JPS5891023A - Separation of gas - Google Patents

Separation of gas

Info

Publication number
JPS5891023A
JPS5891023A JP56191205A JP19120581A JPS5891023A JP S5891023 A JPS5891023 A JP S5891023A JP 56191205 A JP56191205 A JP 56191205A JP 19120581 A JP19120581 A JP 19120581A JP S5891023 A JPS5891023 A JP S5891023A
Authority
JP
Japan
Prior art keywords
carbonyl compound
metal
carbon monoxide
metal carbonyl
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56191205A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawada
川田 寛
Kazuto Hamada
浜田 一人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP56191205A priority Critical patent/JPS5891023A/en
Publication of JPS5891023A publication Critical patent/JPS5891023A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To economically separate and recover high purity CO from a gaseous mixture by separating CO from the mixture in the form of a metallic carbonyl compound and decomposing the carbonyl compound. CONSTITUTION:A metal forming a metallic carbonyl compound such as Ni, Fe, W or Co is used. For example, when Ni is used, a gaseous mixture F1 contg. CO is fed to a reactor 1 kept at about 45-50 deg.C and brought into contact with active Ni(F2) obtd. by thermally decomposing nickel formate to react Ni with CO, forming Ni(CO)4. The resulting gaseous mixture is introduced into a module 2 for separation provided with asymmetric separating membranes made of polyvinylidene fluoride, and in the module 2 the Ni(CO)4 is separated. It is thermally decomposed at about 200 deg.C in a decomposition tower 3 to recover CO, and the resulting active Ni is recycled to the reactor 1.

Description

【発明の詳細な説明】 本発明は新規な一酸化炭素の分離方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for separating carbon monoxide.

一酸化炭素の分離に関しては、従来から深冷分離法、調
液洗浄法等が知られている。又最近高純度のcoを経済
的に回収できる0O8ORB法等が開発された。
Regarding the separation of carbon monoxide, cryogenic separation methods, liquid preparation cleaning methods, and the like have been conventionally known. Recently, the 0O8ORB method, etc., which can economically recover high-purity co, has been developed.

本発明は従来の方式とは異なる経済的に高純度の一酸化
炭素を分離する方法に関するものである。
The present invention relates to an economical method for separating high-purity carbon monoxide that differs from conventional methods.

即ち一酸化炭素を含む混合気体中の一酸化炭素を、金属
カルボニル化合物を形成する金属と反応させ金属カルボ
ニル化合物となし、金属カルボニル化合物のみを分離膜
による分離或はその他の方法で分離した後、金属カルボ
ニル化合物の分解湿度以上で一酸化炭素と金属に分解さ
せ、−酸化炭素のみを分離することを特徴とする一酸化
炭素の分離方法である。
That is, carbon monoxide in a gas mixture containing carbon monoxide is reacted with a metal that forms a metal carbonyl compound to form a metal carbonyl compound, and only the metal carbonyl compound is separated by a separation membrane or by other methods. This method of separating carbon monoxide is characterized by decomposing it into carbon monoxide and metal at a humidity higher than the decomposition humidity of a metal carbonyl compound, and separating only -carbon oxide.

金属カルボニル化合物を形成する金属としてはNi、F
e 、W、Co、Mu、V、Nb、Mo、Tc、Ru、
Rh、Ta。
Metals that form metal carbonyl compounds include Ni and F.
e, W, Co, Mu, V, Nb, Mo, Tc, Ru,
Rh, Ta.

Or、Os、■r 等を利用することができる。これら
の金属或は金属化合物と一酸化炭素を反応させると、金
城カルボニル化合物を形成する。金属単体自身も一酸化
炭素と結合して中性カルボニル化合物を形成するが、金
属カルボニル化合物を形成する方法として、金属酸化物
を水素などで活性を失わないように還元して金属粉や粒
を調整したり、金属化合物め熱分解で得られた活性金属
に一酸化炭素を反応させることが望ましい。このように
して得られた活性金属と一酸化炭素の反応はカルボニル
の種類により常温から200℃、常圧から300〜程度
の反応条件下で行なわれる。例えばNiカルボニル化合
物では45〜50°0で気体状のニッケルカルボニルu
1(co)4を得ることができる。金属カルボニル化合
物は加熱すると容易に分解するので得られた金属カルボ
ニル化合物をそれぞれの分解湿度以上に加熱して一酸化
炭素と金属に分離することが可能である。
Or, Os, ■r, etc. can be used. When these metals or metal compounds are reacted with carbon monoxide, Kinjo carbonyl compounds are formed. The metal itself also combines with carbon monoxide to form a neutral carbonyl compound, but the method of forming a metal carbonyl compound is to reduce the metal oxide with hydrogen etc. without losing its activity and convert it into metal powder or grains. It is desirable to react carbon monoxide with the active metal obtained by adjusting or pyrolyzing the metal compound. The reaction between the active metal thus obtained and carbon monoxide is carried out under reaction conditions ranging from room temperature to 200° C. and from normal pressure to about 300° C. depending on the type of carbonyl. For example, in the Ni carbonyl compound, gaseous nickel carbonyl u
1(co)4 can be obtained. Since a metal carbonyl compound easily decomposes when heated, it is possible to separate the obtained metal carbonyl compound into carbon monoxide and metal by heating the metal carbonyl compound to a temperature higher than the respective decomposition humidity.

