries of the hot coil, improving the magnetic properties. The reasons for limiting the conditions specified in the present invention will be explained below. First, when the finished front temperature exceeds 250°C, the amount of MnS precipitated decreases, and when it becomes lower than 1150°C, the amount of MnS precipitated is too large and the magnetic properties are not good. Next, if the surface temperature after finishing is higher than 1050℃, the amount of Cu x S precipitated is insufficient, and if it is lower than 950℃, the amount of Cu x S precipitated is too large, and the SasMnS/SasCu x S ratio is in the optimum range of 0.8 to 2.9. The magnetic properties deteriorate as the magnetic field deviates from the magnetic field. In addition, it is desirable to prevent the precipitation of AlN as much as possible by super-quenching the coil, which is used to obtain fine precipitation of Cu x S and whose surface temperature after finishing is controlled at 950°C or higher and whose thickness is 2.5 mm or less. Next, if the winding temperature exceeds 600°C, the amount of precipitated AlN will be too large and the magnetic properties will not be good, and if the winding temperature falls below 500°C, the rolled shape of the hot coil will deteriorate and at the same time the Sn It is estimated that the amount of grain boundary segregation decreases and the magnetic properties deteriorate, so the winding temperature is
The temperature was limited to 500-600℃. Next, the component composition will be described. [C] is the lower limit
If it is less than 0.025%, secondary recrystallization becomes unstable, and the upper limit of 0.085% was set because if the [C] content exceeds this value, the time required for decarburization becomes longer, which is economically disadvantageous. If [Si] is less than the lower limit of 2.5%, good iron loss cannot be obtained, and if it exceeds the upper limit of 4.5%, the cold rollability deteriorates significantly. [Mn] is an element necessary to form MnS, and if it is less than the lower limit of 0.01%
If the absolute amount of MnS is insufficient and exceeds the upper limit of 0.10%,
Industrialization is difficult because the heating temperature of the slab to dissolve all MnS into solid solution is too high.
[S] is an element necessary to form MnS and Cu x S. If it is less than the lower limit of 0.01%, the absolute amount of MnS and Cu x S will be insufficient, and if it exceeds the upper limit of 0.03%, hot cracking will occur.
Furthermore, desulfurization becomes difficult during final annealing. [Sol.Al]
is the element required to form AlN, and the lower limit is
If it is less than 0.010%, the absolute amount of AlN is insufficient and the upper limit
If it exceeds 0.065%, an appropriate dispersed state of AlN cannot be obtained. [N] is an element necessary to form AlN, and if it is less than the lower limit of 0.005%, the absolute amount of AlN will be insufficient. Moreover, if it exceeds the upper limit of 0.0100%, secondary recrystallization becomes unstable and blisters are likely to occur. [Cu] is an element necessary to form Cu x S. If it is less than the lower limit of 0.03%, the absolute amount of Cu x S will be insufficient, and if it exceeds the upper limit of 0.5%, pickling properties and decarburization properties will deteriorate. . [Sn] segregates at grain boundaries and stabilizes secondary recrystallization, but if it is less than the lower limit of 0.03%, the amount of segregation will be insufficient, and if the upper limit is 0.5%, it will be bad for economic reasons and decarburization. Further, if the final cold rolling rate is less than 83%, it is impossible to obtain a high magnetic flux density unidirectional electrical steel sheet, so the lower limit is set to 83%. The reason for limiting the finished plate thickness to 0.30 mm or less is to obtain ultra-low core loss unidirectional electrical steel sheets in response to recent demand needs. Example 1 [C] 0.075%, [Si] 3.25%, [Mn] 0.080%,
[S] 0.025%, [Sol.Al] 0.025%, [N] 0.0075
%, [Cu] 0.10%, [Sn] 0.10% 250mm
