JPS5888447A - Correction device for air-fuel ratio of engine - Google Patents

Correction device for air-fuel ratio of engine

Info

Publication number
JPS5888447A
JPS5888447A JP18566081A JP18566081A JPS5888447A JP S5888447 A JPS5888447 A JP S5888447A JP 18566081 A JP18566081 A JP 18566081A JP 18566081 A JP18566081 A JP 18566081A JP S5888447 A JPS5888447 A JP S5888447A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
engine
valve
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18566081A
Other languages
Japanese (ja)
Other versions
JPS6319702B2 (en
Inventor
Michio Matsushima
松島 道男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Toyo Kogyo Co Ltd filed Critical Mazda Motor Corp
Priority to JP18566081A priority Critical patent/JPS5888447A/en
Publication of JPS5888447A publication Critical patent/JPS5888447A/en
Publication of JPS6319702B2 publication Critical patent/JPS6319702B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M3/00Idling devices for carburettors
    • F02M3/005Idling fuel enrichment with motor driven instead of driving; Switching the fuel supply from the main to idling jet system

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Means For Warming Up And Starting Carburetors (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent in advance the lowering of purification efficiency of exhaust gas for those with a deceleration richer to enrich the air-fuel ratio of mixture at the deceleration of an engine by correcting the air-fuel ratio of the mixture to a lean side when a choke is operated and the speed is decelerated. CONSTITUTION:When an engine 1 is started at the time of low temperature, a choke valve 6 is completely closed by an unillustrated bimetal. When the engine 1 is perfectly ignited, the suction negative pressure in a suction passage 2 in the downstream of a throttle valve 5 is led to a diaphragm device 22 via a passage 24, and thereby, this valve 6 is opened at a fixed degree via a diaphragm 22a and a rod 22h. Under this condition, when the speed is decelerated during driving, the air-fuel ratio is shifted to an excessively rich side by the function of a deceleration richer in an air-fuel ratio control circuit 33 via a solenoid valve 17. But, at the same time, the suction negative pressure is also introduced into the second negative pressure chamber 22e via a cross valve 25, and the choke valve 6 is further opened via a diaphragm 22d and a rod 22h for restraining the excessive enrichment of air-fuel mixture.

Description

【発明の詳細な説明】 本発明は、チョーク作動時でかつ減速時に作動するエン
ジンの空燃比補正装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio correction device for an engine that operates during choke operation and during deceleration.

従来より、例えば実公昭グアー2り15グ号に示される
ように、エンジンの温度に応じて作動するチョーク弁と
、エンジンの減速時にエンジンに供給する混合気の空燃
比を濃くする減速リッチャ−とを備えたエンジンの空燃
比制御装置(気化器)は公知であるが、このような空燃
比制御装置においては、チョーク作動時でかつ減速時に
エンジンに供給される混合気の空燃比が濃くなり過ぎて
、排気浄化性能、燃費性能に悪影響を与える問題を有す
る。
Conventionally, as shown in Jikko Sho Guar 2-15, for example, there has been a choke valve that operates depending on the engine temperature, and a deceleration richer that enriches the air-fuel ratio of the mixture supplied to the engine when the engine is decelerating. Engine air-fuel ratio control devices (carburetors) are known, but in such air-fuel ratio control devices, the air-fuel ratio of the mixture supplied to the engine becomes too rich when the choke is activated and during deceleration. However, there is a problem in that it adversely affects exhaust purification performance and fuel efficiency.

すなわち、上記チョーク弁はエンジン冷間時に吸気通路
°を閉じることにより空燃比を濃く1て低温時における
始動性および暖機性を向上するものであり、一方、減速
リッチャ−はエンジン減速時に混合気の空燃比を濃(し
て着火率を高め゛未燃焼成分の排出を抑制するとともに
運転性を改善せんとするものであり、エンジン冷間時で
しかも減速時にはチョーク弁の作動番こより混合気の空
燃比が濃くなっているのに加えて減−速リッチャーの作
動によってさらに空燃比が濃くなる結果、エンジンの要
求空燃比に対し過濃な混合気が供給されることになり、
排気系に多量の未燃焼成分が排出され、排気浄化性能が
悪化するとともに、排気系に触媒装置を有するものでは
、2次エアの供給と相俟つて、多量の未燃焼成分の反応
によって触媒装置の温度が過度に上昇し、その耐久性を
劣化させるも7のであり、燃費性能も悪化する不具合を
有するものである。
In other words, the choke valve enriches the air-fuel ratio by closing the intake passage when the engine is cold, thereby improving startability and warm-up performance at low temperatures.On the other hand, the deceleration richer closes the air-fuel mixture when the engine is decelerating. The purpose is to increase the ignition rate by enriching the air-fuel ratio of the engine, suppress the emission of unburned components, and improve drivability. In addition to the air-fuel ratio becoming richer, the air-fuel ratio becomes richer due to the operation of the deceleration richer, resulting in a mixture that is too rich for the engine's required air-fuel ratio.
A large amount of unburned components are discharged into the exhaust system, deteriorating the exhaust purification performance, and in combination with the supply of secondary air, the catalyst device is damaged due to the reaction of a large amount of unburned components. The temperature of the fuel cell increases excessively, deteriorating its durability, and the fuel efficiency also deteriorates.