次に混合ガス中のCoと反応させた金属カルボニル化合
物を他の混合ガスから分離する方法にっいて説明する。
Next, a method for separating the metal carbonyl compound reacted with Co in the mixed gas from other mixed gases will be explained.

分離方法としては液体状で取り出す方法、気体状で分離
膜を使用して他の混合ガスと分離する方法等があるがエ
ネルギー効率から考えると分離膜を使用することが望ま
しい。分離膜を使用して金属カルボニル化合物を他の混
合ガスから分離する方法については従来から知られてい
る非対称膜、或は複合膜による方法等が適用される。金
属カルボニル化合物及び混合ガスの種類によって最適な
分離膜を選択する必要があるが、−酸化炭素を金属カル
ボニル化合物にすることにより分子量が通常のガスに比
較して大きくなり、他の混合ガスとの分離を効率よく行
うことが可能となる。
Separation methods include extracting it in liquid form and separating it from other mixed gases in gaseous form using a separation membrane, but from the viewpoint of energy efficiency, it is desirable to use a separation membrane. As for the method of separating metal carbonyl compounds from other mixed gases using a separation membrane, a conventionally known method using an asymmetric membrane or a composite membrane can be applied. It is necessary to select the optimal separation membrane depending on the type of metal carbonyl compound and mixed gas, but - by converting carbon oxide into a metal carbonyl compound, the molecular weight becomes larger than that of normal gas, making it difficult to mix with other mixed gases. It becomes possible to perform separation efficiently.

分41t[その他の方法によって分離した金属カルボニ
ル化合物は、分解温度以上に加熱し、金属と−i化炭素
に分解し、−酸化炭素を高純度で得ることができる。熱
分解により一酸化炭素と分離した金属は活性化状態を保
っており、供給混合ガスと再び反応させ再使用すること
が経済的に有効である。
[Metal carbonyl compounds separated by other methods can be heated above the decomposition temperature and decomposed into metal and carbon i-oxide to obtain carbon oxide with high purity. The metal separated from carbon monoxide by thermal decomposition remains activated, and it is economically effective to react with the supplied mixed gas again and reuse it.

以下実施例に従って説明する。The following will be explained according to examples.

実施例 L 第1図でF□ として示す0040%、N230%、0
H430%の混合ガスを80℃〜l OOtl 、la
tmの条件で蟻酸ニッケルを200℃で熱分解して得ら
れた(第1図F2で示す)活蜂状態のN1と第1図に示
す反応缶1で反応させ、N1(00,)、 40%N2
30%、OH,30%の混合ガスを得た。この混合ガス
を第1図に示す弗化ビニリデン非対称膜からなる分離用
モジュール2によって、N、1(Co、)4  を分離
した。 、 分離したNt(、co)4 の濃度は85%、残りのガ
スはN2:10% OH4:15%であった。85%の
N1(Co)4を含む混合ガス奪第1図に示、す分解塔
3で200℃で完全に分解し、10%のN、、15%の
C,H4を含むCOを得た。又同時に分解して得られせ
、リサイクル使用を行った。
Example L 0040%, N230%, 0 shown as F□ in Figure 1
Mixed gas of 30% H4 at 80℃~l OOtl, la
N1 in a live honey state obtained by thermally decomposing nickel formate at 200°C under the conditions of tm (indicated by F2 in Figure 1) was reacted in the reaction vessel 1 shown in Figure 1 to produce N1 (00,), 40 %N2
A mixed gas of 30%, OH, and 30% was obtained. From this mixed gas, N and 1(Co, )4 were separated by a separation module 2 consisting of a vinylidene fluoride asymmetric membrane shown in FIG. , the concentration of separated Nt(,co)4 was 85%, and the remaining gas was N2:10% OH4:15%. A mixed gas containing 85% N1(Co)4 was completely decomposed at 200°C in the decomposition column 3 shown in Figure 1 to obtain CO containing 10% N, 15% C and H4. . At the same time, it was obtained by decomposition and recycled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一例を示すフローシートである。 反応缶・・・・・・1 分離用モジュール・・・2 分解塔・・・・・・・3 特許出願人 東洋vi績抹大会社 FIG. 1 is a flow sheet showing an example of the present invention. Reaction can...1 Separation module...2 Decomposition tower...3 Patent Applicant: Toyo Viki Meidai Company