The thick slab was heated at 1350° C. for 2 hours and then hot rolled under the hot rolling conditions shown in Table 1 to obtain a 2.3 mm thick hot coil. This hot coil was cold rolled at a rolling reduction of 33%, then hot rolled sheet annealed at 1120° C. for 4 minutes, and then finally cold rolled at a cold rolling reduction of 85% to give a thickness of 0.23 mm. After that, the obtained cold-rolled sheet was coated with 20% hydrogen and 80% nitrogen.
Decarburization annealing was performed at 840°C for 3 minutes in an atmosphere with a dew point of 40°C, and an annealing separation material was applied, followed by final annealing at 1200°C for 20 hours in a hydrogen stream, and then a coating liquid was applied. It was made into a finished product. The magnetic properties of the product obtained in this way are shown in Table 1. The material of the present invention can stably obtain an iron loss W of 0.92 W/Kg, and has better magnetic properties than the comparative material. I understand. Among them, the SasMnS/SasCu x S ratio is particularly
It can be seen that the example of 21.5 (No. 7) shows the lowest iron loss. Example 2 [C] 0.080%, [Si] 3.30%, [Mn] 0.080%,
[S] 0.026%, [Sol.Al] 0.026%, [N] 0.0080
%, [Cu] 0.09%, [Sn] 0.11% 250mm
The thick slab was heated at 1350° C. for 2 hours and then hot rolled under the hot rolling conditions shown in Table 2 to obtain a 2.0 mm thick hot coil. This hot coil was subjected to hot-rolled plate annealing at 1120°C for 4 minutes, and then finally cold rolled at a cold rolling rate of 88% to a thickness of 0.23 mm. Hydrogen is then applied to the cold-rolled sheet obtained.
20%, nitrogen 80%, 840°C in an atmosphere with a dew point of 40°C
After performing decarburization annealing for 3 minutes and applying an annealing separation material, final annealing was performed at 1200° C. for 20 hours in a hydrogen stream, and then a coating liquid was applied to obtain a finished product. As shown in Table 2, the magnetic properties of the product obtained in this way are good, even without cold rolling before hot-rolled annealing, and the iron loss is stable at 0.92 W/Kg. You can see what you can get by doing this.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は仕上前面温度、仕上後面温
度及び捲取温度と鉄損W〓の関係を示す図(第1
図:捲取温度は500〜600℃、第2図:捲取温度は
600℃以上、第1図、第2図において〇印はW〓
≦0.92、△印は同じく0.93〜0.98、×印は0.99
≦)、第3図はホツトコイルのSasMnS量と鉄損
W〓の関係を示す図(●印は35ppm≦SasCuxS≦
65ppm、NasAlN≦40ppm、0.8≦SasMnS/SasC
S≦2.9 に合格したもの、〇印は前記範囲に不合格のもの
を示す)、第4図はホツトコイルのSasCuxS量と
鉄損W〓の関係を示す図(●印は50ppm≦
SasMnS≦100ppm、NasAlN≦40ppm、0.8≦
SasMnS/SasCuS≦2.9に合格したもの、
〇印は前記範囲 に不合格のものを示す)、第5図はホツトコイル
のNasAlN量と鉄損W〓の関係を示す図(●印は
50ppm≦SasMnS≦100ppm、35ppm≦SasCuxS
≦65ppm、0.8≦SasMnS/SasCuS≦2.9に
合格したものを 示し、〇印は前記範囲に不合格のものを示す)、
第6図はホツトコイルのSasMnS/SasCuxSの比
と鉄損W〓の関係を示す図(●印は50ppm≦
SasMnS≦100ppm、35ppm≦SasCuxS≦
65ppm、NasAlN≦40ppmに合格したものを示
し、〇印は前記範囲に不合格のものを示す)、第
7図は小試料実験で熱間圧延工程の温度履歴をシ
ユミレートし、各温度から焼入れした時の焼入温
度と、SasMnS+SasCuxS及びNasAlNの析出量
の関係を示す図である。
Figures 1 and 2 are diagrams showing the relationship between the finished front temperature, finished back temperature, winding temperature, and iron loss W〓 (first
Figure: Winding temperature is 500-600℃, Figure 2: Winding temperature is
600℃ or above, 〓 mark in Figures 1 and 2 is W〓
≦0.92, △ mark is also 0.93 to 0.98, × mark is 0.99
≦), Figure 3 is a diagram showing the relationship between the amount of SasMnS in the hot coil and the iron loss W〓 (● marks indicate 35ppm≦SasCu x S≦
65ppm, NasAlN≦40ppm, 0.8≦SasMnS/SasC
Figure 4 is a diagram showing the relationship between the amount of SasCu x S and iron loss W〓 of hot coils (● marks are 50ppm≦).
SasMnS≦100ppm, NasAlN≦40ppm, 0.8≦
Those that passed SasMnS/SasCu x S≦2.9,
〇 marks indicate those that fail within the above range), Figure 5 is a diagram showing the relationship between the amount of NasAlN in the hot coil and iron loss W〓 (● marks indicate
50ppm≦SasMnS≦100ppm, 35ppm≦SasCu x S
≦65 ppm, 0.8≦SasMnS/ SasCu
Figure 6 is a diagram showing the relationship between the SasMnS/SasCu x S ratio and iron loss W〓 of a hot coil (● marks are 50ppm
SasMnS≦100ppm, 35ppm≦SasCu x S≦
65ppm, NasAlN ≦ 40ppm, those that passed the test are shown, and the ○ marks indicate those that failed within the above range. FIG. 3 is a diagram showing the relationship between the quenching temperature and the amount of precipitation of SasMnS+SasCu x S and NasAlN.