そこで、本発明はかかる点に鑑み、チョーク作動時でか
つ減速時にエンジンに供給される混合気の空燃比を希薄
側に補正する空燃比調整装置を設けたエンジンの空燃比
補正装置を提供し、過濃混合気の供給を防止して、排気
浄化装置の保護を図るとともに、排気浄化性能、燃費性
能を改善せんとするものである。
In view of this, the present invention provides an air-fuel ratio correction device for an engine, which includes an air-fuel ratio adjustment device that corrects the air-fuel ratio of the air-fuel mixture supplied to the engine to the lean side during choke operation and deceleration. The purpose is to prevent the supply of an overly rich air-fuel mixture to protect the exhaust purification device, and to improve exhaust purification performance and fuel efficiency.

以下、本発明の実施例を図面に沿って説明する。Embodiments of the present invention will be described below with reference to the drawings.

この実施例は、基本的には排気系に設けた排気センサ(
02センサロ2より混合気の空燃比を検出し、この検出
信号)こ応じて燃料供給量とブリードエア量を調整する
気化器の電磁弁をデユーティ比制御してエンジンに供給
する混合気の空燃比を理論空燃比にフィードバック制御
するようにし−た電子制御式の空燃比制御装置であって
、上記空燃比制御装置は気化器にバイメタルの作用によ
って低温時に閉じるチョ−−り弁を有し、また、−減速
時に(よ前記フィードバック制御を停止して混合気の空
燃比を濃くするべく電磁弁を予め設定された固定デユー
ティ比で制御して混合気を所定の濃空燃比とする減速リ
ッチャ−機能を備え、さらに、エンジン温度もしくは外
気温が設定値より低いときにも前記フィードバック制御
を停止し、エンジン温度、外気温および運転状態(吸気
負圧およびエンジン回転数)に応じて予め設定された固
定デユーティ比によって気化器の電磁弁を制御し、混合
気を全搬的に濃い空燃比に調整するように構成したもの
であり、チョーク弁が作動しかつ減速時にはほぼ全閉状
態にあるチョーク弁を所定開度開く空燃比調整装置によ
って空燃比を希−側に補正するようにした空燃比補正装
置の例を示すものであり、上記空燃比調整装置はチョー
ク弁の完爆補正機能をも備えており、減速時には完爆補
正によって若干量いたチョーク弁をさらに大きく開くよ
うにしたものである。
This embodiment basically consists of an exhaust sensor (
02 The air-fuel ratio of the mixture is detected by Sensoro 2, and the air-fuel ratio of the mixture supplied to the engine is controlled by controlling the duty ratio of the solenoid valve of the carburetor, which adjusts the amount of fuel supply and bleed air accordingly. This is an electronically controlled air-fuel ratio control device that performs feedback control on the stoichiometric air-fuel ratio. - A deceleration richer function that controls the solenoid valve at a preset fixed duty ratio to enrich the air-fuel ratio of the air-fuel mixture by stopping the feedback control during deceleration (the above-mentioned feedback control) to make the air-fuel mixture a predetermined rich air-fuel ratio. Furthermore, the feedback control is stopped even when the engine temperature or outside temperature is lower than the set value, and the feedback control is fixed in advance according to the engine temperature, outside temperature, and operating condition (intake negative pressure and engine rotation speed). The solenoid valve of the carburetor is controlled by the duty ratio, and the air-fuel mixture is adjusted to a rich air-fuel ratio throughout.The choke valve operates and is almost fully closed during deceleration. This is an example of an air-fuel ratio correction device that corrects the air-fuel ratio to the lean side by using an air-fuel ratio adjustment device that opens to a predetermined opening degree, and the air-fuel ratio adjustment device also has a choke valve complete explosion correction function. During deceleration, the choke valve was opened even wider due to complete explosion compensation.

第1図において、1はエンジン、2は該エンジン1の吸
気通路であって、該吸気通路2は途中に気化器3が介設
されている。気化器3はベンチュリ部4の下流側に絞弁
5を有し、ベンチュリ部4の上流側にはバイメタル(図
示せず)により温度に応じて作動するチョーク弁6を有
している。
In FIG. 1, 1 is an engine, 2 is an intake passage of the engine 1, and a carburetor 3 is interposed in the intake passage 2. In FIG. The carburetor 3 has a throttle valve 5 on the downstream side of the venturi section 4, and has a choke valve 6 on the upstream side of the venturi section 4 that is operated depending on the temperature by a bimetal (not shown).

また、上記気化器3において、7はフロート室8の燃料
をメインジェット9を介してベンチュリ部4のメインノ
ズル10に供給する主燃料通路、11は該主燃料通路7
にベンチュリ部4上流の空気を混入するメインエアブリ
ード、12は上記主燃料通路7から分岐(図示せず)し
−て燃料を絞弁5近傍の吸気通路2に開口したスローポ
ート13およびアイドルポート14に供給するスロー燃
料通路、15は該スロー燃料通路12にベンチュリ部4
上流の空気を混入すネスローエアブリードである。尚、
16はアイドル調整ねじである。
Further, in the carburetor 3, 7 is a main fuel passage that supplies the fuel in the float chamber 8 to the main nozzle 10 of the venturi section 4 via the main jet 9, and 11 is the main fuel passage 7.
A main air bleed 12 mixes air upstream of the venturi section 4 into the main fuel passage 7, and a slow port 13 and an idle port 12 branch from the main fuel passage 7 (not shown) and open the fuel into the intake passage 2 near the throttle valve 5. 14, a slow fuel passage 15 supplies the venturi portion 4 to the slow fuel passage 12;
This is a Neslo air bleed that mixes upstream air. still,
16 is an idle adjustment screw.

さらに、17は気化器3において絞弁5の開閉と独立し
てエンジン1に供給する混合気の空燃比 −が調整可能
な電磁弁で、該電磁弁17は後述する空燃比制御回路6
6からのデユーティ比制御信号に応じて補助燃料通路1
8および補助エアブリード通路19を開閉するよう構成
されている。すなわち、補助撚−料通路18はフロート
室8の燃料主補助ジェット20を介してメインジェット
9下流側の主燃料通路7に供給する一方、補助エアブリ
ード通路19はベンチュリ部4上流の空気をスローエア
ブリード15下流のスロー燃料通路12に供給するもの
であり、前記電磁弁17は、ソレノイド17a?こ印加
されるデユーティ比制御信号に応じて作動する弁体17
bの一゛端(下端)の第1弁部17Cで上記補助燃料通
路18を開閉するとともに、該弁体17bの他端(上端
)の第2弁部17dで上記補助エアブリード通路19を
開閉するものである。尚、空燃比制御回路36からのデ
ユーティ比制御信号のデユーティ比が小さい値のときに
は、電磁弁17の弁体17bは補助燃料通路18の開度
を大きく補助エアブリード通路19の開度を小さくして
燃料供給量を増加し、エンジン1に供給する混合気の空
燃比を濃くする一方、デユーティ比が大きい値のときに
は、電磁弁17の弁体17bは上記と逆に作動して空気
供給量を増加し、エンジン1に供給する混合気の空燃比
を薄くするものである。
Furthermore, 17 is a solenoid valve that can adjust the air-fuel ratio of the air-fuel mixture supplied to the engine 1 independently of the opening and closing of the throttle valve 5 in the carburetor 3, and the solenoid valve 17 is connected to an air-fuel ratio control circuit 6 to be described later.
Auxiliary fuel passage 1 according to the duty ratio control signal from 6
8 and the auxiliary air bleed passage 19. That is, the auxiliary twisting material passage 18 supplies the main fuel passage 7 on the downstream side of the main jet 9 via the fuel main auxiliary jet 20 of the float chamber 8, while the auxiliary air bleed passage 19 supplies air upstream of the venturi section 4 to slow air. The solenoid valve 17 supplies the slow fuel passage 12 downstream of the bleed 15, and the solenoid 17a? The valve body 17 operates according to the applied duty ratio control signal.
The first valve portion 17C at one end (lower end) of the valve body 17b opens and closes the auxiliary fuel passage 18, and the second valve portion 17d at the other end (upper end) of the valve body 17b opens and closes the auxiliary air bleed passage 19. It is something to do. Note that when the duty ratio of the duty ratio control signal from the air-fuel ratio control circuit 36 is a small value, the valve body 17b of the solenoid valve 17 increases the opening degree of the auxiliary fuel passage 18 and decreases the opening degree of the auxiliary air bleed passage 19. When the duty ratio is large, the valve body 17b of the solenoid valve 17 operates in the opposite manner to reduce the air supply amount. This increases the air-fuel ratio of the air-fuel mixture supplied to the engine 1.

また、21は上記気化器3のチョーク弁6に付設された
空燃比調整装置であり、該空燃比調整装置21はエンジ
ン1の完爆後に全開状態にあるチョーク弁6を設定開度
だけ若干開く完爆補正を行うとともに、減速時には完爆
補正開度にあるチョーク弁6をさらに所定開度間いて空
燃比補正を行うものである。
Further, 21 is an air-fuel ratio adjustment device attached to the choke valve 6 of the carburetor 3, and the air-fuel ratio adjustment device 21 slightly opens the choke valve 6, which is in a fully open state after the engine 1 has completely exploded, by a set opening degree. In addition to performing complete explosion correction, during deceleration, the choke valve 6, which is at the complete explosion correction opening, is further opened by a predetermined opening to perform air-fuel ratio correction.

上記空燃比調整装置21はダイヤフラム装置22を有し
、該ダイヤフラム装置22において、22aは大気室2
2b、!?第1負圧室22cとを区画する第1ダイヤフ
ラム、2.2 dは第1負圧室22cと第2負圧室22
eとを区画する第2ダイヤフラム、22fは第1負圧室
22cに縮装された第1スプリング、22qは第2負圧
室22eに縮装された第2スプリング、22hは上記第
1ダイヤフラムに基端−が支持されたロッド、22iは
該ロッド22hの基端に対向して第2ダイヤフラム22
dに固設された当接部材、2’2mは第1ダイヤフラム
22aに固定−されてロッド22hの最前進位置を規制
する第1ストツパ、22nは第2ダイヤフラム22dの
前方変位位置を規制し当接部材22iによってロッド2
2hを完爆補正位置に停止する第2ストツパ、22pは
第2ダイヤフラム22dに固定されてロッド22hの最
後退位置を規制する第3ストツパである。また、上記ロ
ッド22hの先端は、チョーク弁6の弁軸6aに゛連係
された回動レバー23の先端部に連結されている。
The air-fuel ratio adjusting device 21 has a diaphragm device 22, and in the diaphragm device 22, 22a is the atmospheric chamber 2.
2b,! ? A first diaphragm 2.2d partitions the first negative pressure chamber 22c and the second negative pressure chamber 22.
22f is a first spring compressed into the first negative pressure chamber 22c, 22q is a second spring compressed into the second negative pressure chamber 22e, and 22h is a second diaphragm compressed into the first diaphragm. The rod 22i, whose proximal end is supported, is connected to the second diaphragm 22 opposite to the proximal end of the rod 22h.
A contact member 2'2m is fixed to the first diaphragm 22a and controls the most forward position of the rod 22h, and a contact member 22n is a first stopper fixed to the rod 22h. The rod 2 is connected by the contact member 22i.
The second stopper 22p stops the rod 2h at the complete explosion correction position, and the third stopper 22p is fixed to the second diaphragm 22d and restricts the most retracted position of the rod 22h. Further, the tip of the rod 22h is connected to the tip of a rotating lever 23 that is linked to the valve shaft 6a of the choke valve 6.

上記ダイヤフラム装置22の第1負圧室22cには一端
が絞弁5下流の吸気通路2に開口した負圧通路24の他
端が接続され、第2負圧室22eには該負圧通路24が
三方ソレノイド弁25を介して接続され、該三方ソレノ
イド弁25は後述する空燃比制御回路63の駆動信号に
よ、す、通常は第2負圧室22eを大気開放口25aに
接続する一方、減速時には大気開放口25aを閉じて第
2負圧室22eを負圧通路24に接続するよう作動する
ものである。
The first negative pressure chamber 22c of the diaphragm device 22 is connected to the other end of a negative pressure passage 24 whose one end opens to the intake passage 2 downstream of the throttle valve 5, and the second negative pressure chamber 22e is connected to the negative pressure passage 24. are connected via a three-way solenoid valve 25, and the three-way solenoid valve 25 normally connects the second negative pressure chamber 22e to the atmosphere opening 25a in response to a drive signal from an air-fuel ratio control circuit 63, which will be described later. During deceleration, the air opening 25a is closed and the second negative pressure chamber 22e is connected to the negative pressure passage 24.

尚、上記空燃比調整装置21はチョーク弁6の最小開度
を規制するものであり、バイメタル等によってチョーク
弁6がこの最小開度より大きく開−かれるのは拘束しな
いよう構成されている。
The air-fuel ratio adjusting device 21 regulates the minimum opening degree of the choke valve 6, and is constructed so as not to restrict the choke valve 6 from being opened more than this minimum opening degree using a bimetal or the like.

一方、26はエンジン1の排気通路であって、該排気通
路26には上流側から再燃焼装置27、三元触媒28(
触媒装置)が介設され、再燃焼装置27の上流側にはエ
アポンプ29からの二次エアを供給する二次エア供給通
路30が接続されており、該二次エア供給通路60は制
御弁31によって開閉される。− また、上記排気通路26の再燃焼装置27と三元触媒2
8との間には02センサ32が設けられている。この0
2センサ32は排気ガス中の酸素濃度を検出して吸入混
合気の空燃比と相関関係のある信号を出力するものであ
って、該02センサ32の出力信号は空燃比制御回路3
3に入力され、空燃比制御回路33は、この02センサ
32の出力信号および吸気負圧信号S1、エンジン回転
数信号S2、冷却水温度信号S3、外気温度信号S4を
受けて、前記気化器3の電磁・弁17、二次エア供給通
路60の制御弁31および空燃比調整装置21の三方ソ
レノイド弁25の作動をそれぞれ制御するものである。
On the other hand, 26 is an exhaust passage of the engine 1, and the exhaust passage 26 is connected from the upstream side to a reburning device 27, a three-way catalyst 28 (
A secondary air supply passage 30 that supplies secondary air from an air pump 29 is connected to the upstream side of the reburning device 27, and the secondary air supply passage 60 is connected to a control valve 31. It is opened and closed by - Also, the reburning device 27 of the exhaust passage 26 and the three-way catalyst 2
A 02 sensor 32 is provided between the 8 and 8. This 0
The 02 sensor 32 detects the oxygen concentration in the exhaust gas and outputs a signal correlated with the air-fuel ratio of the intake air-fuel mixture.
3, and the air-fuel ratio control circuit 33 receives the output signal of the 02 sensor 32, the intake negative pressure signal S1, the engine speed signal S2, the cooling water temperature signal S3, and the outside air temperature signal S4. , the control valve 31 of the secondary air supply passage 60, and the three-way solenoid valve 25 of the air-fuel ratio adjusting device 21, respectively.

上記空燃比制御回路33において、64は02センサ6
2の出力信号を受けるデユーティ比制御回路で、該デユ
ーティ比制御回路34は02センサ32の検出空燃比が
理論空燃比となるように電磁弁17のデユーティ比信号
を出力するものであり、このデユーティ比制御回路34
の出力信号は切換回路35、判別回路36、−駆動回路
37を介して気化器3の電磁弁17に出力される。上記
切換回路65は、吸気負圧信号S1およびエンジン回転
数信号S2からエンジン1の減速状態を検出する減速検
出面路68の信号を受け、減速時には判別回路36への
出力信号をデユーティ比制御回路34から固定デー−テ
ィ比発生回路39の信号に切換ルるものであり、固定デ
ユーティ比発生回路69は減速時の空燃比を理論空燃比
より濃くするために小さい値(例えば20%)に固定し
たデユーティ比信号を出力するものである。
In the air-fuel ratio control circuit 33, 64 is the 02 sensor 6
The duty ratio control circuit 34 receives the output signal of the 02 sensor 32 and outputs the duty ratio signal of the solenoid valve 17 so that the air-fuel ratio detected by the 02 sensor 32 becomes the stoichiometric air-fuel ratio. Ratio control circuit 34
The output signal is outputted to the solenoid valve 17 of the carburetor 3 via the switching circuit 35, the discrimination circuit 36, and the -drive circuit 37. The switching circuit 65 receives a signal from a deceleration detection surface path 68 that detects the deceleration state of the engine 1 from the intake negative pressure signal S1 and the engine rotational speed signal S2, and when decelerating, outputs an output signal to the discrimination circuit 36 to the duty ratio control circuit. 34 to a signal from a fixed duty ratio generating circuit 39, and the fixed duty ratio generating circuit 69 is fixed at a small value (for example, 20%) in order to make the air-fuel ratio during deceleration richer than the stoichiometric air-fuel ratio. This outputs a duty ratio signal.

上記判別回路66は、冷却水温度信号S3および外気温
度信号S4を受け、冷却水温愛が設定値(例えば5θ℃
)以下にあるとき、もしくは外気温度が設定値(例えば
/ j ℃)以下にあるとき、すなわち低温時には空燃
比を理論空燃比より濃くす乞ために、切換回路65の出
力信号に代えてデユーティ比決定回路40の出力信号を
駆動回路37に出力するものである。このデユーティ比
決定回路40は、吸気負圧信号S1およびエンジン回転
数信号S2に対応して、マツプ選別回路41で選別され
た例えば第2図に示す如き制御マツプから、運転状態に
応じて予め設定されているデユーティ比を求めるもので
あり、マツプ選別回路41は冷却水温度信号S6および
外気温度信号S4の値に対し予め設定されている数種の
マツプから所定温度域のマツプを選別するものである。
The discrimination circuit 66 receives the cooling water temperature signal S3 and the outside air temperature signal S4, and determines whether the cooling water temperature is a set value (for example, 5θ°C).
), or when the outside air temperature is below a set value (for example, /j °C), in other words, at low temperatures, the duty ratio is The output signal of the determination circuit 40 is output to the drive circuit 37. The duty ratio determining circuit 40 is configured to set a duty ratio in advance according to the operating state from a control map as shown in FIG. The map selection circuit 41 is used to select a map within a predetermined temperature range from several maps preset for the values of the cooling water temperature signal S6 and the outside air temperature signal S4. be.

尚、第2図に示すマツプは冷却水温度力!jθ℃以下で
かつ外気温度が7.5℃以下の条件で設定したものであ
り、このマツプにおいては、減速域Aでの設定デユーテ
ィ比は空燃比を濃くするべく小さな値に設定されており
、減速リッチャ−機能を有している。
The map shown in Figure 2 shows the cooling water temperature force! It is set under the conditions that jθ℃ or less and the outside air temperature is 7.5℃ or less. In this map, the set duty ratio in deceleration area A is set to a small value to enrich the air-fuel ratio, It has a deceleration richer function.

前記減速検出回路68の出力信号は、二次エア供給通路
30の制御弁31に入力されてその開閉が制御され、こ
の二次エア供給通路60からは例えば第3図に示すよう
に、減速域Aおよび低回転域Bに二次エアが排気通路2
6に供給されるように構成されている。
The output signal of the deceleration detection circuit 68 is input to the control valve 31 of the secondary air supply passage 30 to control its opening/closing, and from this secondary air supply passage 60, as shown in FIG. A and low rotation range B have secondary air in exhaust passage 2.
6.

また、上記減速検出回路68の出力信号はエンジン回転
数信号S2とともにチョーク駆動回路42に入力され、
該チョーク駆動回路42からの駆動信号力!前記空燃比
調整装置21の三方ソレノイド弁25に入力され、該三
方ソレノイド弁25は、第ダ図に示すように、所定回転
数以上の減速域A′で駆動信号を受けて作動し、第2負
圧n22eに吸気負圧を導入するものである。
Further, the output signal of the deceleration detection circuit 68 is inputted to the choke drive circuit 42 together with the engine rotation speed signal S2,
The drive signal power from the choke drive circuit 42! The input signal is input to the three-way solenoid valve 25 of the air-fuel ratio adjusting device 21, and as shown in FIG. Intake negative pressure is introduced into the negative pressure n22e.

次に、上記実施例の作用を説明すれば、低温時において
エンジン1を始動するときには、チョーク弁6は全閉状
態にあり、エンジン1が完爆して回転を開始すると、絞
弁5下流の吸気通路2に発生ずる吸気負圧が負圧通路2
4を介してダイヤフラム装置22の第1負圧室22Cに
導入される。
Next, to explain the operation of the above embodiment, when starting the engine 1 at a low temperature, the choke valve 6 is in a fully closed state, and when the engine 1 completely explodes and starts rotating, the throttle valve 5 downstream The intake negative pressure generated in the intake passage 2 is transferred to the negative pressure passage 2.
4 into the first negative pressure chamber 22C of the diaphragm device 22.

よって、第1ダイヤフラム22aは第1スプリング22
fに抗してロッド22hが当接部材221に接触するま
で変位し、チョーク弁6は全閉状態から所定開度だけ開
かれる完爆補正が行われ、吸入空気量が増加して空燃比
は希薄側に移行する。
Therefore, the first diaphragm 22a is connected to the first spring 22.
The rod 22h is displaced against the force 22h until it contacts the contact member 221, and the choke valve 6 is opened by a predetermined opening degree from the fully closed state to perform a complete explosion correction, which increases the amount of intake air and the air-fuel ratio. Move to the dilute side.

上記完爆補正が行われた後に、エンジン1が運転状態に
入り減速状態になると、空燃比制御回路33の減速リッ
チャ−機能により電磁弁17には小さなデユーティ比の
一制御信号が出力されて空燃比はチョーク弁6の作動と
相俟って濃く過濃状態に移行するが、上記減速時にはチ
ョーク駆動回路42の駆動信号が三方ンレノイド弁25
に入力され、ダイヤフラム装置22の第2負圧室22e
には負圧通路24の吸気負圧が導入される。よって、第
2ダイヤフラム22dは第2スプリング22qに抗して
後退方向に変位し、ロッド22hもこれに応じて後退し
、チョーク弁6は完爆補正開度からさらに所定開度だけ
開かれ、吸入空気量がさらに増加して空燃比は希薄側に
補正され、過濃混合気の供給が抑制される。
After the above-mentioned complete explosion correction is performed, when the engine 1 enters the operating state and enters the deceleration state, the deceleration richer function of the air-fuel ratio control circuit 33 outputs a control signal with a small duty ratio to the solenoid valve 17, causing the engine to decelerate. Together with the operation of the choke valve 6, the fuel ratio becomes rich and shifts to a superrich state, but at the time of deceleration, the drive signal of the choke drive circuit 42 is applied to the three-way renoid valve 25.
is input into the second negative pressure chamber 22e of the diaphragm device 22.
Intake negative pressure of the negative pressure passage 24 is introduced into the negative pressure passage 24 . Therefore, the second diaphragm 22d is displaced in the backward direction against the second spring 22q, and the rod 22h is also moved backward accordingly, and the choke valve 6 is further opened by a predetermined opening degree from the complete explosion correction opening degree, and the suction The air amount further increases, the air-fuel ratio is corrected to the lean side, and supply of an overly rich mixture is suppressed.

尚、上記実施例においてはチョーク弁6の開度を増加さ
せて空燃比を希薄化する空燃比調整装置21の例を示し
たが、本発明はこれに限定されるものではなく、例えば
、チョーク作動・時を検出して″減速時に燃料通路を絞
るかデユーティ比を変更することにより空燃比を希薄化
する空燃比調整装置を採用してもよい。しかし、上記実
施例のものではチョーク作動時を検出する必要がμいの
で構造が簡単となる利点を有する。
In the above embodiment, an example of the air-fuel ratio adjusting device 21 that increases the opening degree of the choke valve 6 to dilute the air-fuel ratio is shown, but the present invention is not limited to this. An air-fuel ratio adjustment device may be adopted that detects the activation time and dilutes the air-fuel ratio by narrowing the fuel passage or changing the duty ratio during deceleration. However, in the above embodiment, the air-fuel ratio adjustment device Since it is not necessary to detect μ, the structure has the advantage of being simple.

また、上記実施例では−、フィードバック制御方式の空
燃比制御装置についての補正装置を説明しているが、こ
のようなフィードバック制御機能を有していない空燃比
制御装置にも本発明は適用可能である。
Further, in the above embodiment, a correction device for an air-fuel ratio control device using a feedback control method is explained, but the present invention is also applicable to an air-fuel ratio control device that does not have such a feedback control function. be.

従って、以上の如き本発明によれば、チョーク弁と減速
リッチャ−の作動時、すなわちチョーク作動時でかつ減
速時にエンジンに供給される混合気の空燃比を希薄側に
補正する空燃比調整装置を設けたことにより、エンジン
の要求空燃比に対し過濃な混合気の供給を阻止し、排気
系に多量の未燃焼成分が排出されることによる排気ガス
浄化性能および燃料消費性能の低下を未然に防止し、特
に触媒装置の過熱による早期劣化を改善することができ
るものである。
Therefore, according to the present invention as described above, an air-fuel ratio adjustment device is provided which corrects the air-fuel ratio of the air-fuel mixture supplied to the engine to the lean side when the choke valve and the deceleration richer are activated, that is, when the choke is activated and when the engine is decelerated. This prevents the supply of a mixture that is too rich for the engine's required air-fuel ratio, and prevents a decline in exhaust gas purification performance and fuel consumption performance due to large amounts of unburned components being discharged into the exhaust system. In particular, it is possible to prevent early deterioration of the catalyst device due to overheating.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図は全体構成図、
第2図は空燃比制御回路における制御マツプの一例を示
す線図、第3図は二次エアの供給時期の一例を示す線図
、第グ図は空燃比調整装置の作動時期の一例を示す線図
である。 1・・・・・・エンジン、2・・・・・・吸気通路、6
・・・・・・気化器、4・・・・・・ベンチュリ部、5
・・・・・・絞弁、6・・・・・・チョーク弁、7・・
・・・・主燃料通路、11・・・・・・メインエアブー
リード、12・・・・・・スロー燃料通路、15・・・
・・・スローエアブリード、17・・・・・・・電磁弁
、18・・・・・・補助燃料通路、19・・・・・・補
助エアブリード通路、21・・・・・・空燃比調整装置
、22・・・・・・ダイヤフラム装置、24・・・・・
・負圧通路、25・・・・・・三方ソレノイド弁、26
・・・・・・排気通路、27・・・・・・再燃焼装置、
28・・・・・・三元触媒、30・・・・・・二次エア
供給通路、31・・・・・・制御弁、642・・・・・
・02センサ、339.−、−空燃比制御回路
The drawings show one embodiment of the present invention, and FIG. 1 is an overall configuration diagram;
Fig. 2 is a diagram showing an example of a control map in the air-fuel ratio control circuit, Fig. 3 is a diagram showing an example of the supply timing of secondary air, and Fig. 3 is a diagram showing an example of the operation timing of the air-fuel ratio adjustment device. It is a line diagram. 1...Engine, 2...Intake passage, 6
... Carburizer, 4 ... Venturi section, 5
... Throttle valve, 6... Choke valve, 7...
...Main fuel passage, 11... Main air boolean lead, 12... Slow fuel passage, 15...
... Slow air bleed, 17 ... Solenoid valve, 18 ... Auxiliary fuel passage, 19 ... Auxiliary air bleed passage, 21 ... Air-fuel ratio Adjustment device, 22...Diaphragm device, 24...
・Negative pressure passage, 25...Three-way solenoid valve, 26
...exhaust passage, 27...reburner,
28... Three-way catalyst, 30... Secondary air supply passage, 31... Control valve, 642...
・02 sensor, 339. -, -Air-fuel ratio control circuit

Claims (1)

【特許請求の範囲】[Claims] V)エンジンの温度に応じて作動するチョーク弁と、エ
ンジンの減一時にエンジンに供給され−る混合気の空燃
比を濃くする減速IJ 、チャー六を備えた空燃比制御
装置において、チョーク作動時でかつ減速時にエンジン
に供給される混合気の空燃比を希薄側に補正する空燃比
調整装置を設けたことを特徴とするエンジンの空燃比補
正装置。
V) In an air-fuel ratio control device equipped with a choke valve that operates according to the engine temperature, a deceleration IJ that enriches the air-fuel ratio of the air-fuel mixture supplied to the engine when the engine is decreasing, 1. An air-fuel ratio correcting device for an engine, characterized in that an air-fuel ratio adjusting device is provided for correcting the air-fuel ratio of an air-fuel mixture supplied to the engine during deceleration to a leaner side.
JP18566081A 1981-11-18 1981-11-18 Correction device for air-fuel ratio of engine Granted JPS5888447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18566081A JPS5888447A (en) 1981-11-18 1981-11-18 Correction device for air-fuel ratio of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18566081A JPS5888447A (en) 1981-11-18 1981-11-18 Correction device for air-fuel ratio of engine

Publications (2)

Publication Number Publication Date
JPS5888447A true JPS5888447A (en) 1983-05-26
JPS6319702B2 JPS6319702B2 (en) 1988-04-25

Family

ID=16174638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18566081A Granted JPS5888447A (en) 1981-11-18 1981-11-18 Correction device for air-fuel ratio of engine

Country Status (1)

Country Link
JP (1) JPS5888447A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4729154U (en) * 1971-04-30 1972-12-02
JPS5223637U (en) * 1975-08-06 1977-02-19
JPS5632592U (en) * 1979-08-18 1981-03-30

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4729154U (en) * 1971-04-30 1972-12-02
JPS5223637U (en) * 1975-08-06 1977-02-19
JPS5632592U (en) * 1979-08-18 1981-03-30

Also Published As

Publication number Publication date
JPS6319702B2 (en) 1988-04-25

Similar Documents

Publication Publication Date Title
JPS5821097B2 (en) Ninen Kikanno Idol Antei Souchi
JPH0586984A (en) Fuel control device
JPS5888447A (en) Correction device for air-fuel ratio of engine
JPS60247044A (en) Fuel feeder for liquefied-petroleum-gas engine
JPH04330320A (en) Air suction system
JPS60261949A (en) Air-fuel ratio controller for internal-combustion engine
JPS6030459A (en) Choke valve system for carburetor
JPH0134293B2 (en)
GB2142170A (en) Air fuel ratio control system
JPS6342095B2 (en)
JPS63113146A (en) Air-fuel ratio control unit for internal combustion engine in idle running
JPS60187749A (en) Air-fuel ratio controlling apparatus for engine having carburetor
JPH0771322A (en) Air fuel ratio controller of gas engine
JPS6142093B2 (en)
JPS5879643A (en) Idle operation controller of internal-combustion engine with auxiliary equipment
JPS63131856A (en) Carburettor
JPH05215012A (en) Flow rate control valve controlling method at acceleration
JPH04187852A (en) Air-fuel ratio controller for engine
JPH0718388B2 (en) Air-fuel ratio controller for LPG engine
JPH029934A (en) Air-fuel ratio control device for carburetor
JPS6287638A (en) Fuel pressure controller for internal combustion engine
JPH09264168A (en) Air-fuel ratio control device for internal combustion engine
JPS6238843A (en) Air-fuel ratio control method for engine
JPS6013963A (en) Air-fuel ratio control device for internal-combustion engine equipped with carburettor
JPS61229964A (en) Fuel control device of carburetor