Claims (4)

【特許請求の範囲】[Claims] (1)混合気体中の一酸化炭素を金属カルボニル化合物
となし、他の気体と金属カルボニル化合物とを分離した
後、金属カルボニル化合物を分解し一酸化炭素を分離す
ることを特徴とする気体分離方法。
(1) A gas separation method characterized by converting carbon monoxide in a mixed gas into a metal carbonyl compound, separating the metal carbonyl compound from other gases, and then decomposing the metal carbonyl compound and separating carbon monoxide. .
(2)  分離膜により金属カルボニル化合物を他の混
合気体から分離する特許請求の範囲・第1項記載の分離
方法。
(2) The separation method according to claim 1, in which the metal carbonyl compound is separated from other mixed gases using a separation membrane.
(3)金属カルボニル化合物がNi 、 Fe 、W、
 Co、Mn。 v、 Nb、Mo 、 Tc 、 Ru、 Rh、 T
a、 W、 Re、Os、工rの金属から得られるもの
である特許請求の範囲第1項記載の分離方法。
(3) The metal carbonyl compound is Ni, Fe, W,
Co, Mn. v, Nb, Mo, Tc, Ru, Rh, T
The separation method according to claim 1, wherein the separation method is obtained from metals such as a, W, Re, Os, and R.
(4)金属カルボニル化合物を分解して得られる金属を
一酸化炭素を含む混合ガス中で再反応させリサイクル使
用する特許請求の範囲第1項記載の分離方法。
(4) The separation method according to claim 1, wherein the metal obtained by decomposing the metal carbonyl compound is re-reacted in a mixed gas containing carbon monoxide and recycled.
JP56191205A 1981-11-26 1981-11-26 Separation of gas Pending JPS5891023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56191205A JPS5891023A (en) 1981-11-26 1981-11-26 Separation of gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56191205A JPS5891023A (en) 1981-11-26 1981-11-26 Separation of gas

Publications (1)

Publication Number Publication Date
JPS5891023A true JPS5891023A (en) 1983-05-30

Family

ID=16270646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56191205A Pending JPS5891023A (en) 1981-11-26 1981-11-26 Separation of gas

Country Status (1)

Country Link
JP (1) JPS5891023A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5449996A (en) * 1977-09-29 1979-04-19 Agency Of Ind Science & Technol Thermal decomposition method for carbonyl sulfide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5449996A (en) * 1977-09-29 1979-04-19 Agency Of Ind Science & Technol Thermal decomposition method for carbonyl sulfide

Similar Documents

Publication Publication Date Title
US5525322A (en) Method for simultaneous recovery of hydrogen from water and from hydrocarbons
US5380600A (en) Fuel cell system
EP2021309B1 (en) Methanol production process
JPS6338018B2 (en)
JPH07116517A (en) Methanol reforming catalyst, its production and methanol reforming method
AU4775399A (en) High productivity process to produce maleic anhydride from N-butane
US4383837A (en) Efficient methane production with metal hydrides
FR2620849A1 (en) PROCESS FOR THE DECONTAMINATION OF THE RESIDUAL GAS OF A NUCLEAR FUSION REACTOR
US3802993A (en) Non-fossil fuel process for production of hydrogen and oxygen
US4325931A (en) Method of producing ammonia
JPS5891023A (en) Separation of gas
JP3456714B2 (en) Method for producing partial oxide of methanol
JP3322923B2 (en) Method for producing carbon monoxide and hydrogen
CA1147694A (en) Separating and oxidizing hydrogen isotopes from gas mixture followed by electrolysis
WO2023153928A1 (en) Hybrid ammonia decomposition system
CA2336461A1 (en) Method of producing an aliphatic diacid and nitrous oxide
EP4324786A1 (en) Method and plant for providing synthesis gas and for producing methanol
US5364609A (en) Process for the preparation and processing of a hydroxylammonium salt solution
JPS59128202A (en) Method for reforming methanol while recycling purge gas
JPH0261410B2 (en)
US3970745A (en) Method for producing hydrogen from water
US20090104111A1 (en) Carbonate Thermochemical Cycle for the Production of Hydrogen
RU2198838C1 (en) Method of methanol producing
JPH02311301A (en) Production of hydrogen for fuel cell
EP0139423A2 (en) A process for the preparation of high-purity hydrogen