Claims (1)

【特許請求の範囲】 1 〔C〕0.025〜0.085%、〔Si〕2.5〜4.5%、
〔Mn〕0.01〜0.10%、〔S〕0.01〜0.04%、〔Sol.
Al〕0.010〜0.065%、〔N〕0.005〜0.0100%、
〔Cu〕0.03〜0.5%、〔Sn〕0.03〜0.5%、残部鉄及
び不可避的不純物を含有するスラブを高温加熱
後、熱間圧延し、最終冷延率83%以上の冷延工程
を含む所定の高磁束密度方向性電磁鋼板の製造法
において、上記熱間圧延での仕上前面温度を1150
〜1250℃、仕上後面温度を950〜1050℃及び捲取
温度を500〜600℃の温度領域に制御することを特
徴とする成品厚0.30mm以下の薄手高磁束密度方向
性電磁鋼板の製造方法。
[Claims] 1 [C] 0.025 to 0.085%, [Si] 2.5 to 4.5%,
[Mn] 0.01-0.10%, [S] 0.01-0.04%, [Sol.
Al〕0.010~0.065%, [N]0.005~0.0100%,
A slab containing [Cu] 0.03 to 0.5%, [Sn] 0.03 to 0.5%, the balance iron and unavoidable impurities is heated to a high temperature and then hot rolled to a specified cold rolling process with a final cold rolling ratio of 83% or more. In the manufacturing method of high magnetic flux density grain-oriented electrical steel sheets, the finishing front temperature during hot rolling is set to 1150.
A method for producing a thin, high magnetic flux density grain-oriented electrical steel sheet with a finished product thickness of 0.30 mm or less, characterized by controlling the finished surface temperature to 950 to 1050 °C, and the winding temperature to 500 to 600 °C.
JP5359284A 1984-03-22 1984-03-22 Production of thin grain-oriented electrical steel sheet having high magnetic flux density Granted JPS60197819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5359284A JPS60197819A (en) 1984-03-22 1984-03-22 Production of thin grain-oriented electrical steel sheet having high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5359284A JPS60197819A (en) 1984-03-22 1984-03-22 Production of thin grain-oriented electrical steel sheet having high magnetic flux density

Publications (2)

Publication Number Publication Date
JPS60197819A JPS60197819A (en) 1985-10-07
JPS6248725B2 true JPS6248725B2 (en) 1987-10-15

Family

ID=12947141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5359284A Granted JPS60197819A (en) 1984-03-22 1984-03-22 Production of thin grain-oriented electrical steel sheet having high magnetic flux density

Country Status (1)

Country Link
JP (1) JPS60197819A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230740A (en) * 1988-04-23 1990-02-01 Nippon Steel Corp High magnetic flux density grain oriented electrical steel sheet having drastically excellent iron loss and its manufacture
DE4311151C1 (en) * 1993-04-05 1994-07-28 Thyssen Stahl Ag Grain-orientated electro-steel sheets with good properties
FR2731713B1 (en) * 1995-03-14 1997-04-11 Ugine Sa PROCESS FOR THE MANUFACTURE OF A SHEET OF ELECTRIC STEEL WITH ORIENTED GRAINS FOR THE PRODUCTION OF MAGNETIC TRANSFORMER CIRCUITS IN PARTICULAR

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342727A (en) * 1976-09-29 1978-04-18 Matsushita Electric Works Ltd Projector
JPS5813605A (en) * 1981-07-20 1983-01-26 Showa Denko Kk Preparation of ethylenic copolymer
JPS5891121A (en) * 1981-11-21 1983-05-31 Kawasaki Steel Corp Production of high-tensile hot-rolled steel plate having high magnetic flux density

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342727A (en) * 1976-09-29 1978-04-18 Matsushita Electric Works Ltd Projector
JPS5813605A (en) * 1981-07-20 1983-01-26 Showa Denko Kk Preparation of ethylenic copolymer
JPS5891121A (en) * 1981-11-21 1983-05-31 Kawasaki Steel Corp Production of high-tensile hot-rolled steel plate having high magnetic flux density

Also Published As

Publication number Publication date
JPS60197819A (en) 1985-10-07

Similar Documents

Publication Publication Date Title
JP4954876B2 (en) Oriented electrical steel sheet with extremely excellent magnetic properties and method for producing the same
JP2013189712A (en) Method for producing grain-oriented flat rolled magnetic steel sheet and strip with high magnetic flux density
JPH09118964A (en) Grain-directional silicon steel having high volume resistivity
JP2008001983A (en) Method for producing grain-oriented magnetic steel sheet with high magnetic flux density
JP2022514794A (en) Directional electrical steel sheet and its manufacturing method
JPH0686631B2 (en) Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
JP7398444B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
KR940008933B1 (en) Method of producing non-oriented electromagnetic steel strip having superior magnetic properties and appearance
JPH04120216A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic characteristic
JPH059580A (en) Production of grain-oriented silicon steel sheet extremely excellent in magnetic property
JPS6248725B2 (en)
JP3348802B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JPH04341518A (en) Production of extra thin grain-oriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JPH0784615B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic flux density
KR100347597B1 (en) Method for manufacturing grain oriented electric steel sheet with high magnetic density
JPS6242968B2 (en)
JPH10110218A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
KR950014313B1 (en) Method of producing grain-oriented silicon steel with small boron addition
JPH04346621A (en) Manufacture of nonoriented magnetic steel sheet excellent in magnetic characteristic and surface appearance
JPH06192736A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3338238B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing
CN117062921A (en) Method for producing oriented electrical steel sheet
JPH042724A (en) Production of thin grain-oriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees